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A-Optimality Orthogonal Forward Regression Algorithm
Using Branch and Bound

Xia Hong, Sheng Chen, and Chris J. Harris

Abstract—In this brief, we propose an orthogonal forward regression
(OFR) algorithm based on the principles of the branch and bound (BB) and
A-optimality experimental design. At each forward regression step, each
candidate from a pool of candidate regressors, referred to as , is evaluated
in turn with three possible decisions: 1) one of these is selected and included
into the model; 2) some of these remain in for evaluation in the next for-
ward regression step; and 3) the rest are permanently eliminated from .
Based on the BB principle in combination with an A-optimality composite
cost function for model structure determination, a simple adaptive diagnos-
tics test is proposed to determine the decision boundary between 2) and 3).
As such the proposed algorithm can significantly reduce the computational
cost in the A-optimality OFR algorithm. Numerical examples are used to
demonstrate the effectiveness of the proposed algorithm.

Index Terms—Branch and bound (BB), experimental design, forward re-
gression, structure identification.

I. INTRODUCTION

A large class of nonlinear models and neural networks can be classi-
fied as a linear-in-the-parameters model [1], [2]. The linear-in-the-pa-
rameters models are well structured for adaptive learning, have prov-
able learning and convergence conditions, have the capability of par-
allel processing, and have clear applications in many engineering appli-
cations [3]–[5]. A basic principle in practical nonlinear data modeling
is the parsimonious principle that ensures the smallest possible model
for the explanation of the observational data. For the linear-in-the-pa-
rameters models, the forward orthogonal least squares (OLS) algorithm
efficiently constructs parsimonious models [6], [7], and has been a pop-
ular tool in associative neural networks such as fuzzy/neurofuzzy sys-
tems [8], [9] and wavelet neural networks [10], [11]. The algorithm has
also been utilized in a wide range of engineering applications, e.g., air-
craft gas turbine modeling [12], fuzzy control of multiple-input–mul-
tiple-output (MIMO) nonlinear systems [13], power system control
[14], and fault detection [15].

In optimum experimental design [16], the model adequacy is eval-
uated by design criteria that are statistical measures of goodness of
experimental designs by virtue of design efficiency and experimental
effort. Quantitatively, model adequacy is measured as function of the
eigenvalues of the design matrix. In order to produce a model with good
generalization capabilities, the A-optimality composite cost function
has been used as the model selection criterion in the A-optimality-based
orthogonal forward regression (OFR) algorithms [17].

Note that the nonlinear system identification is an intractable op-
timization problem of mixed integer programming that involves both
continuous variables, e.g., model parameters and discrete variables,
e.g., enumeration of possible model terms. The principle of branch-
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and-bound (BB) approach [18] is well understood in the operational
research community and is by far the most widely used approach for
optimization with mixed integer programming. The basic idea is that
the search spaces are kept being divided into a feasible subset and an
infeasible subset. The infeasible subset is initially determined by the
current optimal solution, and then eliminated from further search ef-
forts. A common difficulty with the BB is that this is only a modeling
paradigm since there is always a gap between the idea and any specific
problem in terms of the BB strategy design. For any application, it is
necessary to integrate the BB procedure into the problem domain and
to have provable results such that the infeasible subset definitely does
not contain solutions superior to the current solutions.

We point out that in spite of the fact that the OFR algorithms are
regarded as efficient model subset selection approaches, there is not
only a practical need, but also the opportunities to further reduce sig-
nificantly the computation cost of the OFR algorithms. In this brief,
a new A-optimality OFR algorithm is introduced to reduce the search
space/computation cost based on a new simple adaptive decision rule/
boundary, which is shown to be a provable application of the BB tech-
nique.

