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ABSTRACT

The complex-valued radial basis function (RBF) network proposed by Chen et al.
(1994) has found many applications for processing complex-valued signals, in particular,
for communication channel equalisation and signal detection. This complex-valued
RBF network, like many other existing RBF modelling methods, constitutes a black-box
approach that seeks typically a sparse model representation extracted from the training
data. Adopting black-box modelling is appropriate, if no a priori information exists
regarding the underlying data generating mechanism. However, a fundamental principle in
practical data modelling is that if there exists a priori information concerning the system
to be modelled it should be incorporated in the modelling process. Many complex-valued
signal processing problems, particularly those encountered in communication signal
detection, have some inherent symmetric properties. This contribution adopts a grey-box
approach to complex-valued RBF modelling and develops a complex-valued symmetric
RBF (SRBF) network model. The application of this SRBF network is demonstrated using
nonlinear beamforming assisted detection for multiple-antenna aided wireless systems
that employ complex-valued modulation schemes. Two training algorithms for this
complex-valued SRBF network are proposed. The first method is based on a modified
version of the cluster-variation enhanced clustering algorithm, while the second method
is derived by modifying the orthogonal-forward-selection procedure based on Fisher ratio
of class separability measure. The effectiveness of the proposed complex-valued SRBF
network and the efficiency of the two training algorithms are demonstrated in nonlinear
beamforming application.
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INTRODUCTION

The radial basis function (RBF) network is a popular artificial neural network (ANN) ar-
chitecture that has found wide-ranging applications in many diverse fields of engineering,
see for example, Chen et al. (1990); Leonard & Kramer (1991); Chen et al. (1993); Caiti
& Parisini (1994); Gorinevsky et al. (1996); Cha & Kassam (1996); Rosenblum & Davis
(1996); Refaee et al. (1999); Muraki et al. (2001); Mukai et al. (2002); Su et al. (2002);
Li et al. (2004); Lee & Choi (2004); Ng et al. (2004); Oyang et al. (2005); Acir et al.
(2005); Tan et al. (2005). The RBF method is a classical numerical technique for nonlin-
ear functional interpolation with real-valued data (Powell, 1987). A renewed interest in
the RBF method coincided with a recent resurgence in the field of ANNs. Connections
between the RBF method and the ANN was made and the RBF model was re-interpreted
as a one-hidden-layer feedforward network (Broomhead & Lowe, 1988; Poggio & Girosi,
1990). Specifically, by adopting the ANN interpretation, a RBF model can be considered
as a processing structure consisting of a hidden layer and an output layer. Each node in
the hidden layer has a radially symmetric response around a node parameter vector called
a centre, with the hidden node’s response shape determined by the chosen basis function
as well as a node width parameter, while the output layer is a set of linear combiners with
linear connection weights.

The parameters of the RBF network include its centre vectors and variances or covari-
ance matrices of the basis functions as well as the weights that connect the RBF nodes to
the network output. All the parameters of a RBF network can be learned together via non-
linear optimisation using the gradient based algorithms (Chen et al., 1990a; An et al., 1993;
McLoone et al., 1998; Karayiannis & Randolph-Gips, 2003; Peng et al., 2003), the evolu-
tionary algorithms (Whitehead & Choate, 1994; Whitehead, 1996; Gonzalez et al., 2003) or
the expectation-maximisation algorithm (Yang & Chen, 1998; Mak & Kung, 2000). Gen-
erally, learning based on such a nonlinear approach is computationally expensive and may
encounter the problem of local minima. Additionally, the network structure or the number
of RBF nodes has to be determined via other means, typically based on cross validation.
Alternatively, clustering algorithms can be applied to find the RBF centre vectors as well as
the associated basis function variances (Moody & Darken, 1989; Chen et al., 1992; Chen,
1995; Uykan, 2003). This leaves the RBF weights to be determined by the usual linear
least squares solution. Again, the number of the clusters has to be determined via other
means, such as cross validation. One of the most popular approaches for constructing RBF
networks however is to formulate the problem as a linear learning one by considering the
training input data points as candidate RBF centres and employing a common variance for
every RBF node. A parsimonious RBF network is then identified using the orthogonal least
squares (OLS) algorithm (Chen et al., 1989, 1991, 1999, 2003, 2004a).

Many practical signal processing applications deal with complex-valued signals and
data. This motivates the research in complex-valued ANNs, which have found wide-ranging
applications in complex-valued signal processing problems (Uncini et al., 1999; Kim &
Adali, 2003; Li et al., 2005; Yang & Bose, 2005; Hirose, 2006). A particular complex-
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valued ANN architecture proposed by Chen et al. (1994) is the complex-valued RBF net-
work, which takes the following form

y(k) =
Nc∑

i=1

wiϕ(x(k); ci, ρ
2), (1)

where y(k) ∈ C (C being the field of complex-valued numbers) and x(k) ∈ CL denote the
complex-valued RBF network output and input vector, respectively, Nc denotes the number
of RBF units, wi are the complex-valued RBF weights, ci ∈ CL are the complex-valued
RBF centres, ρ2 is the positive RBF variance, and ϕ(•) is the real-valued radial basis func-
tion. When y(k) and wi are real-valued, this complex-valued RBF network reduces to the
special case of the usual real-valued RBF network (Moody & Darken, 1989; Chen et al.,
1991). Each RBF unit in the complex-valued RBF network (1) can be interpreted as some
underlying probability density function (Chen et al., 1994). Such a physical interpretation
makes this complex-valued RBF network a powerful tool in processing complex-valued
signals, particularly, in applications to communication channel equalisation and signal de-
tection (Chen et al., 1994a; Cha & Kassam, 1995; Gan et al., 1999; Deng et al., 2002;
Botoca & Budura, 2006).

