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Abstract-The paper derives a stochastic-gradient minimum symbol­
error-rate (MSER) algorithm, caned the least symbol error rate 
(LSER), for training the linear equalizer and Iinear-eombiner decision 
feedback equalizer (DFE) with M -PAM signalling. Tbis LSER algo­
rithm has some performance advantages, In terms of faster convergence 
rate and smaller steady-state symbol error rate (SER) misadjustment, 
over an existing simpler stochastlc:-gradient adaptive MSER algorithm 
called the approximate MSER (AMSER). 

I. INTRODUCTION 

Design of linear equalizer and DFE is typically based on 
the minimum mean square error (MMSE) criterion. As the 
MMSE solution is not optimal [1]-[3], research has been 
looking into LMS-style adaptive algorithms based on the 
MSER or minimum bit error rate (MBER) criterion. For bi­
nary schemes, two such algorithms have emerged, called the 
approximate MBER (AMBER) [4],[5] and the least bit error 
rate (LBER) [6],[7], respectively. The AMBER is simpler 
than the LBER, although the complexity of LBER is still lin­
ear in the equalizer length. The LBER has some performance 
advantages over the AMBER in terms of faster convergence 
speed and smaller steady-state BER misadjustment. 

This paper presents an adaptive MSER algorithm for lin­
ear equalizer and DFE with M -PAM symbols. We adopt 
the approach used in deriving the LBER algorithm [6],[7], 
namely using a kernel density estimation [8],[9] to approx­
imate the: SER from training data and to derive a stochastic 
gradient algorithm for sample-by-sample adaptation. The re­
sulting algorithm is therefore called the LSER. The AMBER 
has already been extended to adaptive linear equalizer with 
M -PAM symbols by Yeh and Barry [10] and the resulting al­
gorithm is called the AMSER algorithm. Simulation is used 
to investigate the performance of the LSER algorithm and to 
compare it with the AMSER algorithm. 

II.  ADAPTIVE MSER LINEAR EQUALIZER 

It;is assumed that the real-valued channel generates the 
received signal samples of: 

nh-1 
r(k) = E his(k - i) + n(k) (I) 

i=O 

where hi are the channel impulse response (CIR) taps, nh 
is the CIR length, the Gaussian white noise {n (k )} has zero 
mean and variance u;, and the M-PAM symbol s(k) takes 
the value from the set S = {Sl = 21- M - 1, 1 $ 1 $ M} . 
The linear equalizer with a length m has the form: 

y(k) = wT r(k) (2) 

where r(k) = [r(k) r(k - 1) . . . r(k - m + 1) ]T is the ob­
servation vector and w = [wo WI • • •  Wm_I )T is the equal­
izer weight vector. The equalizer output y(k) is passed to 
a threshold detector which provides an estimate s(k - d) of 
s(k - d), with 0 $ d $ m + nh - 2 being a decision delay. 
The received signal vector can be expressed as: 

r(k) = f(k) + n(k) = Hs(k) + n(k) (3) 

where H is a Toeplitz matrix, whose (i, j)th elements is h j-i 
for 0 $ j - i $ nh - 1 and 0 otherwise. 

Note that s(k) = [s(k) s(k-l)·· . s(k-m-nh +2)jT has 
N. = MTn+nh-1 combinations, denoted as Sj, 1 $ j $ N •. 
Let rj = HSj and express y(k) as 

y(k) = wT (r(k) + n(k)) = y(k) + e(k) (4) 

where e(k) is Gaussian with zero mean and variance 
wTwu; , and y(k) takes values from the set Y = {Yj = 

wT rj, 1 $ j $ N.}. Y can be divided into M subsets 

Y, = {yj E Yls(k - d) = Sl } , 1 $1 $ M (5) 

We assume that Y, are linearly separable, which is nec­
essary for a linear equalizer to work. Let the combined 
impulse response of the equalizer and channel be c = 
[Co CI • • •  Cm+nh _2]T, which is given by c T = wTH = 
wT[ho hi ... hm+nh-2], where hi denotes the ith column 
ofH. Then y(k) can be expressed as 

y(k) = cds(k - d) + E cis(k - i) + e(k) 
i�d 

(6) 

The first term in (6) is the desired signal, and the second term 
the residual lSI. Thus the decision is made according to 
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if y(k) ::; ' (S'l + l)cd 

s(k - d) = Sz, 
{ S1, 

if (SI - l)cd < y(k) ::; (SI + l)cd 
for 1 = 2, ... M - 1 

SM , if y(k) > (SM ..; l)cd' 
(7) 

A, Expression of symbol error rate 

The conditional probability density function' (p.d.f.) of 
y(k) given s(k - d) = s, is ( ( (1» )2) 