II. THE A-OPTIMALITY-BASED ORTHOGONAL FORWARD

REGRESSION ALGORITHM

A linear-in-the-parameter model [radial basis function (RBF) neural
network, B-spline neurofuzzy network] can be formulated as [1], [2]

���� �

�

���

�� ������ �� � ���� (1)

where � � �� �� � � � � � , and � is the size of the estimation data set.
���� is a system output variable and ���� � ���� � ��� � � � � ��� �
���� 	������ � � � � 	�������

� is a system input vector of observables
with assumed known dimension of ��� � ���. 	��� is a system input
variable. ���
� is a known nonlinear basis function, such as RBF, or
B-spline fuzzy membership functions. ���� is an uncorrelated model
residual sequence with zero mean and variance of ��. Equation (1) can
be written in the matrix form as

� � �			� 
 (2)

where � � ������ � � � � ������ is the output vector, 			 �
���� � � � � �� �� is the parameter vector, 
 � ������ � � � � ������

is the residual vector, and � is the regression matrix with �������� as
the element at �th row and �th column. Denote the column vectors of
� as �� ,  � �� � � �� .

An orthogonal decomposition of � is

� ��� (3)
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and� is an � �� matrix with orthogonal columns that satisfy

�
�
� � ������� � � � � ��� (5)

with

�� � ��
���� � � �� � � � ��
 (6)

Equation (2) can be expressed as

� � ��������	�� 
 ��� � 
 (7)

where � � ���� � � � � �� �� is an auxiliary vector. It may be shown
that the least squares solution minimizing the cost function of ���� �
����� �

	��
������ �

���
�����������

� is given by [6]

�� �
��
� �
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���

� � � �� � � � �� (8)

where �������� denotes the element of � at the �th row and �th
column.

One way of implementing the above orthogonal decomposition is to
use the modified Gram–Schmidt orthogonalization procedure (see the
Appendix).

Based on the above, the OFR algorithms may be derived [6], [19],
which select model terms one at a time in order to construct a subset
model consisting of �
 regressors, �
 �� , from the full model with
regression matrix�. The resultant regression matrix is denoted�� �
���� . A subset model can be achieved via a model term selective
criterion, e.g., the minimization of ����.

While ���� represents the model’s approximation capability, the
experimental design criteria focus on the model’s adequacy and robust-
ness [16], hence it is natural to consider model subset selection in the
framework of the optimal experiment design. In optimal experimental
design for model given by (2),��� is referred to as the design matrix.

Consider the application of experimental design criteria in the con-
text of model subset selection. We initially introduce the concept of
A-optimality based on using a fixed sized subset model with size �
 .
The resultant regression matrix is still denoted as �� , and hence, the
resultant design matrix is ��� ���� . Let �� , � � �� � � � � �
 , be the
eigenvalues of ��� ���� .

Definition 1: The A-optimality criterion minimizes the sum of the
variance of a parameter estimate vector �			 � ���� � � � � �� ��

��� �� � ������ �			� � ��
�

���

�

��

 (9)

Unfortunately, the experimental design criterion of (9) is inherently
computational inefficient if applied to model subset selection, due to
the derivation of eigenvalues, and exponential growth of possible sub-
sets. In our previous work [17], we aim to overcome this problem by
initially introducing an alternative A-optimality based on orthogonal
basis�� rather than original regressor �� , followed by integrating this
into the OFR framework. This is advantageous in that the computation
efficiency in the conventional OFR algorithms is maintained. The basic
idea in [17] is briefly explained below.

Note that (2) and (7) are just two alternative model representations.
Similarly, an alternative A-optimality design criterion may be based on
model (7) with orthogonal basis�� , rather than model (2). The A-opti-
mality cost function proposed in [17] is described below. Let the subset
regression matrix based on model (7) be �� � ���� � � � ��� �.
Clearly, the resultant design matrix is ��� ���� , with eigenvalues
as �� , � � �� � � � � �
 .