Like many existing neural network models, this complex-valued RBF network, how-
ever, constitutes a black-box approach that seeks a sparse model representation extracted
from the training data. Adopting black-box modelling is appropriate, if no a priori infor-
mation exists regarding the underlying data generating mechanism. However, if there exists
a priori information concerning the system to be modelled, it should be incorporated in
the modelling process. The use of available prior knowledge in data modelling often leads
to an improved performance. For real-valued signal processing applications, it has been
recognised that many real-life phenomena exhibit inherent symmetry and these properties
are hard to infer accurately from noisy data with the aid of black-box real-valued neural
network models. However, by imposing appropriate symmetry on the model’s structure,
exploiting the symmetry properties becomes easier and this leads to substantial improve-
ments in the achievable modelling performance. For example, in regression-type applica-
tions, how to exploit odd or even symmetry of the underlying system explicitly in both
the real-valued RBF network and least squares support vector machine has been demon-
strated (Aguirre et al., 2004; Espinoza et al., 2005), while in two-class classification-type
applications, a novel real-valued symmetric RBF (SRBF) network has been proposed for
communication signal detection (Chen et al., 2006, 2007,a,b), which explicitly utilises odd
symmetry of the underlying optimal Bayesian detection solution.

This contribution continues this theme and extend the grey-box approach to complex-
valued RBF modelling. Instead of simple odd or even symmetry typically found in real-
valued signal processing problems, symmetry properties inherented in many complex-
valued signal processing problems are more complicated, and this is demonstrated using the
application to nonlinear beamforming assisted detection for multiple-antenna aided wire-
less systems that employ complex-valued quadrature phase shift keying (QPSK) modulation
scheme. This naturally leads to our proposed complex-valued SRBF network. Two training
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algorithms for this complex-valued SRBF network are proposed. The first method is based
on a modified version of the cluster-variation enhanced clustering algorithm (Chinrungru-
eng & Séquin, 1995; Chen, 1995; Chen et al., 2007a). The second method is derived by
modifying the orthogonal-forward-selection (OFS) procedure based on the Fisher ratio of
class separability measure (FRCSM) (Mao, 2002; Chen et al., 2004, 2007b) through chang-
ing the two-class FRCSM into the multi-class (four-class) one. The effectiveness of the
proposed complex-valued SRBF network and the efficiency of the two training algorithms
are demonstrated in nonlinear beamforming application. Although the proposed complex-
valued SRBF network is derived in the context of nonlinear beamforming for QPSK wire-
less systems, it is applicable to the generic complex-valued signal processing problem that
exhibits a similar symmetric behaviour.

The remainder of this contribution is organised as follows. We first present the complex-
valued signal model for the multiple-antenna aided wireless system that employs the QPSK
signalling as well as the optimal Bayesian nonlinear beamforming or detection solution.
The inherent symmetric structure of this Bayesian nonlinear beamforming solution is then
highlighted. This naturally leads to the proposed complex-valued SRBF network, which
can easily be constructed using a cluster-variation enhanced clustering algorithm. While
the clustering-based SRBF network developed is a direct “carbon-copy” of the symmetric
Bayesian beamformer, a more generic complex-valued SRBF is also proposed and a multi-
class FRCSM-based OFS algorithm is derived to construct a parsimonious SRBF network
model. Finally, some concluding remarks are offerred.

BACKGROUND

A coherent wireless communication system supports M users, where each user transmits
on the same angular carrier frequency ω with a single transmit antenna while the receiver
is equipped with a linear antenna array consisting of L uniformly spaced elements in order
to achieve user separation in the angular domain (Paulraj et al., 2003; Tse & Viswanath,
2005). Assume furthermore that the channel is non-dispersive and hence it does not induce
intersymbol interference.

Beamforming Signal Model

The symbol-rate complex-valued received signal vector x(k) = [x1(k) x2(k) · · ·xL(k)]T

can be expressed as (Litva & Lo, 1996; Blogh & Hanzo, 2002)

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (2)

where x̄(k) denotes the noise-free part of the received signal vector, n(k) =
[n1(k) n2(k) · · ·nL(k)]T and nl(k) denotes the complex-valued white Gaussian noise as-
sociated with the l-th channel having E[|nl(k)|2] = 2σ2

n, while P is the L ×M complex-
valued system’s channel matrix and b(k) = [b1(k) b2(k) · · · bM (k)]T with bi(k) denoting
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the k-th transmitted symbol of user i. The system’s channel matrix P is defined by

P = [A1s1 A2s2 · · ·AMsM ], (3)

where Ai denotes the i-th complex-valued non-dispersive channel tap and the steering vec-
tor of user i is given by

si =
[
ejωt1(θi) ejωt2(θi) · · · ejωtL(θi)

]T
(4)

with θi and tl(θi) denoting the angle of arrival and the relative time delay at array element l
for user i, respectively. The modulation scheme is assumed to be the QPSK and, therefore,
bi(k) takes values from the QPSK symbol set

BQPSK
4
=

{
b[1] = +1 + j, b[2] = −1 + j, b[3] = −1− j, b[4] = +1− j

}
. (5)

