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Abstract— We consider blind equalisation for high-order
quadrature amplitude modulation channels using a low-
complexity high-performance concurrent constant modulus algo-
rithm (CMA) and soft decision-directed (SDD) scheme. Instead
of using a constant step size, we design a fuzzy-logic (FL) tuning
unit to adjust the step size of the CMA. Simulation investigation
confirms that faster convergence can be achieved with this FL
assisted CMA and SDD scheme, compared with the constant
step-size CMA and SDD scheme. Specifically, the former requires
several thousands fewer samples to converge to the same steady-
state solution achieved by the latter.
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I. INTRODUCTION

For high-throughput quadrature amplitude modulation
(QAM) systems [1], the constant modulus algorithm (CMA)
based blind equaliser [2]–[5] offers a low-complexity scheme.
The CMA is known to be very robust to imperfect carrier
recovery. Many studies have investigated the performance and
convergence behaviour of the CMA [6]. A serious problem
associated with the CMA is that its steady-state mean square
error (MSE) may not be sufficiently low for the system to
achieve an adequate symbol error rate (SER) performance. A
possible solution to this problem is to switch to a decision-
directed (DD) adaptation after the convergence of the CMA,
so to minimise the residual CMA steady-state MSE [7] and
therefore to achieve a performance close to the minimum
MSE (MMSE) solution. However, a successful switch to the
DD adaptation requires that the CMA’s steady-state MSE is
sufficiently small, and in practice such a low level of MSE
may not be achievable by the CMA scheme [8].

An interesting solution was suggested in [8] to overcome
the above-mentioned problem of the CMA blind equaliser. The
scheme of [8] operates a DD equaliser in parallel with a CMA
equaliser. The weight adaptation of the DD equaliser follows
that of the CMA equaliser and, to avoid error propagation
due to incorrect decisions, the DD adjustment only takes
place if the CMA adaptation is deemed to have achieved a
successful adjustment of the equaliser weight vector with a
high probability. At a cost of slightly more than doubling the
complexity of the simple CMA, this combined CMA and DD
equaliser is capable of achieve a significant improvement in
equalisation performance over the CMA [8]. Later, a combined

CMA and soft DD (SDD) blind equaliser was proposed [9]–
[11], which achieves a faster convergence and has simpler
implementation than the combined CMA and DD scheme of
[8]. This combined CMA and SDD scheme is capable of
achieving an equalisation performance that is close to the
MMSE solution based on the perfect channel information.

For the training-based least mean square (LMS) algorithm,
the step size must be sufficiently small to avoid divergence.
Within the range of stable step size values, a smaller step
size achieves better steady-state performance at the expense of
slower convergence speed, while a larger step size improves
convergence speed with poorer steady-state performance [12].
A constant step-size LMS algorithm thus has to trade off
between the steady-state performance and convergence speed.
In attempts to optimise both the steady-state performance
and convergence speed, techniques based on fuzzy logic (FL)
tuning of LMS’s step size were developed [13]–[17]. An
application of FL tuned step size algorithm to blind source
separation is given in [18]. For the CMA, the step size has to
be chosen with extreme care, much more so than the LMS
algorithm. While there exist some works on variable step-
size CMA techniques [19], [20], to our best knowledge, no
published work considers FL tuning of CMA’s step size for
blind equalisation of high-order QAM systems. We investigate
the fuzzy step size CMA in the context of high-order QAM
blind equalisation. An FL tuning unit is designed to adjust
the step size of the CMA, and this fuzzy step size CMA is
combined with the SDD scheme to obtain the concurrent FL
assisted CMA and SDD blind equaliser. We show that the FL
assisted CMA and SDD scheme achieves faster convergence
over the constant step-size CMA and SDD scheme.

II. EQUALISATION SIGNAL MODEL

Let cCIR = [c0 c1 · · · cnch−1]T be the the symbol-rate
channel impulse response (CIR), where nch is the CIR length
and ci, 0 ≤ i ≤ nch − 1, are complex-valued CIR taps. The
symbol-rate received signal sample x(k) is then given by [21]

x(k) =
nch−1∑

i=0

cis(k − i) + e(k), (1)

where e(k) is a complex-valued additive white Gaussian noise
with E[|e(k)|2] = 2σ2

e , and s(k) is the k-th transmitted symbol



with E[|s(k)|2] = σ2
s , taking the value from the symbol set

S , {si,l = ui + jul, 1 ≤ i, l ≤
√

M}, (2)

where j ,
√−1, the real-part symbol <[si,l] = ui = 2i −√

M − 1 and the imaginary part =[si,l] = ul = 2l−√M − 1.
The channel signal-to-noise ratio (SNR) is defined as