Definition 2: The A-optimality criterion minimizes the sum of the
variance of the parameter estimate vector ���� � ���� � � � � �� ��

��� �� � ����������� � ��
�

���

�

��

 (10)

Although (9) and (10) are not exactly equivalent, it can be assumed that
penalizing the large variance of the auxiliary parameter vector ��� also
leads to penalizing the large variance of parameter vector 			 because
�			 � ���.
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Taking into account both the ���� and the A-optimality objective
as in Definition 2, a composite cost function can be defined as [17]

� ����� � ����
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� �
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���

�

��
(11)

where �� is a predetermined small positive number, and � � ����.
Alternatively, (11) can be written as

���� � ������ �
�

�
����� �

�

��
(12)

with ��	� � �
�
��� .

Based on (12), the A-optimality-based OFR selects the most relevant
�th regressor at the �th forward regression stage [17]. At the �th for-
ward regression stage, a candidate regressor is selected if it produces
the smallest ���� and provides further reduction on ������.

The OFR algorithms are regarded as efficient model subset selec-
tion approaches. Considering the subset selection of choosing 	� from

 candidate terms and taking 
 � ��� and 	� � ��, there are

 ��	���
 � 	�	� � 
�
���� ��
� possible model structures to se-
lect from. For the same 
 � ��� and 	� � �� by OFR, the number
of candidate model evaluation is reduced to �

����
 � � � �	 �
	�
 � 
� ���. Despite this, it is still desirable to further reduce the
computational cost, e.g., when 
 is very high.

III. NEW A-OPTIMALITY ORTHOGONAL FORWARD REGRESSION

ALGORITHM USING BRANCH AND BOUND

A. The BB Based on the A-Optimality Composite Cost Function

The BB technique consists of a systematic evaluation procedure for
all candidate solutions by using the upper and lower estimated bounds
of the quantity being optimized, such that large subsets of fruitless can-
didates are discarded. The branching refers to the procedure of succes-
sively dividing a candidate solution set into the subsets. The bounding
refers to computing the upper and lower bounds for optimum value
within a given subset. Suppose that the problem is to find the minimum
of all candidate solutions, and the candidate set can be divided into two
disjoint subsets� and �. If the lower bound for the subset� is greater
than the upper bound for �, then � can be discarded. Alternatively, a
bounding function could be based on the current best solution. If the
lower bound for � is greater than the current best solution, it is dis-
carded and the search space is reduced to �.

Based on the BB principle, we propose an adaptive diagnostics test
based upon the fact that the evolution of ����, as a function of the for-
ward regression step �, should be monotonically decreasing, as illus-
trated in Fig. 1. Specifically, at regression step �, the proposed test pre-
dicts whether a candidate regressor �� would certainly increase ����

if being included in the model for all subsequent regression steps (in-
cluding and after the �� � �	th step). If this is true, then this regressor
may be safely removed from � .

Before proceeding to Theorem 1, we initially present some mathe-
matical results so that these are readily usable for its proof.

Supposing at the �th forward regression step, a candidate regressor
produces the smallest ����, provides further reduction on ������, and
is selected with the resultant mean squares error of �������. Consider
any other candidate regressor �� . The Gram–Schmidt orthogonaliza-
tion procedure enables �� to be orthogonal to ����	 orthogonal bases
��,  � �� � � � � ��� �	, in the current model of �th regression step, as

���� � �� �

���

���

������ (13)

Fig. 1. A-optimality composite cost-function-based BB. The dotted horizontal
line illustrates the decision boundary for regressors removal at the �th regression
step. The circle dots illustrate the lower bound of the resultant A-optimality
composite cost function from a candidate regressor, which can be removed if
higher than the decision boundary.

with ���� � ���� ��	���
�
� ��	. Furthermore, considering if this candi-

date regressor stays in the pool for the ����	th step forward regression,
we have

��� � �� �

�

���

������ (14)

to enable it to be orthogonal to � orthogonal bases ��,  � �� � � � � �,
in the model of �� � �	th regression step.