Let source i be the desired user and the rest of the sources be the interfering users. The
average signal-to-noise ratio (SNR) of the system is given by

SNR =

(
1
M

M∑

i=1

|Ai|2
)

σ2
b/2σ2

n, (6)

where σ2
b is the QPSK symbol energy, and the desired signal-to-interferer q ratio (SIR) is

defined by SIRi,q = |Ai|2/|Aq|2, for q 6= i.
Traditionally, a linear beamformer is adopted to detect the desired user’s signal (Litva &

Lo, 1996; Blogh & Hanzo, 2002). The linear beamformer for user i is defined by yLin(k) =
αH

i x(k), where αi = [α1,i α2,i · · ·αL,i]T is the complex-valued i-th linear beamformer’s
weight vector. The decision regarding the transmitted symbol bi(k) is given by b̂i(k) =
sgn(yLin(k)) with

sgn(y) =





b[1] = +1 + j, yR ≥ 0 and yI ≥ 0,

b[2] = −1 + j, yR < 0 and yI ≥ 0,

b[3] = −1− j, yR < 0 and yI < 0,

b[4] = +1− j, yR ≥ 0 and yI < 0,

(7)

where yR = <[y] and yI = =[y] denote the real and imaginary parts of y, respectively. The
optimal weight vector designed for the linear beamformer is known to be the minimum bit
error rate (L-MBER) solution (Chen et al., 2005), which directly minimises the bit error rate
(BER) of the linear beamformer. However, if one is willing to extend the concept of beam-
forming from linear to nonlinear, significant performance improvement can be achieved, at
the cost of considerably increased complexity (Chen et al., 2008).
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Optimal Bayesian Beamforming Solution

Denote the Nb = 4M legitimate combinations of b(k) as bq, 1 ≤ q ≤ Nb. The noiseless
channel output x̄(k) takes values from the vector state set

x̄(k) ∈ X 4
= {x̄q = Pbq, 1 ≤ q ≤ Nb}. (8)

The signal state set X can be divided into the four subsets conditioned on the value of bi(k)
as follows

X [m] 4= {x̄[m]
q ∈ X , 1 ≤ q ≤ Nsb : bi(k) = b[m]}, (9)

for 1 ≤ m ≤ 4, where the size ofX [m] is Nsb = 4M−1. Denote the conditional probabilities
of receiving x(k) given bi(k) = b[m] as p[m](x(k)) = p(x(k)|bi(k) = b[m]). According to
Bayes’ decision theory (Duda & Hart, 1973), the optimal detection strategy is

b̂i(k) = b[m∗] (10)

where
m∗ = arg max

1≤m≤4
p[m](x(k)). (11)

If we introduce the following complex-valued Bayesian decision variable (Chen et al.,
1994a)

yBay(k)
4
=

4∑

m=1

b[m] · p[m](x(k)), (12)

the optimal Bayesian detection rule (10) and (11) is equivalent to b̂i(k) = sgn(yBay(k)).
The conditional probability p[m](x(k)), 1 ≤ m ≤ 4, can be expressed as

p[m](x(k)) =
Nsb∑

q=1

βqe
− ‖x(k)−x̄

[m]
q ‖2

2σ2
n , (13)

where x̄[m]
q ∈ X [m], and βq is proportional to the a priori probability of x̄[m]

q . Since all
the x̄[m]

q are equiprobable, βq = β = 1
Nsb(2πσ2

n)L . It can be seen from (13) that the optimal
Bayesian decision variable (12) takes the structure of a complex-valued RBF network (Chen
et al., 1994a) with a Gaussian RBF function. In fact, substituting (13) into (12) provides a
physical motivation for Chen et al. (1994) to derive the complex-valued RBF network (1).

The state subsets X [m], 1 ≤ m ≤ 4, are distributed symmetrically with respect to each
other as summarised in the following lemma.

Lemma 1 The four subsets X [m], 1 ≤ m ≤ 4, satisfy

X [2] = +j · X [1], X [3] = −1 · X [1], X [4] = −j · X [1]. (14)
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Proof: Consider any x̄[1]
q = Pb[1]

q ∈ X [1], where the i-th element of b[1]
q is b[1] = +1 + j.

Noting +j · b[1] = b[2],
+j · x̄[1]

q = P
(
+j · b[1]

q

)
∈ X [2]. (15)

This proves the first relationship in (14). The proofs of the other two relationships are simi-
lar. Given this symmetry, the optimal Bayesian solution (12) can alternatively be expressed
as

yBay(k) =
Nsb∑

q=1



b[1]β · e−

‖x(k)−x̄
[1]
q ‖2

2σ2
n + b[2]β · e−

‖x(k)−j·x̄[1]
q ‖2

2σ2
n

+b[3]β · e−
‖x(k)+x̄

[1]
q ‖2

2σ2
n + b[4]β · e−

‖x(k)+j·x̄[1]
q ‖2

2σ2
n



 , (16)

where x̄[1]
q ∈ X [1]. Note that the symmetric property of the Bayesian detection solution for

the QPSK communication system is more complex than the simple odd symmetry of the
Bayesian detection solution for the binary communication system derived in (Chen et al.,
2006, 2007,a,b). Even more complicated symmetric property exists for the generic higher-
order quadrature amplitude modulation (QAM) case (Chen et al., 2006a). Extension to the
higher-order QAM case is beyond the scope of this contribution.