SNR ,
(

nc−1∑

i=0

|ci|2σ2
s

)
/2σ2

e . (3)

The equaliser has a length neq, and its output is given by

y(k) =
neq−1∑

i=0

w∗i x(k − i) = wHx(k), (4)

where the equaliser’s weight vector w = [w0 w1 · · ·wneq−1]T

and the channel observation vector x(k) = [x(k) x(k −
1) · · ·x(k − neq + 1)]T . The equaliser output y(k) is passed
to the decision device to produce an estimate ŝ(k − τ) of
the transmitted symbol s(k − τ), where 0 ≤ τ ≤ τmax ,
neq + nch − 2 is the equaliser’s unknown decision delay.

The equaliser’s input vector x(k) can be expressed as

x(k) = C s(k) + e(k) (5)

where e(k) = [e(k) e(k − 1) · · · e(k − neq + 1)]T , s(k) =
[s(k) s(k−1) · · · s(k−τmax)]T and the neq× (τmax +1) CIR
matrix C has a Toeplitz form

C ,




c0 c1 · · · cnch−1 0 · · · 0

0 c0 c1 · · · cnch−1
. . .

...
...

. . . . . . . . . · · · . . . 0
0 · · · 0 c0 c1 · · · cnch−1




= [c0 c1 · · · cτmax ], (6)

with ci denoting the i-th column of C. With the perfect
channel information, the MMSE solution that minimises the
MSE JMSE(w) , E[|s(k − τ)− y(k)|2] is given by [12]

wMMSE =
(
CCH +

2σ2
e

σ2
s

Ineq

)−1

cτ , (7)

where Ineq denotes the neq × neq identity matrix. Define the
combined equaliser and channel impulse response as

fT = [f0 f1 · · · fτmax ] , wHC, (8)

and let
imax = arg max

0≤i≤τmax
|fi|. (9)

The equaliser’s decision delay is in fact τ = imax. In
simulation, the quality of equalisation can be judged using
the maximum distortion (MD) measure defined by

MD(w) ,
(

τmax∑

i=0

|fi| − |fimax |
)

/|fimax |. (10)

Alternatively, the equalisation performance can be assessed
using the MSE criterion given by

JMSE(w) , σ2
s

( (
1−wHcτ −wT c∗τ

)

+wH

(
CCH +

2σ2
e

σ2
s

Ineq

)
w

)
. (11)

Ultimately, the SER can be simulated to assess the equalisation
performance.

III. BLIND EQUALISATION ALGORITHMS

Before blind adaptation, the middle tap of w(0) is initialised
to 1 + j0 and the rest of the weights are set to 0 + j0.

A. Constant modulus algorithm

Given the equaliser output y(k) = wH(k − 1)x(k) at the
sample k, the CMA adapts w according to [2], [3]

{
ε(k) = y(k)

(
∆− |y(k)|2) ,

w(k) = w(k − 1) + µCMAε∗(k)x(k),
(12)

where ∆ = E
[|s(k)|4] /E

[|s(k)|2] and µCMA is the step
size of the CMA. Typically, a very small µCMA has to be
used to ensure convergence. The computational complexity of
this CMA is summarised in Table I.

B. Combined CMA and SDD scheme

Set w = wc + wd, with wc(0) = wd(0) = 0.5w(0).
The weight vector wc is updated using the CMA of (12)
by substituting wc in the place of w. The weight vector wd

is updated using the SDD scheme [9]–[11]. Specifically, the
complex plane is divided into the M/4 square regions, and
each region Si,l contains four symbol points as defined by