1 N.. Y. - Yi 
pl/(y.lsl) = 

N.J2-ff, ..;;;r; E exp - 2O'2wTw .b 7rO'n W W i=l n 

. (8) 
Where N.b = N./M and y�') = wT r�') e Y,. It can easily 
be verified that Y'+1 = Y, + 2Cd. Also points in Y, are sym­
metrically distributed around its mean. Taking into account 
these two properties, the SER can be expressed as 

where'Y = 2�2, 9I,i(W) = (y�') - CdS, + Cd)/O'nVWTw 
and 

1 'roo ( y2) 
Q(x) = ..j2;}z exp -"2 dy (10) 

As the SER is invariant to a scaling of w, with a re-scaling 
w = w/vwTw, the gradient of PE(W) is given by 

""'p ( ) 'Y '" Yi - CdS, + Cd N;. ( (l) )2) 
v E W = 

. rn= L...Jexp - 2 NsbV 27rO'n 1=1 2O'n 

x (y�1) - CdSl + Cd)W - r�l) + hdSl - hd) (11) 

Steepest-descent or conjugate gradient algorithms can be 
used to find the MSER solution that minimizes PE(W). Note 
that calculation is based on a single subset Y,. Computa­
tional requirements can further be simplified by considering 
the subset Y, with 1 = � + 1, which results in 8, - 1 = O. 

B. The least symbol-error-rate algorithm 

The p.d.f. ofy(k) is: ( ( (1»)2) 
1 1 M N.. Y. - Yi 

pl/(Y.) = V2-i ,fWlWV EEexp - 2O'2wTW 7rO'n W W • '1=1 1=1 n 

(12) 
and the SER can alternatively be expressed as: 

1 M No. 
PE(W) = 'YV E E Q(9I,,(W» (13) 

• 1=1 1=1 

Given a block of K training samples {r(k) , s(k - d)}, a ker­
nel density estimate of the p.d.f. (12) is given by: 

A 1 1 � ( Y. - Y(k»2) 
PI/(Y.) = V2-i ,fWlW K L...J exp 2p2wTW 7rpn W W k=1 n 

(14) 
where the radius parameter Pn is related to Un. From this 
estimated p.d.f., the estimated SER expression is given by 

A 1 K 
PE(W) = 'Y 

K E Q(Yk(W» (15) 
k=1 

whereYk(w) = (y(k) � cel.s(k - d)'+ CeI.)/ PnVwTw, CeI. = 
wThel.' and hel. an estimate of hel.. Thus block adaptive 
gradient algorithms can readily be obtained by substituting 
VPE(W) with VPE(W). 

To derive a sample-by-sample adaptive algorithm, con­
sider a single-sample estimate ofpl/(Y.): 

A 1 ( (Y. - Y(k»2) pl/(y. , k)=
. rn= r-;r-exp - 22 T (16) 
V 27rPnv wTW Pnw w 

Using the instantaneous stochastic gradient with are-scaling 
to ensure wT w = 1 gives rise to the LSER algorithm: 

LSER. At sample k, update the channel estimate hel.(k) us­
ing the normalized LMS algorithm with an adaptive gain ji., 
compute cd(k) = wT(k)hd(k) and update the weight vector 

w(k + 1) = w(k) + . ;:; X 
V 27rpn 

( 
(y(k) - ceI.(k)s(k - d) + CeI.(k»2) exp -

22 
X 

Pn 

(r(k) - (s(k - d) - l)hel.(k) 

- (y(k) - ceI.(k)s(k - d) + ceI.(k)}w(k» (17) 

where the adaptive gain p. and width Pn are the two algorithm 
parameters that need to be set appropriately. The weight vec­
tor is then re-scaled to ensure wT (k + l)w(k + 1) = 1. ' 

III. ADAPTIVE MSER LINEAR-COMBINER DFE 

The linear-combiner DFE is defined by: 

y(k) = wT r(k) + bTSb(k) (18) 

where sb(k) = [s(k - d - 1)··· s(k - d - nb)]T is the 
past detected symbol vector with nb being the feedback or­
der, and b � [b1 • • •  bn.]T the feedback filter tap vector. We. 
will choose d = nh - 1, m = nh and nb = nh - 1, as this 
choice is sufficient to guarantee that the subsets of noise-free 
channel states are linearly separable [2],[3]. 
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Define sj(k) = [s(k) s(k-l)··· s(k-d»)T and partition 
the CIR matrix H into H = [HI I H2)' where where HI has 
a dimension ofm x (d+ 1) andH2 a dimension ofm x nb. 
The last column of HI is hd = [hn,,-I .,. hI ho)T. Under 
the assumption that the past decisions are correct, that is, 

the received signal vector can be expressed as 

Thus, in the translated space defined by 

r
' 
(k) = r(k) -H2sb(k) 

the DFE (18) becomes a "linear equalizer" [2],[3]: 

y(k) = wT r
' 
(k) = ii(k) + e(k) 

The elements ofr' (k) can be computed recursively [2): 

(21) 

