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Abstract— Semi-blind space-time equalisation is considered for
dispersive multiple-input multiple-output systems that employ
high-throughput quadrature amplitude modulation signalling.
A minimum number of training symbols, approximately equal
to the dimension of the space-time equaliser (STE), are first
utilised to provide a rough initial least squares estimate of
the STE’s weight vector. A gradient-Newton-type concurrent
constant modulus algorithm and soft decision-directed scheme is
then applied to adapt the STE. The proposed semi-blind adaptive
STE is capable of converging fast and accurately to the optimal
minimum mean square error STE solution.

I. INTRODUCTION

With the aid of smart antenna arrays and by exploiting both
the space and time dimensions, space-time processing is ca-
pable of effectively improving the achievable system capacity,
coverage and quality of service by suppressing both inter-
symbol interference and co-channel interference [1]–[7]. In
this contribution, we consider space-division multiple-access
(SDMA) induced frequency selective multiple-input multiple-
output (MIMO) systems that employ quadrature amplitude
modulation (QAM) signalling. A bank of space-time equalisers
(STEs) [8]–[14] form the multiuser receiver. Adaptive imple-
mentation of STE can be realised using the training-based
least mean square (LMS) or recursive least squares (RLS)
algorithm [15]. However, a large number of training symbols
is required to adapt a STE, which considerably reduces the
achievable system throughput. Blind adaptive methods may
be applied to adjust a STE, which does not require training
symbols and, therefore, does not reduce the achievable system
throughput. However, blind methods require high computa-
tional complexity and, moreover, they result in unavoidable
estimation and decision ambiguities [16], [17], which can only
be resolved with the aid of a few training symbols. At the cost
of requiring a few training symbols, semi-blind schemes can
avoid the estimation and decision ambiguity problem and are
computationally simpler than their blind counterparts.

Many semi-blind methods have been proposed for narrow-
band MIMO systems [18]–[24]. In particular, the work of [24]
has developed a semi-blind spatial equalisation scheme for
narrowband MIMO systems that employ QAM signalling. In
this semi-blind method, a few training symbols, approximately
equal to the dimension of the spatial equaliser, are first used
to provide a rough least squares (LS) estimate of the spatial
equaliser’s weight vector. The stochastic-gradient (SG) based
constant modulus algorithm (CMA) and soft decision-directed
(SDD) scheme, originally developed for blind equalisation of

single-input single-output systems [25], [26], is then employed
to adapt the spatial equaliser. This semi-blind SG spatial
equalisation scheme converges fast to the minimum mean
square error (MMSE) solution with a complexity in the order
of the LMS algorithm. Direct adopting this semi-blind SG
strategy to adapt the STE, however, suffers from slow con-
vergence and excessive steady-state misadjustment because,
under dispersive MIMO environment, the STE’s input signal
is highly correlated. The novelty of this contribution is that
we propose a gradient-Newton (GN) based CMA and SDD
algorithm to adapt the STE. GN-type algorithms [27] employ
second-order statistics of input signal to “whiten” stochastic
gradient, which results in much faster convergence than SG-
type algorithms in highly correlated signal environments at
the cost of an increased complexity. A GN-type algorithm
has been adopted in a training-based multiuser receiver for
dispersive MIMO systems [28]. Our proposed semi-blind
GN-CMA+SDD algorithm is capable of converging fast and
accurately to the optimal MMSE STE solution and it has a
complexity in the order of the RLS algorithm. Simulation
results show that the convergence speed of this semi-blind GN-
CMA+SDD algorithm is close to that of the RLS algorithm.