Si,l = {sr,m, r = 2i− 1, 2i,m = 2l − 1, 2l}, (13)

where 1 ≤ i, l ≤ √
M/2. If the equaliser’s output y(k) ∈

Si,l, a local approximation of the marginal probability density
function (PDF) of y(k) is given by [9]–[11]

p̂(w, y(k)) ≈
2i∑

r=2i−1

2l∑

m=2l−1

1
8πρ

e−
|y(k)−sr,m|2

2ρ , (14)

where ρ defines the cluster width associated with the four
clusters of each region Si,l. The SDD algorithm is de-
signed to maximise the log of the local marginal PDF
criterion E[JLMAP(w, y(k))], where JLMAP(w, y(k)) =

algorithm multiplications additions e{•} evaluations
CMA 8× neq + 6 8× neq –

CMA+SDD 12× neq + 29 14× neq + 21 4
FIS 2 + 22/Nsm 2 + 22/Nsm 6/Nsm

TABLE I
COMPUTATIONAL REQUIREMENTS PER WEIGHT UPDATE. THE SYMBOL

RATE IS Nsm TIMES FASTER THAN THE OPERATIONAL RATE OF THE

FUZZY INFERENCE SYSTEM, AND neq IS THE EQUALISER LENGTH.
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Fig. 1. Schematic of the fuzzy inference system for tuning the step size of
the CMA. The operational rate n of the FIS is Nsm times slower than the
symbol rate k.

ρ log (p̂(w, y(k))), using a stochastic gradient optimisation.
That is, wd is updated according to [9]–[11]

wd(k) = wd(k−1)+µSDD
∂JLMAP(w(k − 1), y(k))

∂wd
, (15)

where µSDD is the step size of the SDD, and

∂JLMAP(w, y(k))
∂wd

=
1

ZN

2i∑

r=2i−1

2l∑

m=2l−1

e−
|y(k)−sr,m|2

2ρ

×(sr,m − y(k))∗x(k), (16)

with the normalisation factor

ZN =
2i∑

r=2i−1

2l∑

m=2l−1

e−
|y(k)−sr,m|2

2ρ . (17)

The computational complexity of this combined CMA and
SDD scheme (CMA+SDD) is also given in Table I. When
the objective of equalisation is accomplished, y(k) ≈ s(k −
τ)+ ê(k), where ê(k) is Gaussian distributed with zero mean.
Therefore, the value of ρ is related to the variance of ê(k),
which is 2σ2

ew
Hw. Soft decision nature becomes explicit in

(16), because rather than committing to a single hard decision
Q[y(k)], where Q[•] denotes the quantisation operator, as
the hard DD scheme would, alternative decisions are also
considered in the local region Si,l that includes Q[y(k)],
and each tentative decision is weighted by an exponential
term e{•}, which is a function of the distance between the
equaliser’s soft output y(k) and the tentative decision sr,m.
This soft decision nature substantially reduces the risk of error
propagation and achieves faster convergence, compared with
the hard DD scheme [9]–[11].

Fig. 2. Membership functions over the universe of discourse for |εn|2, where
the fuzzy variable X = S, M or L.

Fig. 3. Membership functions over the universe of discourse for δ|εn|2,
where the fuzzy variable X = N, Z or P.

C. Fuzzy step size CMA

For the fuzzy step size CMA, we choose the fuzzy inference
system (FIS) of Fig. 1, which maps the two input variables,
|εn|2 and δ|εn|2, into an appropriate step size µn. The oper-
ation of the FIS is based on the principle of fuzzy logic [22],
[23]. The two input variables are defined respectively as

|εn|2 =
1

Nsm

Nsm−1∑

l=0

|ε(k − l)|2, (18)

δ|εn|2 = |εn|2 − |εn−1|2, (19)

where n = bk/Nsmc with b•c denoting the integer floor
operator, and Nsm is the short-term average length. The FIS
operates once every Nsm samples, and the output µn is used
as the step size of the CMA for the subsequent Nsm

µCMA = µn, n ·Nsm ≤ k < (n + 1) ·Nsm. (20)

The initial conditions can be set to |ε0|2 = 0 and µ0 = µmin,
where µmin represents the smallest value for the step size.

The two crisp input variables are transformed separately to
the respective degrees, to which they belong to the correspond-
ing fuzzy sets via appropriate membership functions (MBFs).
The fuzzy sets used to partition the universe of discourse for
|εn|2 are labelled as small (Sε), medium (Mε) and large (Lε),
and their associate MBFs are shown in Fig. 2, where Sεc, Mεc

and Lεc are the centroids of Sε, Mε and Lε, respectively. The
Gaussian MBFs

mXε
(x) = e−

(x−Xεc)2

2ρε (21)

are used, where Xε represents Sε, Mε or Lε, with the exception
that mLε

(x) = 1 for x ≥ a. The fuzzy sets used to partition the
universe of discourse for δ|εn|2 are labelled as negative (Nδ),
zero (Zδ) and positive (Pδ), with the related MBFs shown in
Fig. 3, where Nδc, Zδc and Pδc are the centroids of Nδ , Zδ

and Pδ , respectively. Again the Gaussian MBFs

mXδ
(x) = e

− (x−Xδc)
2

2ρδ (22)