ClUSTERING-BASED SYMMETRIC RBF BEAMFORMING

Consider the problem of realising the optimal Bayesian beamforming solution using a
complex-valued RBF network. The symmetry of the Bayesian solution (16) should be
explicitly exploited, and one way to guarantee this desired symmetry is to employ the fol-
lowing SRBF network for the detection of user i data

ySRBF(k) =
Nc∑

q=1

βqφ(x(k); cq, ρ
2), (17)

with the decision b̂i(k) = sgn(ySRBF(k)). Unlike the complex-valued RBF network (1),
here the RBF weights βq are real-valued and the RBF nodes’ response φ(x(k); cq, ρ

2) are
complex-valued, defined as

φ(x; c, ρ2) = b[1]ϕ(x; c, ρ2)+b[2]ϕ(x; jc, ρ2)+b[3]ϕ(x;−c, ρ2)+b[4]ϕ(x;−jc, ρ2), (18)

where ϕ(•; •) is the usual real-valued radial basis function. In this study, the Gaussian
function of the form

ϕ(x; c, ρ2) = e
− ‖x−c‖2

2ρ2 . (19)

is used. Note that the standard complex-valued RBF network (1) does not guarantee to
posses the same symmetry property of the optimal Bayesian solution (16), particularly when
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the RBF centres cq are obtained directly from the channel-impaired observation data. By
contrast, the SRBF network (17) with the symmetric node structure (18) guarantees to have
the same symmetry property of the optimal Bayesian solution (16).

Clustering-Based Training Algorithm

Given a set of the K training data DK = {x(k), d(k)}K
k=1, where d(k) = bi(k) ∈ BQPSK,

the task is to construct this SRBF network from the training data set DK . Since the number
of users is usually known, the number of RBF centres can be set to Nc = Nsb. To further
exploit the structure of the optimal Bayesian solution (16), all the real-valued RBF weights
can be set to a positive constant βq = β > 0. Specific value of β has no influence to the
detection performance. Furthermore, set the RBF variance to ρ2 = σ̂2

n, where σ̂2
n is an

estimate of the noise variance. It is worth emphasising that the performance of the SRBF
network is not sensitive to the value of ρ2 used and there exist a wide-range values of
ρ2 which enable the SRBF network to approach the optimal Bayesian performance. This
will further be demonstrated in the following simulation study. The insensitiveness of the
SRBF network to the value of ρ2 used is a direct consequence of the insensitiveness of the
Bayesian detection solution to the value of the noise variance used. Thus, adaptation of the
SRBF network (17) with the node structure (18) becomes the task of finding appropriately
the RBF centre vectors cq.

To use the channel-impaired training data DK to directly obtain the RBF centre vec-
tors for the SRBF network (17) and hence to approximate the optimal Bayesian solution,
we propose to use a modified version of the cluster-variation assisted clustering algorithm
(Chinrungrueng & Séquin, 1995; Chen, 1995). Specifically, during training, the RBF cen-
tres are adjusted according to

cl(k) = cl(k − 1) + µcMl(x̌(k))(x̌(k)− cl(k − 1)), (20)

where

x̌(k) =





+1 · x(k), bi(k) = b[1],

−j · x(k), bi(k) = b[2],

−1 · x(k), bi(k) = b[3],

+j · x(k), bi(k) = b[4],

(21)

µc is the step size and the membership function Ml(x) is defined as

Ml(x) =

{
1, if v̄l‖x− cl‖2 ≤ v̄q‖x− cq‖2, ∀q 6= l,
0, otherwise,

(22)

with v̄l being the variation of the l-th cluster. In order to estimate the associated variation
v̄l, the following updating rule (Chinrungrueng & Séquin, 1995; Chen, 1995) is used

v̄l(k) = µvv̄l(k − 1) + (1− µv)Ml(x̌(k))‖x̌(k)− cl(k − 1)‖2, (23)

where µv is a constant slightly less than 1.0. The initial variations v̄l(0), ∀l, are set to the
same small positive number.
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Figure 1: Angular locations of the three QPSK users with respect to the two-element linear
antenna array having λ/2 spacing, where λ is the wavelength.

It is known that this cluster-variation enhanced clustering algorithm is capable of ob-
taining the optimal cluster partitioning structure and all the cluster variations converge to
the same value (Chinrungrueng & Séquin, 1995). Specifically, in our particular application,
the RBF centre vectors cq converge to the noise-free signal states x̄[1]

q and all the cluster
variations converge to the noise variance 2σ2

n.

Simulation Study

A simulation study was carried out to investigate performance of the proposed clustering-
based SRBF network in nonlinear beamforming application.
Example One. The system employed a two-element antenna array to support three QPSK
users. Fig. 1 depicts the angular positions of the three users with respect to the antenna array.
The simulated narrowband channels were Ai = 1 + j0, 1 ≤ i ≤ 3, and all the three users
had an equal power. Thus all the SIRs were 0 dB. First, we demonstrated the performance
improvement achievable by the optimal nonlinear beamforming over the optimal linear one,
when the system’s channel matrix P and the noise statistics σ2

n were known. Fig. 2 com-
pares the BER performance of the Bayesian beamforming and the L-MBER beamforming.
As expected, the Bayesian beamforming achieved much better BER performance over the
optimal linear beamforming. This performance gain was of course obtained at the cost of
an increased complexity. From Fig. 2, it can be seen that the performance of the individual
linear beamformer depended on the particular user’s angular position as well as the other
users’ locations. For user 3, the underlying system was not linearly separable and hence the
L-MBER beamformer exhibits a high error floor. By contrast, all the three Bayesian beam-
formers had the similar performance, as a nonlinear beamformer can operate successfully
even in the linearly nonseparable senario. Because of this remarkable robustness property,
we only concentrated on the user one when investigating the SRBF beamforming.

