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ABSTRACT
A basic principle in data modelling is to incorporate available
a priori information regarding the underlying data generating
mechanism into the modelling process. We adopt this princi-
ple and consider grey-box radial basis function (RBF) mod-
elling capable of incorporating prior knowledge. Specifically,
we show how to explicitly incorporate the two types of prior
knowledge: the underlying data generating mechanism ex-
hibits known symmetric property and the underlying process
obeys a set of given boundary value constraints. The class of
orthogonal least squares regression algorithms can readily be
applied to construct parsimonious grey-box RBF models with
enhanced generalisation capability.

Index Terms— Radial basis function network, grey-box
modelling, symmetry, boundary value constraint

1. INTRODUCTION

The radial basis function (RBF) network has found applica-
tions in diverse fields of engineering, and the class of orthog-
onal least squares (OLS) regression algorithms [1, 2, 3, 4]
offers powerful and efficient tools for constructing parsimo-
nious RBF models that generalise well. This approach is
equally applicable to the supervised regression [1, 2, 3, 4]
and classification [5] as well as the unsupervised density esti-
mation [6]. Like many other data modelling approaches, the
RBF model constitutes a black-box data modelling approach.
Adopting a black-box modelling is appropriate if no a priori
information exists regarding the underlying data generating
mechanism. However, if there are known prior knowledge
concerning the underlying process, they should be incorpo-
rated into the model structure explicitly. The use of prior
knowledge in data modelling often leads to enhanced mod-
elling performance. A discussion on learning from known
prior knowledge or hints is given in [7]. A few works have ex-
ploited the symmetric properties of some underlying systems
in regression applications [8, 9] as well as in classification
problems [10].

How to incorporating prior knowledge to form grey-box
RBF model is highly problem dependent. In this contribu-

tion, we specifically consider two types of a priori informa-
tion. In the first type of data modelling problems, the under-
lying data generating mechanism exhibits known symmetric
property and we introduce the symmetric RBF (SRBF) model
that guarantees to possess the known symmetry. For the sec-
ond type of applications, the underlying process obeys a set
of given boundary value constraints (BVCs) and we adopt
the novel BVC-RBF structure which automatically meets the
given BVCs. All the learning algorithms originally derived
for the black-box RBF model can be applied to these two
grey-box RBF models without the need for any modification.
In particular, the class of OLS regression algorithms provides
efficient means of building parsimonious grey-box RBF mod-
els with improved generalisation performance.

2. SYMMETRIC RBF MODELLING

Consider the training data set DK = {x(k), y(k)}K
k=1 that is

generated by the underlying system

y(k) = f(x(k)) + ε(k) (1)

where x(k) = [x1(k) x2(k) · · ·xn(k)]T is the system input
vector, y(k) the noisy system output, and ε(k) represents a
white observation noise with variance σ2

ε . The system map-
ping f : Rn → R is unknown. However, the system f is
known to possess the odd symmetry

f(−x) = −f(x). (2)

Even symmetry can be treated in a similar way. The goal is to
construct the RBF model

ŷ(k) = f̂(x(k); θ) =
M∑

i=1

pi(x(k); ρ)θi (3)

based on DK to capture the underlying system f , where θ =
[θ1 θ2 · · · θM ]T denotes the RBF weight vector, ρ is the RBF
variance and M the number of RBF nodes.

To explicitly incorporate the prior knowledge (2), we adopt
the following symmetric RBF node

pi(x; ρ) = ϕ(‖x− ci‖/ρ)− ϕ(‖x + ci‖/ρ), (4)
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Fig. 1. (a) The underlying function f(x1, x2) shown on the grid of 90601 points, (b) 961 noisy training data points, (c) modelling error
f(x1, x2)− f̂(x1, x2) of the standard RBF model, and (d) modelling error f(x1, x2)− f̂(x1, x2) of the SRBF model, for Example One.

where ci is the ith RBF centre vector and ϕ(•) the usual RBF
basis function. In this study, the Gaussian basis function is
used. With this symmetric node structure, the SRBF model
has the same odd symmetry as the underlying system. By
contrast, the conventional RBF model with the node structure
pi(x; ρ) = ϕ(‖x − ci‖/ρ) does not guarantee to have this
symmetric property. The grey-box RBF model (3) with the
symmetric node structure (4) has the same regression mod-
elling form as the conventional RBF model. Therefore, the
OLS regression algorithms [1, 2, 3, 4] can be used to identify
a sparse SRBF model based on DK .
Example One. The system to be identified was given by

f(x1, x2) = 10 (sin(x1 − 5) sin(x2 − 5)/(x1 − 5)(x2 − 5)
−sin(x1 + 5) sin(x2 + 5)/(x1 + 5)(x2 + 5)) (5)

This system has odd symmetry and f(x1, x2) is plotted in
Fig. 1 (a) using a grid of 90601 points. The training set DK

contained 961 noisy data points as shown in Fig. 1 (b), where

Table 1. Performance comparison between the conventional RBF
and SRBF models for Example One.

model size Training MSE Test MSE MME
RBF 105 0.1543 0.2047 0.0294

SRBF 68 0.1566 0.1839 0.0093

the system noise ε(k) was a white Gaussian noise with vari-
ance σ2

ε = 0.16. The local regularisation assisted OLS algo-
rithm based on leave-one-out error criterion [4] was used to
automatically identify both the conventional RBF and SRBF
models. The RBF variance ρ = 8.0 was determined sepa-
rately using cross validation. A separate test data set of 961
noisy data points was also generated to compute the mean
square error (MSE) according to

MSE = E[(y(k)− ŷ(k))2] =
1
K

K∑

k=1

(y(k)− ŷ(k))2. (6)

The generalisation performance can be computing with the
mean modelling error (MME)

MME = E[(f(x1, x2)− f̂(x1, x2))2] (7)

by averaging over the grid of 90601 points, where f̂(x1, x2)
denotes the identified model mapping. Table 1 compares the
performance of the two models obtained. Fig. 1 (c) and (d)
show the modelling error f(x1, x2)− f̂(x1, x2) on the grid of
90601 points for the two obtained models, respectively.