II. SYSTEM MODEL AND STE STRUCTURE

The SDMA induced MIMO system is depicted in Fig. 1,
where each of the Q users is equipped with a single transmit
antenna and the receiver is assisted by a P -element antenna
array. Denote the symbol-rate channel impulse response (CIR)
connecting the qth transmit antenna to the pth receive antenna
as cp,q = [c0,p,q c1,p,q · · · cnC−1,p,q]T , where for notational
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Fig. 1. SDMA induced MIMO system, where each of the Q users is equipped
with a single transmit antenna and the receiver is assisted by a P -element
antenna array.
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Fig. 2. Space-time equaliser for user q, where ∆ denotes the symbol-spaced
delay, P is the number of receive antennas, D denotes the length of temporal
filter, and 1 ≤ q ≤ Q with Q being the number of users.

simplicity we have assumed that each of the P × Q CIRs
has the same length of nC . The symbol-rate received signal
samples xp(k), 1 ≤ p ≤ P , can be expressed as

xp(k) =
Q∑

q=1

nC−1∑

i=0

ci,p,qsq(k − i) + np(k), (1)

where np(k) is a complex-valued Gaussian white noise process
with E[|np(k)|2] = 2σ2

n, sq(k) is the kth transmitted symbol
of user q with the symbol energy E[|sq(k)|2] = σ2

s , and sq(k)
takes the values from the M -QAM symbol set

S 4
= {si,l = ui + jul, 1 ≤ i, l ≤

√
M} (2)

with the real-part symbol ui = 2i−√M−1 and the imaginary-
part symbol ul = 2l−√M − 1. The overall system’s receive
signal-to-noise ratio (SNR) is defined as

SNR =

∑Q
q=1

∑P
p=1 cH

p,qcp,qσ
2
s

2QPσ2
n

. (3)

The STE for detecting the qth user’s data is depicted in Fig. 2.
The STE’s output, given by

yq(k) =
P∑

p=1

D−1∑

i=0

w∗i,p,qxp(k − i), (4)

is passed to the decision device to produce an estimate ŝq(k−
τq) of the transmitted symbol sq(k − τq), where D is the
temporal filter’s length, wi,p,q are the weights of the STE, and
0 ≤ τq ≤ D + nC − 2 is the decision delay.

Define the overall received signal vector x(k) =
[xT

1 (k) xT
2 (k) · · ·xT

P (k)]T , where

xp(k) = [xp(k) xp(k − 1) · · ·xp(k −D + 1)]T , (5)

for 1 ≤ p ≤ P . Then x(k) can be expressed by the well-
known MIMO model

x(k) = C s(k) + n(k) (6)

where n(k) = [nT
1 (k) nT

2 (k) · · ·nT
P (k)]T with

np(k) = [np(k) np(k − 1) · · ·np(k −D + 1)]T (7)

for 1 ≤ p ≤ P , the tranmitted symbol vector of all the users
s(k) = [sT

1 (k) sT
2 (k) · · · sT

Q(k)]T with

sq(k) = [sq(k) sq(k − 1) · · · sq(k −D − nC + 2)]T (8)

for 1 ≤ q ≤ Q, and the overall system’s CIR matrix

C =




C1,1 C1,2 · · · C1,Q

C2,1 C2,2 · · · C2,Q

...
... · · · ...

CP,1 CP,2 · · · CP,Q


 (9)

with the D × (D + nC − 1) CIR matrix associated with the
user q and the receive antenna p given by the Toeplitz form

Cp,q =




cT
p,q 0 · · · 0

0 cT
p,q

. . .
...

...
. . . . . . 0

0 · · · 0 cT
p,q




(10)

for 1 ≤ p ≤ P and 1 ≤ q ≤ Q.
Similarly, the STE for detecting the qth user’s data can be

expressed in the vector form

yq(k) = wH
q x(k) (11)

where the overall weight vector of the STE wq =
[wT

1,q wT
2,q · · ·wT

P,q]
T with

wp,q = [w0,p,q w1,p,q · · ·wD−1,p,q]T , 1 ≤ p ≤ P. (12)

The dimension of the STE is thereofore NSTE = P ·
D. The mean square error (MSE) value JMSE(wq) =
E