The clustering-based SRBF beamforming for user one was then studied. For this exam-
ple, the number of the subset channel states was Nsb = 16, and we used the first 16 data
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Figure 2: BER performance comparison of the optimal nonlinear beamforming with the op-
timal linear beamforming, for the two-element array system supporting three QPSK users.

points x̌(k), 1 ≤ k ≤ 16, as the initial RBF centres. The initial cluster variations were
set to v̄l(0) = 0.02 for 1 ≤ l ≤ Nsb, and the adaptive constant for updating the cluster
variations was chosen to be µv = 0.995. Note that the general rule is that all the initial
cluster variations v̄l(0) should be set to the same small positive number and µv should be
set to a constant slightly less than 1.0. Convergence performance of the cluster-variation
enhanced clustering algorithm was assessed in the simulation based on the Euclidean dis-
tance between the set of the RBF centres {cl}Nsb

l=1 and the set of the true subset channel
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Figure 3: Learning curves of the cluster algorithm for user one of the two-element array
system supporting three QPSK users, in terms of Euclidean distance between the RBF
centres and true channel states averaged over ten runs, given SNR= 20 dB.

states {x̄[1]
l }Nsb

l=1 defined as

ED(k) =
1

Nsb

Nsb∑

l=1

‖cl(k)− x̄[1]
l ‖2. (24)

Given SNR= 20 dB, Fig. 3 plots the learning curves of the clustering algorithm in terms
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Figure 4: Influence of the RBF variance on the BER performance of the clustering-based
SRBF beamformer for user one of the two-element array system supporting three QPSK
users, given SNR= 20 dB.
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Figure 5: User-one BER performance of the clustering-based SRBF beamformer for the
two-element array system supporting three QPSK users, given ρ2 = σ2

n, in comparison
with the Bayesian beamforming performance.

of the Euclidean distance (24) averaged over 10 different random runs for the three values
of the adaptive gain µc. It is seen from Fig. 3 that for this example the best convergence
performance was achieved with µc = 0.2. The robustness of the clustering-based adaptive
SRBF beamforming with respect to the value of the RBF variance ρ2 used is demonstrated
in Fig. 4, where it can be seen that there exist a wide-ranging values of the RBF variance ρ2

for the clustering-based SRBF network to achieve the Bayesian beamforming performance.
Fig. 5 compares the BER performance of the clustering-based adaptive SRBF beamformer
for user one after convergence with that of the Bayesian beamformer, given the RBF vari-
ance ρ2 = σ2

n.
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Figure 6: Angular locations of the four QPSK users with respect to the three-element linear
antenna array having λ/2 spacing, where λ is the wavelength.
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Figure 7: BER performance comparison of the optimal nonlinear beamforming with the op-
timal linear beamforming, for the three-element array system supporting four QPSK users.

Example Two. A three-element antenna array was designed to support four QPSK users.
Fig. 6 shows the angular positions of the four users with respect to the antenna array. The
simulated narrowband channels were Ai = 1 + j0 for 1 ≤ i ≤ 4, and all the four users
had the same power. Fig. 7 demonstrates the BER performance improvement achievable
by the Bayesian beamforming over the L-MBER beamforming. Again, the robustness of
the Bayesian beamforming is clearly shown in Fig. 7, where it can be seen that all the four
Byesian beamformers had the similar performance.

The clustering-based SRBF beamforming for user one was investigated. Note that the
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Figure 8: Learning curves of the cluster algorithm for user one of the three-element ar-
ray system supporting four QPSK users, in terms of Euclidean distance between the RBF
centres and true channel states averaged over ten runs, given SNR= 7 dB.

number of the subset channel states in this case was Nsb = 64 and, therefore, the first 64
data points x̌(k), 1 ≤ k ≤ 64, were used as the initial RBF centres. The initial cluster
variations were all set to v̄l(0) = 0.1 for 1 ≤ l ≤ Nsb, and the adaptive constant for
updating the cluster variations was set to µv = 0.995. Fig. 8 depicts the learning curves of
the clustering algorithm in terms of the Euclidean distance (24) averaged over 10 different
random runs for the three values of the adaptive gain µc, given SNR= 7 dB. It is seen
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Figure 9: Influence of the RBF variance on the BER performance of the clustering-based
SRBF beamformer for user one of the three-element array system supporting four QPSK
users, given SNR= 7 dB.
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Figure 10: User-one BER performance of the clustering-based SRBF beamformer for the
three-element array system supporting four QPSK users, given ρ2 = σ2

n, in comparison
with the Bayesian beamforming performance.

that for this example the best convergence performance was achieved with µc = 0.4. Given
SNR= 7 dB, Fig. 9 illustrates the influence of the RBF variance ρ2 to the BER performance
of the clustering-based SRBF network, where it was demonstrated again that there existed
a wide-ranging values of ρ2 which enabled the clustering-based SRBF network to approach
the Bayesian performance. Finally, Fig. 10 depicts the BER performance of the clustering-
based SRBF beamformer for user one after convergence, given the RBF variance ρ2 = σ2

n,
in comparison with the Bayesian benchmark.

