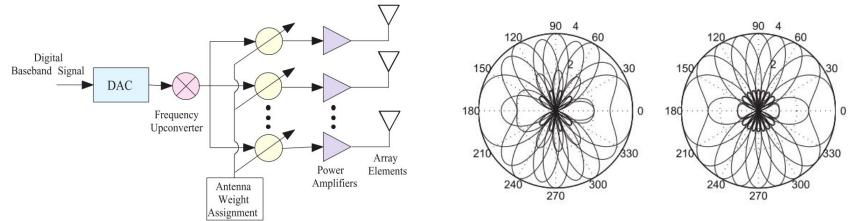


Early-Late Protocol for Coordinated Beam Scheduling in MmWave Cellular Networks

Ziyuan Sha¹, Zhaocheng Wang¹, Sheng Chen², and Lajos Hanzo² ¹Department of Electronic Engineering, Tsinghua University, P.R. China ²School of Electronics and Computer Science, University of Southampton, U.K.

- Background
- Idea of Time-domain Beam Schedule
- Proposed EL Protocol
- Future Visions


Analog Beamforming Technique

Large-Scale Antenna Array

- Small wavelength facilitates large antenna array
- High beamforming gain compensates large path loss

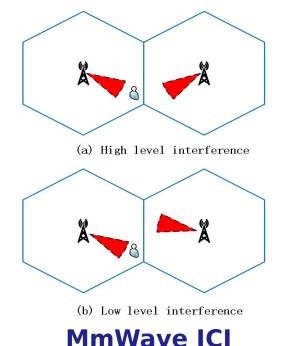
Analog Beamforming

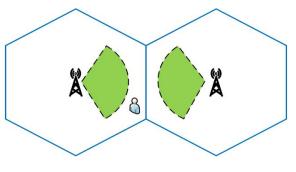
- Number of RF Chains << Number of Antennas
- Use analog phase shifters to steer directional beam
- Select steering vector from codebook

Analog Beamforming

Codebook Based Beamforming^[1]

[1] S. Auto hill City reamforming for Millimeter Wave Communications: An Inclusive Survey, " IEEE Commun. Surveys Tuts., vol. 18, no. 6, pp. 949-973, Dec.

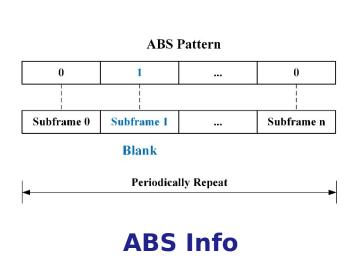

Inter-cell Interference in MmWave

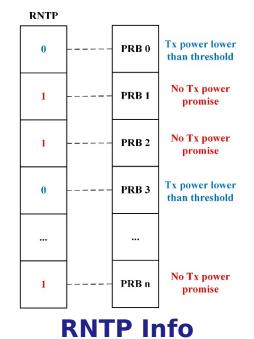

Beam-aware Inter-cell Interference (ICI)

- Neighbor Beam points towards user \rightarrow High ICI
- Neighbor Beam does not point towards user \rightarrow Almost no ICI

Compare with Low-frequency LTE

- LTE: Wide radiation pattern, stable ICI
- MmWave: Narrow radiation pattern, time-varying and bursty ICI

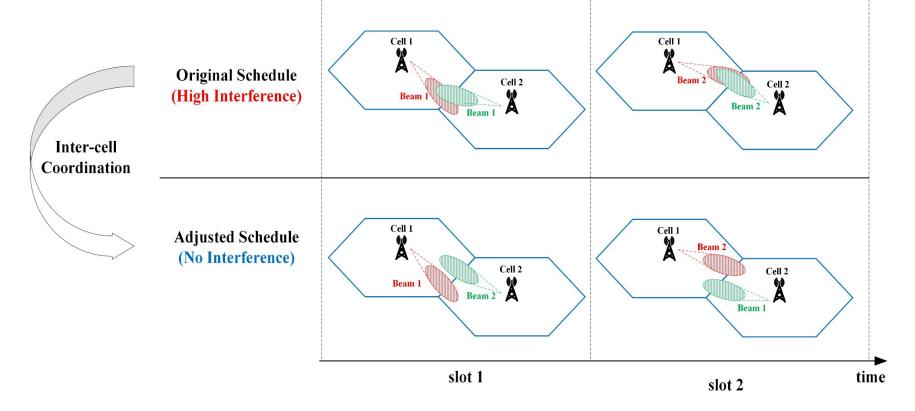

Low-frequency ICI


Inter-cell Interference Coordination (ICI

Cell Coordination in Low Frequency

- Coordination info in LTE: ABS and RNTP
- Almost blank subframe (ABS): mute a cell in time domain
- Relatively Narrow Tx Power (RNTP): mute a cell in frequency domain
- MIMO Processing Technique

Problem: How to exploit the narrow beam in MmWave ICIC?