Fuzzy set Sµ Mµ L µ

centroid µmin 2µmin µmax = 4µmin

universe of discourse [µmin, µmax]

TABLE II
FUZZY SETS FOR CRISP µn .
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Fig. 4. Fuzzy rule table for the step size µn.

are used, where Xδ represents Nδ , Zδ or Pδ . But we have
mNδ

(x) = 1 for x ≤ −b and mPδ
(x) = 1 for x ≥ b.

The universe of discourse for the step size µn is defined
by [µmin, µmax], and the fuzzy sets used to partition it
are labelled as small (Sµ), medium (Mµ) and large (Lµ), as
summarised in Table II. The fuzzy inference engine constructs
a set of fuzzy IF-THEN rules. Since there are 3 fuzzy sets for
each of |εn|2 and δ|εn|2, the number of fuzzy IF-THEN rules
is 9. These fuzzy IF-THEN rules are shown in Fig. 4. Rule 1,
for example, reads like: IF |εn|2 is Sε AND δ|εn|2 is Nδ THEN
µn is Lµ. Let mXµ

(µn[i]) be the MBF value at location µn[i],
where 1 ≤ i ≤ 9. The 9 locations µn[i], 1 ≤ i ≤ 9, are
specified by Fig. 4 and Table II. For example, from Fig. 4 and
Table II, we have µn[1] = µmax. The min operator is applied
to truncate the output fuzzy set for each rule. According to
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Fig. 5. Convergence performance comparison of the CMA and CMA+SDD,
in terms of: (a) the MSE and (b) MD measure, averaged over 10 runs and
given SNR= 38 dB.

the fuzzy rule table of Fig. 4, the MBF value at µn[1] is

mXµ
(µn[1]) = min{mSε

(|εn|2), mNδ
(δ|εn|2)}, (23)

and so on. The defuzzification method used to obtain a crisp
value for the step size is the following centroid calculation

µn =
∑9

i=1 µn[i] ·mXµ
(µn[i])∑9

i=1 mXµ
(µn[i])

, (24)

which returns the centre of area under the aggregated MBF
curve.

The extra computational complexity imposed by this FIS
is given in Table I. Suitable values for Nsm can typically be
chosen in the range of 10 to 20. The range of |εn|2 is simply
a ≈ max |ε(k)|2, and our experience suggests that the variance
of the Gaussian MBFs for |εn|2 can be set to ρε = (0.01a)2.
For better efficiency, Pδc should be relatively small, and we
find by experiment that b = 0.01a to 0.001a are appropriate
depending on the size of QAM constellation M . The variance
of the Gaussian MBFs for δ|εn|2 can be set to ρδ = (0.2b)2.
The minimum value of the step size µmin is simply chosen to
be the value for the constant step-size CMA which produces
satisfactory performance in terms of both steady-state error
and convergence speed.

D. Combined Fuzzy step size CMA and SDD scheme

The above fuzzy step size CMA (FL-CMA) can be com-
bined with the SDD adaptation to provide the concurrent fuzzy
step size CMA and SDD scheme (FL-CMA+SDD). Note that
it is not necessary to adopt a variable step size strategy for the
SDD adaptation, since the “error” or the stochastic gradient
used for correcting the weights is well “normalised” by the
normalisation factor ZN of (17).

IV. SIMULATION STUDY

The modulation scheme was 64-QAM, the channel length
was nch = 5 and the CIR cCIR was given by

[−0.2+j0.3 −0.5+j0.4 0.7−j0.6 0.4+j0.3 0.2+j0.1]T .
(25)
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Fig. 6. Symbol error rate comparison of the three equalisers.



The equaliser length was chosen to be neq = 23. With w(0)
initialised to all zero elements except the middle tap to 1+j0,
the actual decision delay of the blind equaliser was τ = 13.
The appropriate step size of the CMA was found empirically
to be µCMA = 2 × 10−7, while µSDD = 2 × 10−4 and
ρ = 0.6 were found appropriate for the CMA+SDD. The
learning curves of the blind CMA and CMA+SDD equalisers,
averaged over 10 runs and quantified in terms of the MSE as
well as MD measures, are depicted in Fig. 5 with the MMSE
solution as the benchmark. The SER performance of the three
equalisers, namely, the MMSE, the CMA and the CMA+SDD,
are compared in Fig. 6.