Substitute (13) into (14) to yield

��� � ���� � ������� (15)

In summary, (13)–(15) describe the relationship between ���

and ����, which are based upon the same �� , but as a result of its
being made orthogonal at two consecutive forward regression steps
� and �� � �	. Furthermore, noting that the orthogonality condition
��� �

�
�� � � holds, we have

���� � �
�
����� � �

�
��� � (16)

To elaborate the motivation for the establishment of (15) and (16) (also
for Theorem 1), we point out that the significance of a regressor ��
towards the model changes as the forward regression step � increases.
For the BB principle to be applicable in the proposed algorithm, it is
necessary to quantify the contribution of �� towards the model as a
function of �, as described in Theorem 1 and its proof. The use of (15)
and (16) will become evident later on.

Theorem 1: The following diagnostic test is a feasible application
of BB technique. If ���� � �����

�
���� � ���

���
���, then �� is

eliminated from the pool before the ����	th forward regression step.
Proof: Because our objective is to minimize the A-optimality

composite cost function as given by (12), it is possible to determine
a subset of infeasible candidate regressors, which would produce so-
lutions worse off than the current solution using the BB technique.
These candidate regressors can be eliminated from � . Assuming ��
is included into the model at the ��� �	th step, let the resultant A-op-
timality composite cost function be ������, consisting of the mean
squares error ��������� and the A-optimality objective ������� . Sim-
ilar to (11) and (12), we have

������ ��
�����
��� � ���

�����
�

��
���
��� �

�

�
������� � ���

���
� �

�

���

����� �
�

�
������� �

�

���
(17)
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where ���� � ������
����� and ���� � ��

������
�
�������. The

reduction of the A-optimality composite cost function due to adding
�� to the model is then given by ����� � ���������.

In the following, an upper bound of ����� � ��������� is de-
rived, which is the difference between the upper bound of the term
�������������� and the lower bound of term ������ in (17). Specif-
ically, we suggest a choice for these two bounds to be used in the
proposed algorithm in the points i) and ii).

We note the following.
i) Clearly, ����������� � � such that we have �������������� �

�
���
���.

ii) Making use of (15) and (16), we have

���� � ����
�
����

� ����
�
���� � �	����

�
����� 	 	�����

�
���

� ����
�
���� � 	�����

�
���

� ����
�
���� � ����
 (18)

Thus
�

����
�

�

����

 (19)

From i) and ii), we see that the reduction of the A-optimality com-
posite cost function due to adding �� to the model is upper bounded
by ��

���
��� � ���������.

To find the subset of infeasible candidate regressors, we set the upper
bound of ����� � ��������� to be less than zero, i.e., a negative re-
duction of the A-optimality composite cost function, yielding ���� �
���

���
���.

Finally, it is straightforward to verify by induction that if any re-
gressor is eligible to be eliminated from the pool at the �th regression
step, but is kept in the pool, then this is also eligible to be eliminated
from the pool at any of all future regression steps. This concludes the
proof of Theorem 1.

We point out that (13)–(19) are not for the real implementation,
but for analysis only. Particularly, note that any regressors satisfying
���� � ���

���
��� are eliminated immediately after the �th regression

step for � � �, such that for these regressors, no real �� 	 ��th step
orthogonalization are implemented, resulting in significant reduction
in computational cost.

B. The Algorithm

Combining the BB technique based on the A-optimality composite
cost function with the modified Gram–Schmidt orthogonalization pro-
cedure (see the Appendix), an efficient algorithm for selecting a subset
model is derived as below. Let �� � �� ��	�� denote the number
of the candidate regressors in the pool � at the �th regression stage.
Define

�
������ �� 
 
 
 �����

�����
�  
 
 
 �

�����
� ����

�

 � � �  � � �  � � �

	
��
�	
�	
���	�

� ���� 
 (20)

If some of the columns in ������ have been interchanged, this will
still be referred to as������ for notational simplicity. The �th stage of
selection procedure is given as follows.
Step 1) For � � � � �� 	 � � �, compute

�
���
� � �

�����
�

�

������� �
�����
�

�

�
�����
�

������ � ������ � �
���
�

�

�
�����
�

�

�
�����
� ��

	�� �
�����
�

�

�
�����
�




Step 2) Find

���� � ����� � � �� ������ � � � ��� 	 � � � 
 (21)

Then, the ��th and the �th column of ������ are inter-
changed. The ��th column and the �th column of � are
interchanged up to the �� � ��th row. This effectively se-
lects the �th regressor in the subset model.