SYMMETRIC RBF BEAMFORMING CONSTRUCTION BASED ON OFS

The SRBF network (17) with the symmetric node struture (18) is a direct copy of the
Bayesian detection solution (16). In general, however, the RBF weights can be complex-
valued and we introduce the following generic complex-valued SRBF network

ySRBF(k) =
Nc∑

q=1

wqφ(x(k); cq, ρ
2), (25)

where wq are complex-valued RBF weights and the complex-valued RBF nodes’ response
φ(x(k); cq, ρ

2) are defined by (18). Thus, this more general complex-valued RBF network
also guarantees to process the desired symmetric property. Given the training data set DK =
{x(k), d(k)}K

k=1, where d(k) = bi(k) ∈ BQPSK, we now present an efficient algorithm for
constructing this complex-valued SRBF network.
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OFS Based on Fisher Ratio of Class Separability Measure

Consider using every data points as candidate RBF centres, namely, setting Nc = K and
cq = x(q) for 1 ≤ q ≤ K. Further assume that the value of the RBF variance ρ2 is
specified. Let us define the modelling residual for x(k) ∈ DK as e(k) = d(k)− ySRBF(k)
and introduce the notation φk,q = φ(x(k); cq, ρ

2). Then the regression model over the data
set DK is expressed as

d = Φw + e, (26)

where d = [d(1) d(2) · · · d(K)]T , w = [w1 w2 · · ·wK ]T , e = [e(1) e(2) · · · e(K)]T , and
the complex-valued regression matrix

Φ = [φ1 φ2 · · ·φK ] (27)

with columns φq = [φ1,q φ2,q · · ·φK,q]T . Let an orthogonal decomposition of Φ be Φ =
UA, where

A =




1 a1,2 · · · a1,K

0 1
. . .

...
...

. . . . . . αK−1,K

0 · · · 0 1




(28)

with complex-valued αq,l, 1 ≤ q < l ≤ K, and the complex-valued orthogonal matrix

U = [u1 u2 · · ·uK ] =




u1,1 u1,2 · · · u1,K

u2,1 u2,2 · · · u2,K
...

... · · · ...
uK,1 wK,2 · · · wK,K




(29)

with columns satisfying uH
q ul = 0, if q 6= l. The regression model (26) can alternatively

be expressed as
d = Ug + e, (30)

where the weight vector g = [g1 g2 · · · gK ]T defined in the orthogonal model space satisfies
the following triangular system Aw = g.

Recall that the output of the complex-valued SRBF network is used to provide an esti-
mate for d(k) according to the decision rule d̂(k) = sgn(ySRBF(k)). Since d(k) ∈ BQPSK,
this is a four-class classification problem. Let us first divide the training feature vectors
X = {x(k)}K

k=1 into the four classes

X[i] 4= {x(k) ∈ X : d(k) = b[i]}, 1 ≤ i ≤ 4. (31)

Assume that the number of samples in X[i] is K [i]. Obviously

4∑

i=1

K [i] = K. (32)
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Define furthermore the mean and variance of samples belonging to class X[i] in the direction
of basis ul as mi,l and σ2

i,l, respectively, which are calculated according to

mi,l =
1

K [i]

K∑

k=1

δ
(
d(k)− b[i]

)
uk,l (33)

and

σ2
i,l =

1
K [i]

K∑

k=1

δ
(
d(k)− b[i]

)
(uk,l −mi,l)

2 , (34)

where the indicator function

δ(x) =

{
1, x = 0 + j0,
0, x 6= 0 + j0.

(35)

Denote the Fisher ratio of the class separation between classes X[i] and X[q] in the direction
of basis ul as Fi,q,l. Fisher ratio is defined as the ratio of the interclass difference to the
intraclass spread (Duda & Hart, 1973)

Fi,q,l =
(mi,l −mq,l)

2

(
σ2

i,l + σ2
q,l

) . (36)

Fisher ratio provides a good class separability measure because its maximisation leads to
the interclass difference being maximised and the intraclass spread being minimised.

Because the problem is a four-class classification one, we define the average Fisher ratio
of the class separation in the direction of basis ul as

Fl =
1
6

3∑

i=1

4∑

q=i+1

Fi,q,l. (37)

Based on this average Fisher ratio, significant RBF nodes or regressors can be selected
in an OFS procedure, just as in the case of two-class problems (Mao, 2002; Chen et al.,
2004). Specifically, at the l-th stage of the OFS procedure, a regressor is chosen as the
l-th term in the selected complex-valued SRBF network if it produces the largest Fl among
the candidates terms, uq, l ≤ q ≤ K. The procedure is terminated with a sparse nc-node
network when

Fnc∑nc
l=1 Fl

≤ ξ, (38)

where the threshold ξ determines the sparsity of the selected network model. The de-
tailed OFS procedure based on the four-class FRCSM is summarised in Appendix. The
least squares (LS) solution for the corresponding sparse model weight vector wnc =
[w1 w2 · · ·wnc ]T is readily available from Ancwnc = gnc , given the LS solution of gnc . In
general, a desired value for the threshold ξ has to be determined via cross validation. How-
ever, in our particular application to nonlinear beamforming for multiple-antenna aided
communication systems, we can simply set nc = Nsb. Thus, in this particular application,
we do not need to employ costly cross validation to determine the model size.
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Figure 11: User-one BER performance of the OFS-based SRBF beamformer for the two-
element array system supporting three QPSK users, in comparison with the Bayesian and
theoretic L-MBER beamforming performance.