The FL tuning unit for the step size of the CMA was next
investigated. For 64-QAM

max |ε(k)|2 ≈ max{|s(k)|2(∆− |s(k)|2)2} ≈ 105, (26)

and, therefore, we set the centroid of Lε to a = 105 and chose
b = 0.01a = 103 as the centroid of Pδ . The variances of the
Gaussian MBFs were set to ρε = (0.01a)2 and ρδ = (0.2b)2

for |εn|2 and δ|εn|2, respectively. The short-term average
length for calculating |εn|2 was chosen to be Nsm = 20,
while µmin = 2 × 10−7 was adopted as the smallest value
for µn. Given SNR= 38 dB, the convergence performance
of this fuzzy step size CMA, labelled as the FL-CMA, is
compared with that of the CMA with a constant step size
µCMA = 2×10−7 in Fig. 7, where it can be seen that this FL-
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Fig. 7. Convergence performance comparison of the CMA and FL-CMA, in
terms of: (a) the MSE and (b) MD measure, averaged over 10 runs and given
SNR= 38 dB.
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Fig. 8. Convergence performance comparison of the CMA and FL(10000)-
CMA, in terms of: (a) the MSE and (b) MD measure, averaged over 10 runs
and given SNR= 38 dB. The FL(10000)-CMA uses the fuzzy step size for
the first 10000 samples and then switches to a constant step size.

CMA did achieve a significantly faster convergence. However,
its steady-state performance was poorer than the CMA, since
the step size of the FL-CMA was always larger than or equal
to 2× 10−7.

It was not difficult to re-design the parameters of the FL tun-
ing unit so that the resulting FL-CMA could achieve the same
steady-state performance as the CMA but the gain in conver-
gence speed would somewhat diminish. A better strategy is to
use this FL-CMA in the initial stage of blind adaptation for
the maximum benefit in convergence rate and then to switch
to the constant step size CMA for the same good steady-state
performance. Fig. 8 shows learning curve of this switched FL-
CMA, labelled as the FL(10000)-CMA, where the FL-CMA
was used for the initial adaptation of 10000 samples and the
CMA of a constant step size µCMA = 2×10−7 was used after-
ward. The choice of 10000 was based on the observation that
the MSE of the CMA converged approximately after 10000
samples. The results of Fig. 8 confirm that the FL(10000)-
CMA had the same steady-state performance as the CMA, but
the former achieved considerably faster convergence. The SER
performance of the FL(10000)-CMA, not shown, is similar
to that of the CMA depicted in Fig. 8. The learning curve
of the combined FL(10000)-CMA and SDD scheme, labelled
as the FL(10000)-CMA+SDD, is compared with that of the
CMA+SDD in Fig. 9, where it can be seen that both the
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Fig. 9. Convergence performance comparison of the CMA+SDD and
FL(10000)-CMA+SDD, in terms of: (a) the MSE and (b) MD measure,
averaged over 10 runs and given SNR= 38 dB. The FL(10000)-CMA uses
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step size.

blind equalisers achieved the same steady-state performance
but the FL(10000)-CMA+SDD converged faster than the latter,
requiring approximately 4000 fewer samples to converge. The
SER of the FL(10000)-CMA+SDD , not shown, is the same
as the CMA+SDD shown in Fig. 6.

V. CONCLUSIONS

Blind equalisation of high-order QAM systems has been
revisited using the concurrent CMA and SDD scheme. A
detailed design of a fuzzy step size CMA has been given and
the advantages of using this fuzzy step size approach have
been investigated. It has been demonstrated that, in order to
achieve the maximum benefit in convergence speed and yet
not to sacrifice any steady-state equalisation performance, a
good strategy is to use the fuzzy step size CMA in the initial
stage of blind adaptation and to switch to the CMA with a
small constant step size afterward. This switched fuzzy step
size CMA has been combined with the SDD adaptation, and
the resulting concurrent blind equaliser has been shown to
achieve significantly faster convergence with the same excel-
lent steady-state equalisation performance, in comparison with
the previous concurrent CMA and SDD scheme that employs
a constant step size for the CMA. More specifically, the FL
assisted CMA and SDD scheme requires several thousands

fewer samples than the constant step-size CMA and SDD
scheme to converge.
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