(22) 

{ r
' 
(k - i) = z�lr' (k - i + 1) - hn,,-is(k - d -1), 

, 
2 = m - 1, . . .  , 2 , 1 

r (k) = r(k) 

(23) 
Note that the feedback filter coefficients do not disappear. 
They in fact have been set to their optimal values. Denote the 
N, = Md+l combinations ofs,(k) as S/,j, 1 � j � N" 
and let rj = Hls"j' Obviously, fj(k) takes values from 
the set:v = {iij = wTrj, 1 � j � N/}, which can be 
partitioned into M subsets 

:V, = {iij E :Vls(k - d) = s,}, 1� I � M (24) 

Note that :V, are always linearly separable [2),[3). All the 
results for the linear equalizer case can readily be applied to 
the translated DFE. 
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Fig. I. Symbol error rate comparison for Example I. 
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Fig .. 2. Dis�butions of the four subsets, Yt to )'4. and the three correspond. 
�ng deCISIon thresholds for Example I with SNR= 35 dB. A scalar point 
IS plotted as an impulse of unit height. 

IV. SIMULATION STUDY 

Example 1. The transfer function of the CIR was H(z) = 
1.0 + 0.5z-1 with 4-PAM symbols. The linear equalizer had 

m = 2 and d = O. The theoretical SERs of the MMSE and 
MSER linear equalizers are depicted in Fig. 1. The distri­
butions of the four scalar subsets, Yl to Y4, are shown in 
Fig. 2 together with the three corresponding decision thresh­
olds, given SNR= 35 dB. Since the SER is invariant to a 
positive scaling of the weight vector, the weight vector was 
scaled to a unit length, and the SER was mainly detennined 
by the minimum distance of the scalars in a subset Y, to its re­
lated decision threshold Cd (SI - 1). The MSER solution has 
a much larger minimum distance, as can be seen in Fig. 2. 
The LSER and AMSER were investigated in simulation with 
SNR= 35 dB and the initial weight vector set to the MMSE 
solution. The step size '"' and width Pn for the' LSER, and 
the step size,", and threshold T for the AMSER [10] were 
set to produce a good combined perfonnance of convergence 
speed and steady-state error for the respective algorithm. For 
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] � 1e-06 

\\ 
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1e-08 '--�_'--���MS:.:E::..R'--�---l 
o 200 400 600 800 1000 1200 1400 
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Fig. 3. Learning curves of the two stochastic gradient adaptive MSER al­
gorithms for Example 1 with SNR= 35 dB. The results were averaged 
over 100 runs. 
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Fig. 4. Lower-bound symbol error rate comparison for Example 4, assum­
ing correct symbols being fed back. 

a fair comparison, the resulting two learning curves had sim­
ilar "roughness", as shown in Fig. 3. The results in Fig. 3 
were obtained by averaging over 100 runs. 

Example 2. The transfer function of the CIR was H(z) = 

0.3 + 1.0z-1 - 0.3z-2 with 8-PAM symbols. The DFE was 
specified by m = 3, d = 2 and nb = 2.' The theoreti­
cal lower-bound SERs of the MMSE arid MSER DFEs, as­
suming correct symbols being fed back, are plotted in Fig. 4. 
The distributions of the scalar subset, Ys, together with the 
two related decision thresholds are shown in Fig. 5, given 
SNR= 34 dB. In the simulation using the two stochastic 
gradient adaptive MSER algorithms, SNR= 34 dB and the 
initial weight vector was set to the MMSE solution. The 
learning curves of these two stochastic gradient algorithms 
are depicted in Fig. 6, where the results were averaged over 
300 runs. 

(�t�WUHI 
o 0.5 1 1.5 2 

y(k) 
(a) MSER 

2rT---------------r------�----_. 
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y(k) 
(b)MMSE 

1.5 

Fig. S. Distributions of the scalar subset, )is, and the two corresponding 
decision thresholds for Example 2 with SNR= 34 dB. A scalar point is 
plotted as an impulse of unit height. 
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Fig: 6. Learning curves of the two stochastic gradierit adaptive MSER al­
gorithms for Example 2 with SNR= 34 dB. The results were averaged 
over 300 runs. 

V. CONCLUSIONS 

The theoretical MSER solution for the linear equalizer and 
DFE with M -PAM signalling has been derived with the aim 
of deriving a stochastic gradient adaptive implementation. 
The resulting adaptive MSER algorithm, called the LSER, is 
based on an approach of kernel density estimation from the 
training data, which has been shown to be a natural and con­
venient way of approximating the density distribution of the 
equalizer decision variable. The LSER algorithm has a com­
putational complexity that is linear with the equalizer length. 
Simulation results have shown that the proposed LSER algo­
rithm has better performance than an existing simpler adap­
tive MSER algorithm called the AMSER, in terms of conver­
gence rate and steady-state SER misadjustment. 
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