[|sq(k − τq)− yq(k)|2] of the STE (11) is given by

JMSE(wq) = σ2
s

(
1−wH

q C|qη
−wT

q C∗
|qη

)

+σ2
sw

H
q

(
CCH +

2σ2
n

σ2
s

I
)

wq, (13)

where I denotes the NSTE × (Q · (D + nC − 1)) dimensional
identity matrix, qη = (q− 1)(D + nC − 1) + (τq + 1) and C|i
the ith column of C. The average MSE is then defined as

JAMSE(W) =
1
Q

Q∑
q=1

JMSE(wq), (14)

where W =
[
w1 w2 · · ·wQ

]
denotes the weight matrix of

all the Q STEs. Define the impulse response of the combined
STE (11) and MIMO channel as

fT
q = [f0,q f1,q · · · fτmax,q] = wH

q C (15)

where τmax = (D + nC − 1) ·Q− 1, and let

imax,q = arg max
0≤i≤τmax

|fi,q|, (16)



where, in fact, imax,q = qη . The maximum distortion (MD)
measure of the STE (11) is defined by

JMD(wq) =

(
τmax∑

i=0

|fi,q| − |fimax,q|
)

/|fimax,q|, (17)

and the average MD measure over all the Q STEs is given by

JAMD(W) =
1
Q

Q∑
q=1

JMD(wq). (18)

Ultimately, the average symbol error rate (SER) over all the Q
STEs can be simulated to assess the equalisation performance.
With the perfect channel knowledge, the optimal MMSE
solution for the STE (11) is

wq(MMSE) =
(
CCH +

2σ2
n

σ2
s

I
)−1

C|qη
. (19)

III. THE PROPOSED SEMI-BLIND ALGORITHM

Let the number of available training symbols
be K, and denote the available training data as
{XK , s̄K,q}, where XK = [x(1) x(2) · · ·x(K)] and
s̄K,q = [sq(1− τq) sq(2− τq) · · · sq(K − τq)]

T . The LS
estimate of the STE’s weight vector is readily given as

wq(0) =
(
XKXH

K

)−1
XK s̄∗K,q. (20)

In order to maintain throughput, the number of training pilots
should be as small as possible. To ensure that XKXH

K has
a full rank, we will choose K slightly larger than NSTE, the
dimension of x(k). Because the training data with K ≈ NSTE

are generally insufficient, the initial LS weight vector (20)
may not be sufficiently accurate to open the eye. Therefore,
decision direct adaptation is generally unsafe. Also directly
apply the SG-CMA+SDD blind scheme of [25] to adapt the
STE (11) with wq(0) of (20) as the initial weight vector
suffers from slow convergence and high steady-state MSE
misadjustment, because x(k) is highly correlated. We propose
a GN-CMA+SDD algorithm for adjusting the STE (11).

A GN algorithm [27] uses the inverse of the autocorrelation
matrix of x(k) to modify the stochastic gradient. Just like
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Fig. 3. Local decision region partition for soft decision-directed adaptation
with 64-QAM constellation.

in the RLS algorithm, this inverse matrix can be updated
recursively according to [15]

P(k) = λ−1P(k − 1)− λ−1g(k)xH(k)P(k − 1) (21)

with

g(k) =
λ−1P(k − 1)x(k)

1 + λ−1xH(k)P(k − 1)x(k)
, (22)

where λ ≤ 1 is the forgetting factor [15]. For stationary
channels, λ = 1 is appropriate. The initial P(0) can be set
to P(0) =

(
XKXH

K

)−1. Let the STE’s weight vector be split
into two parts, yielding wq = wq,c + wq,d. The initial wq,c

and wq,d are simply set to wq,c(0) = wq,d(0) = 0.5wq(0).
Denote the STE’s output at sample k as yq(k) = wH

q (k)x(k).
The weight vector wq,c is updated using the GN-CMA

according to

wq,c(k + 1) = wq,c(k) + µCMAP(k)ε∗(k)x(k) (23)

with
ε(k) = yq(k)

(
∆− |yq(k)|2) , (24)

where ∆ = E
[|sq(k)|4] /E

[|sq(k)|2] and µCMA is the step
size of the CMA. It is obvious that this GN-CMA algorithm
reduces to the conventional SG-CMA [29], [30] if P(k) is
replaced with an identity matrix. Note that the step size of the
GN-CMA algorithm can be set to a value much larger than
the step size of the SG-CMA counterpart.