Step 3) Set�� � �
�����
� . Calculate �� and update������ into����

according to (25) of the modified Gram–Schmidt orthogo-
nalization procedure shown in the Appendix. Update

�
���
��� ��

�����
��� � ����

�
�����

���� ����
���
���
 (22)

Update

����� �
�����
�

�

�
�����
� ����� � 	 ������ 	 � � �

(23)
and ���� (the reduced size of �). According to � , update
���� and� in the same column order such that the regres-
sors in � are placed from ��	 ��th to ����� 	 ��th row.

Step 4) Perform (24) of the modified Gram–Schmidt orthogonal-
ization procedure shown in the Appendix, but only up to
����� 	 ��th column. That is, for the set � , to derive the
�th row of�, transform������ into����. This procedure
is terminated at the ���	��th stage when ��� ��� � ��� �

is detected and this produces a subset model with �� sig-
nificant regressors.

For both A-optimality-based OFR [17] and the proposed algorithm
above, the computational complexity for each evaluation of a candi-
date regressor is in the order of ����. Therefore, the computational
saving offered by the proposed algorithm can be indicated by the total
number of regressors evaluation � �

������ in comparison with the
conventional A-optimality-based OFR � �

����� � � 	 ���, with
�� � ���� � �. Although the rate of �� with � depends on the
data itself, it is clear that the proposed algorithm offers opportunities to
significantly reduce the computation cost of the OFR algorithms. For il-
lustration, assuming� � �,�� is reduced at a constant rate to 1, and
the final model size is �� � ��� , the computational cost of the pro-
posed algorithm is only 52% of the A-optimality-based OFR [17]. In
practice, as found in the simulations, the reduction rate of �� is small
at small �, but increases with �, and there is likely about 20%	40%
saving of the computational cost.

IV. MODELING EXAMPLES

Example 1: The relationship between the fuel rack position [input
����] and the engine speed [input ����] is modeled for a Leyland
TL11 turbocharged, direct injection diesel engine that is operated at a
low engine speed. Detailed system description and experimental setup
can be found in [20]. The data set, depicted in Fig. 2, contains 410
samples. The first 210 data samples were used in training and the last
200 data samples for model validation. The previous study has shown
that the data set can be modeled adequately using the system input
vector ���� � ���� � �� ��� � �� ��� � ���� . The best Gaussian
kernel model was provided by the locally regularized orthogonal least
squares (LROLS) algorithm with the leave-one-out (LOO) test score,
consisting of 22 terms [21] and with the mean square error (MSE)
values over the training and validation data sets of 0.000453 and
0.000490, respectively.

We use the Gaussian RBF �������� � ���
�����������
���� ���

to construct our model using the proposed algorithm, where � � �
�
was set empirically. �� was formed using all the training data samples.
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TABLE I
COMPARISON OF MODELING PERFORMANCE FOR ENGINE DATA SET

Fig. 2. Engine data set. (a) System input ����. (b) System output ����.

The modeling performance of the proposed algorithm (A-OFR�BB)
is shown in Table I in comparison with the A-optimality-based OFR
without BB applied (A-OFR). Clearly the modeling accuracy of the
models are comparable to that of [21]. The main computational cost
reduction is indicated by the total number of regressors evaluation
� �

������ in comparison with the conventional A-optimality-based
OFR � �

����� � � � ���. The evolution of �� in the case of
� � ����� is shown in Fig. 3 in order to demonstrate the faster
reduction of the search space due to the proposed application of the
BB technique. Finally, we note that the proposed A-OFR�BB does
not yield to the exact model as that of A-OFR. We found in simulations
that the cause is due to fact that a tie may happen in selecting the
regressor producing the minimal ���� at some �, such that different
regressors are selected. Note that it is also possible to modify the
A-OFR�BB so that it produces the exact model as of A-OFR, e.g., via

Fig. 3. Size of � as a function of the forward regression step.