Simulation Study

A simulation study involving the two same examples used in the previous section was per-
formed to investigate the multi-class FRCSM-based OFS algorithm for constructing the
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Figure 12: Influence of the RBF variance on the BER performance of the OFS-based SRBF
beamformer for user one of the two-element array system supporting three QPSK users,
given SNR= 16 dB.
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complex-valued SRBF network (25).
Example One. This was the same two-element array system supporting three QPSK users
with the users’ angular positions shown in Fig. 1. Constructing the complex-valued SRBF
network (25) for user one was first considered using the multi-class FRCSM-based OFS
algorithm. Given each SNR value, a training set of K = 200 samples was generated. For
this example, Nsb = 16 and, therefore, we stopped the selection procedure after choosing
nc = 16 nodes. Unlike the clustering-based SRBF network, the RBF variance ρ2 has im-
portant influence on the BER performance. The value of the RBF variance ρ2, therefore,
was determined using cross validation, and appropriate values were found in the range of
[0.2, 2.0] depending on the SNR value and noise realisation in the training data. The BER
performance of the 16-term complex-valued SRBF beamformer obtained by the multi-class
FRCSM-based OFS algorithm is plotted in Fig. 11, in comparison with the Bayesian and
theoretic L-MBER benchmarks. It is surprising to see that the 16-term complex-valued
SRBF network outperformed the Bayesian detector. A possible explanation is as follows.
The Bayesian solution is derived under the assumption of white noise n(k). In the simula-
tion, the noise was slightly colourred. Note that the weights of the SRBF network (25) are
complex-valued. Therefor, a 16-term complex-valued SRBF network has a larger model
size than the Bayesian solution (whose weights are real-valued). This doubled model size
might have allowed the complex-valued SRBF network to exploit the noise statistics in
the training data better. The influence of the RBF variance ρ2 to the performance of the
OFS-based SRBF network is demonstrated in Fig. 12, given SNR= 16 dB.
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Figure 13: User-three BER performance of the OFS-based SRBF beamformer for the two-
element array system supporting three QPSK users, in comparison with the Bayesian and
theoretic L-MBER beamforming performance.
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The beamforming for detecting the user-three data was also considered. For each SNR
value, a training data set consisting of K = 200 samples was used to construct a 16-term
complex-valued SRBF network using the multi-class FRCSM-based OFS, and the BER
performance of the resulting SRBF beamformer is depicted in Fig. 13, together with the
Bayesian and theoretic L-MBER bermforming benchmarks. Again the value of the RBF
variance was determined via cross validation, and appropriate values were found in the
range of [1.6, 2.0], depending on the SNR value. Detection of user-three data was a more
difficult task than detection of user-one data as the former was a nonlinearly separable
problem. It can be seen from Fig. 13 that the performance of the 16-term complex-valued
SRBF network was indistinguishable from that of the Bayesian beamformer.
Example Two. The same three-element array system was used to support the same four
QPSK users which had the users’ angular positions as shown in Fig. 6. Detection of users
one and four was considered. For user one, the underlying system was linearly separable,
while for user four it was a more difficult nonlinearly separable problem. Given each SNR
value, a training set of K = 600 samples was generated to construct the complex-valued
SRBF network (25) using the multi-class FRCSM-based OFS algorithm. Because Nsb =
64, we terminated the selection procedure after choosing nc = 64 nodes. The value of the
RBF variance ρ2 was determined using cross validation.

For user one, appropriate values of ρ2 were found in the range of [0.6, 2.0], depend-
ing on the SNR value, and the BER performance of the resulting 64-term complex-valued
SRBF beamformer is depicted in Fig. 14, in comparison with the two benchmarks. The

10-5

10-4

10-3

10-2

10-1

100

 0  5  10  15  20

B
it 

E
rr

or
 R

at
e

SNR (dB)

user 1: L-MBER 
CV-SRBF
Bayesian

Figure 14: User-one BER performance of the OFS-based SRBF beamformer for the three-
element array system supporting four QPSK users, in comparison with the Bayesian and
theoretic L-MBER beamforming performance.
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Figure 15: Influence of the RBF variance on the BER performance of the OFS-based SRBF
beamformer for user one of the three-element array system supporting four QPSK users,
given SNR= 6 dB.
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Figure 16: User-four BER performance of the OFS-based SRBF beamformer for the three-
element array system supporting four QPSK users, in comparison with the Bayesian and
theoretic L-MBER beamforming performance.

influence of the RBF variance ρ2 to the performance of the 64-term complex-valued SRBF
network for user one is illustrated in Fig. 15, given SNR= 6 dB. The beamforming for
detecting the user-4 data was demonstrated in Fig. 16, where the BER performance of the
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64-term complex-valued SRBF network constructed by the multi-class FRCSM-based OFS
was compared with the two benchmarks.

CONCLUSION

A grey-box approach has been adopted to complex-valued RBF modelling in this con-
stribution. By exploiting the inherent symmetry of the Bayesian beamforming solution
for multiple-antenna aided QPSK wireless systems, a complex-valued SRBF network has
been proposed for adaptive nonlinear beamforming. Two SRBF network structures have
been proposed. The first SRBF network architecture has real-valued RBF weights and the
desired complex-valued symmetric nodes’ response, just as the Bayesian detection solu-
tion, and therefore it is a direct carbon-copy of the Bayesian solution. A modified version
of the cluster-variation enhanced clustering algorithm has been derived to implement this
SRBF network. The second SRBF network architecture is more general. Unlike the first
SRBF network structure, it has complex-valued RBF weights, while maintaining the desired
complex-valued symmetric nodes’ response. A multi-class FRCSM-based OFS algorithm
has been proposed to construct the sparse model for this complex-valued SRBF network.