- Background
- Idea of Time-domain Beam Schedule
- Proposed EL Protocol
- Future Visions

Time-domain Beam Schedul ing

An Example of Avoiding ICI via Beam Scheduling

• Switch the beam sequence in cell 2

Time-domain Beam Scheduling

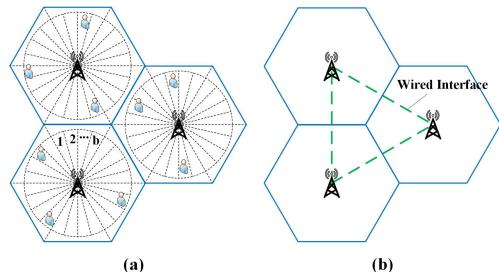
Inspirations

- ICI level can be strongly influenced by beam scheduling
- A well-designed coordinated beam scheduling may avoid the occurr ence of ICI

Advantages of Mitigating ICI via Beam Scheduling

- Do not require precise CSI, we only need to know the beams which can not be used simultaneously
- No muting resource loss compared with ABS and RNTP schemes
- Pure network-side operation

- Background
- Idea of Time-domain Beam Schedule
- Proposed EL Protocol
- Future Visions


System Model

Cells % Cells

- Easth cellis covered by perseases from personation
- Easth 60 ct sector and by ams B/6 beams
- Interest and the second beam a post in the state
- Easth cell has Msasersereeby by ithe apprendence

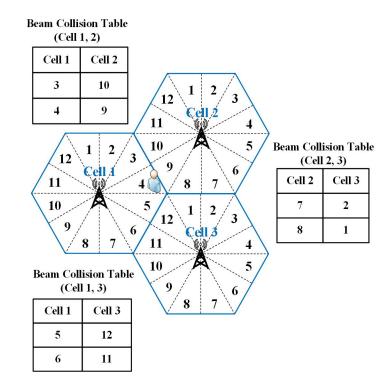
>> Wire thier tectace

- Addigate to cells are commented by wine di interface
- Exclargesinformationforcellocoodination

System Model

UsserSeerivecedeand nd

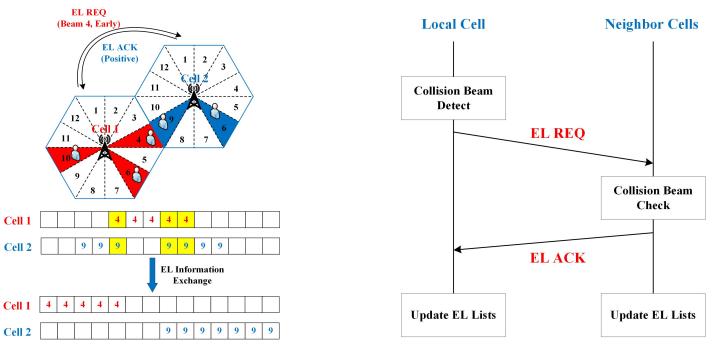
- thtseiser th cell bals service roteen and $d_{k,m}$
- The sum of $af_{k,n}$ of self size k is N
- Assumption: user punteer Tis^Nsknall¹ compared with beam number and time slot number
- Flat-top Beam Pattern
 Flat-top Beam Pattern
 Mumber B and time slot number N
 Flat-top Beam Pattern
 - Constant directional gain inside or outside beamwidth where represents beamwidth


$$G(\phi) = \begin{cases} G_{max}, & \text{if } |\phi| < \frac{\phi_b}{2} \\ G_{min}, & \text{if } |\phi| > \frac{\phi_b}{2} \end{cases}$$

where ϕ_b represents beamwidth

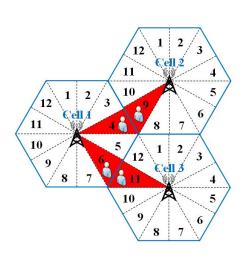
Beam Collision Table

Beam Collision Table


- Each row records a pair of beams with collision
- Every two neighboring cells maintain a mutual beam collision table
- Long-term valid, low maintenance overhead