Fig. 4. Double pendulum.

carefully preserving the order of regressors in � . However, this proce-
dure is generally unnecessary because: 1) this would incur additional
computational cost, and more importantly, 2) either algorithm does
not necessarily produce model superior to the other. Nevertheless, we
point out that for any forward regression algorithm, how to deal with
a tie and its implications in model selection pose an interesting open
problems, especially, if there are multiple objectives or other require-
ments involved, e.g., possibly those from the application domain.

Example 2 (Nonlinear Time Series): The motion equations of a
double pendulum system, as shown in Fig. 4, are given by
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��� � �����
�
� �	
�	� ����	� ���
 �	
���� ����	�

������
�
� �	
�	�� ��� ����
 �	
����

� ��� ������ ����� ���
��	�

��� ���

��� � ������
�
� �	
�	� ����	� � ��� ����

� 
 �	
���� ����	�� ���
�
� �	
�	�� 
 �	
����

� ��� ������ ����� ���
��	�

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on November 10, 2008 at 05:15 from IEEE Xplore.  Restrictions apply.



1966 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 11, NOVEMBER 2008

TABLE II
COMPARISON OF MODELING PERFORMANCE FOR THE LOWER PENDULUM ANGLE �

Fig. 5. Test data set of the lower pendulum angle � .

where ��, ��, and �� denote the masses, lengths, and angles from the
vertical of the upper �� � �� and lower �� � �� pendulum. � �
�� � ��. The solutions can be obtained using numerical integration.
The parameters were set as �� � ����, �� � ����, �� � ����, and
�� � ����. With the initial condition of ������� 	����� ������ 	����	

�

as ��� �� 
��� �	� , an integration time span of 200 s at a sampling rate
of 0.2 s, we generated 1000 data points of four sequences of nonlinear
time-series data set for ��, 	�, ��, and 	�. Consider the modeling of
����� as a nonlinear time series, with the system input vector ���� �
����� � ��� ����� ��� 
 
 
 � ����� ��	

� . � � �. The first 800 data
samples were used in training and the last 200 data samples for model
validation.

The Gaussian RBF �������� � ���������� � ���
���� ��� to

construct our model using the proposed algorithm, where � � � was
set empirically. �� was formed using all 800 training data samples.
The modeling performance of the proposed algorithm (A-OFR�BB)
is shown in Table II in comparison with the A-optimality-based OFR
without BB applied (A-OFR). Similar to Example 1, we note that the
proposed A-OFR�BB does not yield to the exact model as that of
A-OFR, and the cause is due to fact that a tie may happen in selecting
the regressors. In terms of the modeling errors, both methods yield
comparable results. The modeling results of a 39 centers RBF model
obtained using the proposed algorithm with � � ����� is shown in
Fig. 5. The main computational cost reduction is indicated by the total
number of regressors evaluation in comparison with the conventional
A-optimality-based OFR, which shows a significant amount of saving.
Finally, we clarify that the amount of saving indicated in Tables I and II
is a comparison based on the hidden nodes selection stage only, without
taking into account the calculation load of earlier stages, e.g., input se-
lection for high input dimension data set, or the formation of regres-

sion matrix �. It is reasonable to assume that the same procedure is
applied for both A-OFR and A-OFR�BB such that the same amount
of extra computational cost should be added to obtain the computa-
tion cost of the complete identification algorithm. Consequently, the
A-OFR�BB still provides a certain amount of computational saving,
if not significant in the rare case that the computational cost in earlier
stage is dominant.