3. BVC-RBF MODELLING

Again consider the identification of the unknown system f
of (1) using the RBF model (3) based on the noisy training



data set DK . In addition, the unknown system mapping f is
known to satisfy a set of L BVCs given by

f(xj) = dj , 1 ≤ j ≤ L, (8)

where xj ∈ Rn and dj ∈ R are known. These BVCs may
represent the fact that at some critical regions, there is a com-
plete knowledge about the system and any identified model f̂
is required to strictly meet these BVCs, that is,

f̂(xj ; θ) = dj , 1 ≤ j ≤ L. (9)

It is obvious that a conventional RBF model with the node
structure pi(x; ρ) = ϕ(‖x − ci‖/ρ) cannot guarantee to sat-
isfy the known set of BVCs. Conventional way of incorpo-
rating the BVCs (9) as a set of equality constraints in learn-
ing will complicate the resulting optimisation problem. We
propose the novel BVC-RBF network model which has the
capacity of satisfying the given BVCs automatically without
added algorithmic complexity and computational cost.

The proposed BVC-RBF model takes the form

ŷ(k) = f̂(x(k); θ) =
M∑

i=1

pi(x(k); ρ)θi + g(x(k)) (10)

with the novel RBF node structure

pi(x; ρ) = h(x)ϕ(‖x− ci‖/ρ), (11)

where

h(x) = L

√√√√
L∏

j=1

‖x− xj‖ (12)

is the geometric mean of the data sample x to the set of bound-
ary values xj , 1 ≤ j ≤ L,

g(x) =
L∑

j=1

αje
− ‖x−xj‖2

τ (13)

with τ being a positive scalar, and α = [α1 α2 · · ·αL]T is a
set of parameters that is obtained by solving the set of linear
equations g(xj) = dj , 1 ≤ j ≤ L, as follows. α = G−1d,
where d = [d1 d2 · · · dL]T and

G =




1 e−
‖x1−x2‖2

τ · · · e−
‖x1−xL‖2

τ

e−
‖x2−x1‖2

τ 1
. . . e−

‖x2−xL‖2
τ

...
. . . . . .

...

e−
‖xL−x1‖2

τ e−
‖xL−x2‖2

τ · · · 1




.

(14)
In the case of ill-conditioning, a regularisation technique can
be applied to the above solution. It is easy to verify that with
this proposed topology of BVC-RBF model, the BVCs (8)
are automatically satisfied. To elaborate further, we note the
following features of the BVC-RBF structure.

(a)

(b)

(c)

Fig. 2. (a) The underlying function f(x1, x2) shown on the grid of
961 points, (b) the L = 120 BVCs marked as cross points, and (c)
961 noisy training data points, for Example Two.

1. The BVC-RBF nodes (11) have the property of zero
forcing at the boundary points xj , 1 ≤ j ≤ L, and the
adjustable RBF weights θi have no effects on the first
term in (10) at any of the boundary points.

2. The term g(x) passes all the predetermined boundary
values f(xj) = g(xj) = dj , 1 ≤ j ≤ L, and it is com-
pletely determined by the BVCs but does not contain
any adjustable parameters dependent on DK .

3. Over the input range, the set of smooth BVC-RBF nodes
pi(x; ρ) has diverse local responses, and has non-zero



Table 2. Performance comparison between the conventional RBF and BVC-RBF models for Example Two.
model size training MSE (inside DK) MME (inside boundary) MME (on boundary)

RBF 91 1.6894× 10−4 1.0229× 10−4 2.1249× 10−4

BVC-RBF 68 1.0736× 10−4 4.3787× 10−5 7.2598× 10−11

adjustable contribution towards modelling f(x) via the
adjustable parameters θi based on DK .

With this BVC-RBF model, no constrained optimisation is
needed and the OLS algorithms [1, 2, 3, 4] can be used to
identify a sparse BVC-RBF model based on DK .
Example Two. A 31 × 31 meshed data set f(x1, x2), as de-
picted in Fig. 2 (a), was generated by using Matlab command
membrane.m. In Fig. 2 (b), the required L = 120 BVCs,
given by the coordinates of {(x1, x2), f(x1, x2)}, are marked
as cross points. The noisy training data set DK was generated
by adding a white Gaussian noise of variance σ2

ε = 0.012

to f(x1, x2), and DK is plotted in Fig. 2 (c). We used all
the data points of DK that were inside the boundary as train-
ing samples and applied the OLS regression algorithm based
on the combined training MSE and D-optimality criterion [3]
to construct both the RBF and BVC-RBF models. The RBF
variance ρ = 0.01 was determined separately based on cross
validation. For the offset function (13), τ = 0.04 was found

(a)

(b)

Fig. 3. (a) Modelling error f(x1, x2) − f̂(x1, x2) of the standard
RBF model, and (b) modelling error f(x1, x2) − f̂(x1, x2) of the
BVC-RBF model, for Example Two.

to be appropriate. The weighting for the combined cost func-
tion of the training MSE and D-optimality [3] was chosen to
be 10−6. Table 2 compares the performance of the conven-
tional RBF model obtained with that of the novel BVC-RBF
model constructed, where the sizes of the two models were
automatically determined by the learning algorithm. Fig. 3
(a) and (b) depict the modelling error f(x1, x2) − f̂(x1, x2)
of the two obtained models, respectively, where f̂ denotes the
model mapping identified.
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