Although the proposed complex-valued SRBF network is presented in the context of
nonlinear detection in QPSK communication systems, it is generically applicable to other
classification problems having similar symmetric properties. An important message from
this study is that one should always incorporate available a priori information in data mod-
elling applications.

FUTURE RESEARCH DIRECTIONS

Like other complex-valued neural network models, the standard complex-valued RBF net-
work is a black-box model that does not exploit any a priori information exists regarding
the underlying data generating mechanism. Grey-box approach that explicitly incorporates
known knowledge of the system to be modelled is much desired, as it is capable of sub-
stantially improving modelling performance. How to adopt a priori information into the
structure or architecture of complex-valued RBF network, however, is highly problem de-
pendent. In this contribution, we have demonstrated how to modify the architecture of
complex-valued RBF network so that the data modelling process guarantees capturing the
known symmetric properties of the underlying data generating mechanism. Although we
have developed this novel symmetric complex-valued RBF structure in the context of classi-
fication applications, the same idea is equally applicable to regression application. Consider
for example modelling a system or function from noisy observation data. Let us assume that
the function is known to have some symmetric property. A black-box neural network mod-
elled from data may not capture this symmetric property well, while a grey-box model that
explicitly incorporates this symmetric property in its topology will guarantee to capture this
symmetric property, despite of the presence of noise in data. Another common a priori
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information existed in many data modelling problems is manifested as boundary value con-
straints. Standard neural network models have difficulties in this type of data modelling
problems. For real-valued data modelling problems, Hong and Chen (2008) have recently
developed a novel topology of RBF network, which is able to automatically satisfy a set
of boundary value constraints and yet maintains the efficiency of the original RBF mod-
elling procedure. It is of great practical interests to extend this novel RBF topology to the
complex-valued domain. Another interesting extension of the present work is to investigate
how to adopting a priori information in other complex-valued neural network architectures.

Appendix

Like the real-valued modified Gram-Schmidt orthogonalisation procedure (Chen et al.,
1989), the complex-valued version of the modified Gram-Schmidt orthogonalisation proce-
dure calculates the complex-valued A matrix row by row and orthogonalises the complex-
valued regression matrix Φ as follows: at the l-th stage make the columns φi, l+1 ≤ i ≤ K,
orthogonal to the l-th column and repeat the operation for 1 ≤ l ≤ K − 1. Specifically,
denoting φ

(0)
i = φi, 1 ≤ i ≤ K, then for l = 1, 2, · · · ,K − 1

ul = φ
(l−1)
l ,

al,i = uH
l φ

(l−1)
i /uH

l ul, l + 1 ≤ i ≤ K,

φ
(l)
i = φ

(l−1)
i − al,iul, l + 1 ≤ i ≤ K.





(39)

The last stage of the procedure is simply uK = φ
(K−1)
K . The elements of g are computed

by transforming d(0) = d in a similar way

gl = uH
l d(l−1)/uH

l ul,

d(l) = d(l−1) − glul,

}
1 ≤ l ≤ K. (40)

This orthogonalisation scheme can be used to derive a simple and efficient algorithm
for selecting subset models in a forward-regression manner, just as in the real-valued case.
First define

Φ(l−1) =
[
u1 · · ·ul−1 φ

(l−1)
l · · ·φ(l−1)

K

]
. (41)

If some of the columns φ
(l−1)
l , · · · , φ(l−1)

K in Φ(l−1) have been interchanged, this
will still be referred to as Φ(l−1) for notational convenience. Recall the notation
φ(l−1)

q = [φ(l−1)
1,q φ

(l−1)
2,q · · ·φ(l−1)

K,q ]T . Given a very small positive number Tz , which
specifies the zero threshold, the l-th stage of the OFS procedure is given as follows.

Step 1. For l ≤ q ≤ K:

Test–Conditioning number check. If
(
φ(l−1)

q

)H
φ(l−1)

q < Tz , the q-th candidate is not
considered.
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Compute for 1 ≤ i ≤ 4

m
(q)
i,l =

1
K [i]

K∑

k=1

δ
(
d(k)− b[i]

)
φ

(l−1)
k,q

and
(
σ

(q)
i,l

)2
=

1
K [i]

K∑

k=1

δ
(
d(k)− b[i]

) (
φ

(l−1)
k,q −m

(q)
i,l

)2
.

Then calculate

F
(q)
i,p,l =

(
m

(q)
i,l −m

(q)
p,l

)2

((
σ

(q)
i,l

)2
+

(
σ

(q)
p,l

)2
) , 1 ≤ i < p ≤ 4,

and

F
(q)
l =

1
6

3∑

i=1

4∑

p=i+1

F
(q)
i,p,l.

Let the index set Jq be

Jq = {l ≤ q ≤ K and q passes Test}.

Step 2. Find:
Fl = F

(ql)
l = max{F (q)

l , q ∈ Jq}.
Then the ql-th column of Φ(l−1) is interchanged with the l-th column of Φ(l−1), and the

ql-th column of A is interchanged with the l-th column of A up to the (l − 1)-th row. This
selects the ql-th candidate as the l-th term in the subset model.
Step 3. Perform the orthogonalisation as indicated in (39) to derive the l-th row of A and
to transform Φ(l−1) into Φ(l). Calculate gl and update d(l−1) into d(l) in the way shown in
(40).
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