The weight vector wq,d is updated using the GN-SDD
scheme, which is now described. The complex phasor plane
is divided into the M/4 rectangular regions, as depicted in
Fig. 3, and each region Si,l contains four symbol points as
defined in the following

Si,l = {sr,m, r = 2i− 1, 2i,m = 2l − 1, 2l}, (25)

where 1 ≤ i, l ≤ √
M/2. If the STE’s output yq(k) ∈ Si,l,

a local approximation of the marginal probability density
function (PDF) of yq(k) is given by [25], [26]

p̂(wq, yq(k)) ≈
2i∑

r=2i−1

2l∑

m=2l−1

1
8πρ

e−
|yq(k)−sr,m|2

2ρ , (26)

where ρ is the cluster width associated with the four
clusters of each Si,l. The SG-SDD algorithm [25], [26]
is designed to maximise the log of the local marginal
PDF criterion E[JLMAP(wq, k)], where JLMAP(wq, k) =
ρ log (p̂(wq, yq(k))), via a stochastic gradient optimisation.
By contrast, the proposed GN-SDD algorithm uses P(k) to
modify the stochastic gradient and updates wq,d according to

wq,d(k + 1) = wq,d(k) + µSDDP(k)
∂JLMAP(wq(k), k)

∂wq,d
,

(27)
where µSDD is the step size of the SDD, and

∂JLMAP(wq, k)
∂wq,d

=
1

ZN

2i∑

r=2i−1

2l∑

m=2l−1

e−
|yq(k)−sr,m|2

2ρ

×(sr,m − yq(k))∗x(k), (28)



TABLE I
CIRS FOR THE 3-USER 4-ANTENNA 16-QAM MIMO SYSTEM.

cp,q q = 1 q = 2 q = 3
p = 1 −0.424 + j0.339 −0.095− j0.191 −0.516 + j0.664

+0.594 + j0.509 +0.667 + j0.572 +0.442 + j0.295
+0.255− j0.170 +0.381 + j0.191 −0.074 + j0.074

p = 2 +0.432− j0.346 −0.223 + j0.372 −0.419 + j0.559
−0.691− j0.259 −0.520− j0.669 −0.419− j0.489
+0.173 + j0.346 +0.074 + j0.297 −0.279− j0.140

p = 3 +0.306− j0.306 −0.093− j0.186 +0.253− j0.421
−0.535− j0.612 +0.650 + j0.557 +0.758 + j0.084
+0.382 + j0.077 +0.464 + j0.093 +0.337− j0.253

p = 4 +0.385 + j0.385 −0.479− j0.319 −0.505− j0.505
+0.462− j0.692 +0.718− j0.319 +0.674 + j0.000
−0.077− j0.077 +0.160 + j0.160 +0.168 + j0.084

with

ZN =
2i∑

r=2i−1

2l∑

m=2l−1

e−
|yq(k)−sr,m|2

2ρ . (29)

This GN-SDD algorithm reduces to the SG-SDD algorithm of
[25], [26] by replacing P(k) with an identity matrix. Note that
µSDD of the GN-SDD can be set to a much larger value than
the step size of the SG-SDD, and the performance of the GN-
SDD algorithm is insensitive to the cluster width ρ, defined
in the context of the local PDF (26). It is also clear that this
GN-CMA+SDD algorithm has a complexity similar to that of
the RLS algorithm, while the SG-CMA+SDD algorithm has a
complexity similar to that of the LMS algorithm.