V. CONCLUSION

In this brief, we have introduced a new A-optimality-based OFR al-
gorithm by integrating the BB technique. The proposed algorithm can
reduce the search efforts in the A-optimality-based OFR algorithm sig-
nificantly. A new diagnostics test is proposed to reduce the size of the
pool of candidate regressors at each regression step, and this is proven
to be an application of the BB technique. Numerical examples are used
to demonstrate the effectiveness of the proposed algorithm.

APPENDIX

THE LEAST SQUARES ALGORITHM USING THE MODIFIED

GRAM–SCHMIDT ORTHOGONALIZATION PROCEDURE

The modified Gram–Schmidt orthogonalization procedure calcu-
lates � matrix row by row and orthogonalizes � as follows: at the
�th stage, the columns �� are made orthogonal to the �th column.
The procedure is repeated for � � � � � � �. Specifically, denoting
�
���
� � �� , � � �� 
 
 
 �� , then

�� � �
�����
�

���� � ��
� �

�����
� ���

���� � � � � � ��

�
���
� � �

�����
� � ������� � � � � � ��

�

� � � �� � �� (24)

The last stage of the procedure is simply�� � �
�����
� . The elements

of � are computed by transforming ���� � � in a similar way

�� � ��
� �

��������
���

���� � ������ � �����
� � � � ��� (25)
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Consensus in Networks of Multiagents With Cooperation
and Competition Via Stochastically Switching Topologies

Bo Liu and Tianping Chen

Abstract—In this brief, we provide some theoretical analysis of the con-
sensus for networks of agents via stochastically switching topologies. We
consider both discrete-time case and continuous-time case. The main con-
tribution of this brief is that the underlying graph topology is more general
in both cases than those appeared in previous papers. The weight matrix of
the coupling graph is not assumed to be nonnegative or Metzler. That is, in
the model discussed here, the off-diagonal entries of the weight matrix of
the coupling graph may be negative. This means that sometimes, the cou-
pling may not benefit, but may prevent the consensus of the coupled agents.
In the continuous-time case, the switching time intervals also take a more
general form of random variables than those appeared in previous works.
We focus our study on such networks and give sufficient conditions that en-
sure almost sure consensus in both discrete-time case and continuous-time
case. As applications, we give several corollaries under more specific as-
sumptions, i.e., the switching can be some independent and identically dis-
tributed (i.i.d.) random variable series or a Markov chain. Numerical ex-
amples are also provided in both discrete-time and continuous-time cases
to demonstrate the validity of our theoretical results.

Index Terms—Almost sure, consensus, stochastic, switching topology.

I. INTRODUCTION

In a network of dynamical agents, groups of agents need to agree
upon certain quantity of interest in order to realize coordination among
them, which is the so-called “consensus problem.” Consensus prob-
lems often arise in the applications of multiagent systems [1]–[4] and
have received much attention in recent years. There is a large amount
of papers concerning such problems (see [5]–[15], [17], [19] and ref-
erences therein).

To achieve consensus, there should be some information flow from
agent to agent, which may be directed or undirected. The agents with in-
formation flow can be described by a graph topology. The topology may
be static, which means that it dose not change along with time. However,
in many cases, it may dynamically change, which is often resulted from
unreliable transmissionor limitedcommunication/sensingrange.Oneof
the important classes of dynamically changing network topologies is the
so-called “switching topoldogy,” where the network topology switches
at a sequence of time points, randomly or controlled by a given rule.
Consensus problems with switching topologies have been addressed in
several papers such as [7], [9], [15], [17], [19], and others.

The weighted directed graph is an important class in modeling the
network topology, where a directed information flow is modeled as a
directed edge. When the information flow plays positive role to con-
sensus between the agents, the corresponding edge is assigned a posi-
tive weight. Otherwise, it is assigned a negative weight. In real world,
it is possible that there exists a positive or a negative role among agents
to achieve consensus. This results in a graph topology with arbitrary
weighted edges. Therefore, it is meaningful to investigate consensus
problems for such network topologies in both theories and applications.
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