Early-late Information

Adjacent Cells Exchange Early-late (EL) Info


- Main idea: Stagger two colliding beams in time domain
- EL REQ: indicates a local beam to be scheduled at early or late time
- EL ACK: indicates whether the beam colliding with the beam indicated by EL REQ will be scheduled
- EL Lists: Early (late) list records the beams to be scheduled at early (l ate) time

EL Balancing Mechanism

EL Unbalance Problem

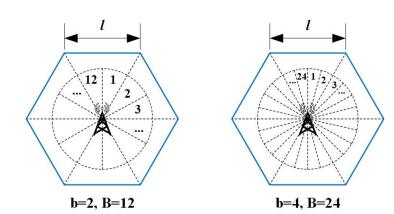
- Do not hope an early or late list records too many beams
- Early and late lists are preferred to be balanced

	Early List	Late List
Cell 1	{4}	{6}
Cell 2	8	{9}
Cell 3	{11}	{}

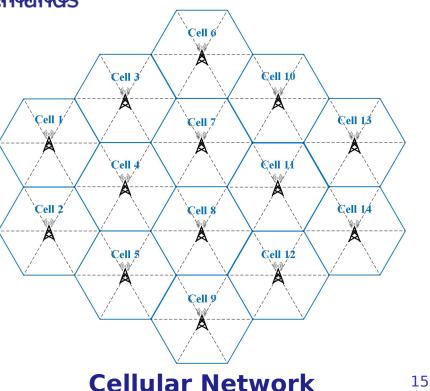
(a) EL Balance (Preferred)

	Early List	Late List
Cell 1	{4,6}	8
Cell 2	8	{9}
Cell 3	8	{11}

(b) EL Unbalance (Not Preferred)

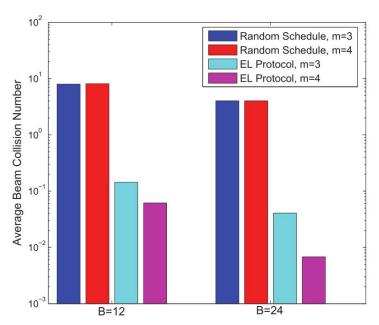

EL Balancing Mechanism

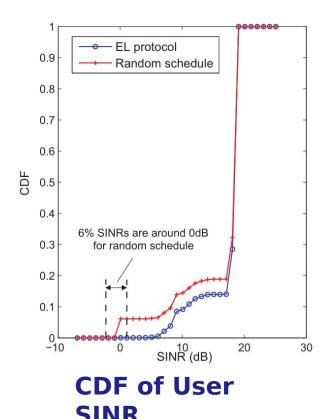
- Each EL REQ is sent to balance current EL Lists
- EL info exchange window: Each cell randomly selects a time to st art sending EL REQ in the window


Simulation Scenario

Scenario Caleiri de Wetweith wetis K = 14 cells

- · Resyliper hexagoon celliss
- Trooble ann pattern switch B = 12, 24
- Addinasers located at cell edge
- · Randomlyggeneenteedsserviceedeennends


Beam Pattern


Simulation Results

Numbers of Beam Collisions CDF of User SINR

• EL Protocol eliminates the low SINR region (around OdB)

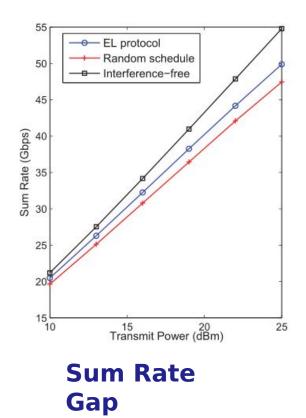
Numbers of Beam Collisions

- Background
- Idea of Time-domain Beam Schedule
- Proposed EL Protocol
- Future Visions

Centralized Beam Scheduling

EL Protocol

- Distributed scheduling scheme
- Easy to implement and do not need a central scheduler
- Hard to acquire the optimal scheduling


Centralized Beam Scheduling

- Possible to acquire the global optimal scheduling, in terms of su m rate, number of collisions, etc.
- Provide more theoretic insights of time-domain beam scheduling

Performance Upper Bound

Performance Upper Bound of Beam scheduling

- The limit of network performance with beam scheduling
- Problem: How close can we reach to the ideal interference-free case
 ?

Thank you!