IV. SIMULATION STUDY

The system used in our simulation supported Q = 3 users
with P = 4 receive antennas, and the modulation scheme
was 16-QAM. The P · Q = 12 CIRs cp,q , 1 ≤ p ≤ 4 and
1 ≤ q ≤ 3, are listed in Table I, each CIR having nC = 3 taps.
The STE’s temporal filter order was chosen as D = 7. The
optimal decision delays were found to be τ1 = 5 for user one,
τ2 = 4 for user two and τ3 = 3 for user three. These decision
delays were used in our simulation. The average SER over
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all the Q = 3 optimal MMSE STEs, depicted in Fig. 4, was
used as the benchmark performance. The LS training-based
STEs were also tested. Given the training data {XK , s̄K,q},
the LS estimate of the STE weight vector was provided by
(20), and the average SER performance of the two LS training-
based STEs were also depicted in Fig. 4, given K = 34 and
300, respectively. It can be seen that K = 34 was insufficient
for the LS training based STEs to achieve an adequate SER
performance and at least K = 300 training symbols were
required by the STEs to approximate the optimal MMSE STE
solutions.

The proposed semi-blind STE was next investigated. Given
a SNR value, K = 34 training pilots were first used to
provide the initial weight vector of the STE according to
(20). The GN-CMA+SDD blind algorithm then adapted the
STE. The convergence performance of the proposed GN-
CMA+SDD algorithm was investigated, in comparison with
the SG-CMA+SDD algorithm of [24]. For all the three blind
SG-CMA+SDD STEs, µCMA = 0.00001, µSDD = 0.0002 and
ρ = 0.1 were chosen, while µCMA = 0.01, µSDD = 0.95 and
ρ = 0.1 were used for all the three blind GN-CMA+SDD
STEs. These parameters were found empirically to yield the



best performance in terms of convergence speed and steady-
state misadjustment. Note that the step size values of the GN-
CMA+SDD based semi-blind STEs were much larger than
their counterparts for the SG-CMA+SDD based semi-blind
STEs, and the GN-CMA+SDD adaptive algorithm was also
seen to be insensitive to the value of ρ. Figs. 5 and 6 plot the
learning curves of the GN-CMA+SDD adaptive algorithm for
the three users obtained by averaging over ten different runs,
in terms of the average MSE JAMSE(W(k)) and the average
MD meaure JAMD(W(k)), respectively, in comparison with
those obtained by the SG-CMA+SDD based STEs as well
as the results obtained by the training-based RLS STEs. As
expected, under a highly dispersive MIMO environment, the
SG-CMA+SDD algorithm converged very slowly and was
incapable of approaching the optimal MMSE STE solution
due to an excessively high steady-state misadjustment. By
contrast, the proposed GN-CMA+SDD algorithm was capable
of converging fast and accurately to the optimal MMSE STE
solution. Next, given a range of SNR values, the average SER
performance of the three GN-CMA+SDD based semi-blind
STEs after adaptation of 1000 samples, were plotted in Fig. 4,
in comparion with those of the optimal MMSE STEs and the
LS training-based STEs.

V. CONCLUSIONS

A semi-blind STE scheme has been proposed for fre-
quency selective MIMO systems that employ high throughput
QAM signalling. A minimum number of training symbols,
approximately equal to the dimension of the STE, is used
to provide a rough LS estimate of the STE’s weight vector
for the initialisation. A novel GN-CMA+SDD blind adaptive
scheme then adjusts the STE. The proposed semi-blind STE
scheme has a complexity similar to that of the training-
based RLS algorithm, and it is capable of converging fast
and accurately to the optimal MMSE STE solution calculated
based on the perfect channel knowledge. Our simulation study
has confirmed that this semi-blind GN-CMA+SDD algorithm
has a convergence speed very close to the training-based RLS
algorithm under the highly dispersive MIMO environment.
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