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ABSTRACT

A novel adaptive beamforming technique is proposed for
wireless communication application based on the minimum
bit error rate (MBER) criterion. It is shown that the MBER
approach provides significant performance gain in terms of
smaller bit error rate (BER) over the standard minimum
mean square error (MMSE) approach. Using the classi-
cal Parzen window estimate of probability density function
(p.d.f.), both the block-data and sample-by-sample adaptive
implementations of the MBER solution are developed.

1. INTRODUCTION

Spatial processing with adaptive antenna array has shown
real promise for substantial capacity enhancement in mobile
communication [1]–[5]. Adaptive beamforming can sepa-
rate signals transmitted on the same carrier frequency, pro-
vided that they are separated in the spatial domain. The
beamforming processing, which combines the signals re-
ceived by the different elements of an antenna array to form
a single output, is classically done by minimizing the mean
square error between the desired and actual array outputs.
However, for a communication system, it is the BER that
really matters. We propose a novel beamforming technique
based on minimizing the system BER. Adopting Parzen win-
dow or kernel density estimation [6]–[8] to approximate
the p.d.f. of the beamformer output, a block-data adaptive
MBER algorithm is derived. This is then further simplified
to develop a stochastic gradient adaptive MBER algorithm
called the approximate least bit error rate (ALBER).

2. SYSTEM MODEL

The system consists ofM users (sources), and each user
transmits a binary phase shift keying signal on the same car-
rier frequency! = 2�f . The baseband signal of useri ismi(k) = Aibi(k); 1 � i �M; (1)

wherebi(k) 2 f�1g andA2i is useri signal power. The
source 1 is the desired user and the other sources are in-
terfering users. The linear antenna array consists ofL uni-
formly spaced elements, and signals at the antenna array arexl(k) = MXi=1mi(k) exp (j!tl(�i)) + nl(k)= �xl(k) + nl(k); 1 � l � L; (2)

wheretl(�i) is the relative time delay at elementl for sourcei, �i is the direction of arrival for sourcei, andnl(k) is
a complex white Gaussian noise with zero mean and vari-
anceE[jnl(k)j2℄ = 2�2n. The desired signal to noise ratio is
SNR= A21=2�2n and the desired signal to interfereri ratio is
SIRi = A21=A2i , for 2 � i � M . In vector form, the array
inputx(k) = [x1(k) � � �xL(k)℄T can be expressed asx(k) = �x(k) + n(k) = Pb(k) + n(k) (3)

whereE[n(k)nH (k)℄ = 2�2nIL, the system matrixP =[A1s1 � � �AMsM ℄ with the steering vector for sourcei si =[exp(j!t1(�i)) � � � exp(j!tL(�i))℄T , and the bit vectorb(k)= [b1(k) � � � bM (k)℄T . Note that�x(k) 2 X 4= f�xq =Pbq ; 1 � q � Nbg, whereNb = 2M andbq , 1 � q � Nb,
are all the possible sequences ofb(k).
The beamformer output isy(k) = wHx(k) = �y(k) + e(k) (4)

wherew is the complex beamformer weight vector, ande(k) = wHn(k) is Gaussian with zero mean andE[je(k)j2℄= 2�2nwHw. The estimate of the transmitted bitb1(k) isb̂1(k) = sgn(yR(k)) (5)

whereyR(k) = <[y(k)℄ andsgn(�) the sign function. Note

that �y(k) 2 Y 4= f�yq = wH �xq ; 1 � q � Nbg. Thus,�yR(k) can only take values from the setYR 4= f�yR;q = <[�yq℄; 1 � q � Nbg (6)

which can be divided into the two subsetsY(�)R 4= f�y(�)R;q 2 YR : b1(k) = �1g: (7)



3. MBER BEAMFORMING SOLUTION

The p.d.f. ofyR(k) isp(yR) = 1Nbp2��2nwHw NbXq=1 exp � (yR � �yR;q)22�2nwHw !
(8)

and it can be shown that the BER is given byPE(w) = 1Nsb NsbXq=1Q (gq;+(w)) (9)

whereNsb = Nb=2 is the number of the points inY(+)R ,gq;+(w) = sgn(bq;1)�y(+)R;q�npwHw ; (10)

andbq;1 is the first element ofbq related to the desired user.
Note that the BER is invariant to a positive scaling ofw.
Alternatively, the BER can be calculated usingY(�)R .

The MBER beamforming solution is then defined aswMBER = argminw PE(w): (11)

The gradient ofPE(w) with respect tow isrPE(w) = 12Nsbp2��npwHw NsbXq=1 exp0B�� ��y(+)R;q�22�2nwHw1CA�sgn(bq;1) �y(+)R;qwwHw � �x(+)q ! : (12)

The optimization problem (11) can be solved for iteratively
using a simplified conjugated gradient algorithm [9],[10].

4. ADAPTIVE MBER BEAMFORMING

Given a block ofK training samplesfx(k); b1(k)g, a Parzen
window estimate of the p.d.f. (8) is given by:p̂(yR) = 1Kp2��npwHw KXk=1 exp�� (yR � yR(k))22�2nwHw �

(13)
where the kernel width�n is related to the noise standard
deviation�n. From this estimated p.d.f., the estimated BER
is given by P̂E(w) = 1K KXk=1Q (ĝk(w)) (14)

with ĝk(w) = sgn(b1(k))yR(k)�npwHw : (15)

The gradient ofP̂E(w) isrP̂E(w) = 12Kp2��npwHw KXk=1 exp�� y2R(k)2�2nwHw��sgn(b1(k))�yR(k)wwHw � x(k)� : (16)

By substitutingrPE(w) with rP̂E(w) in the conjugate
gradient updating mechanism, a block-data adaptive MBER
algorithm is readily obtained. The step size� and the kernel
width �n are the two algorithm parameters.

An alternative Parzen window estimate is given by~p(yR) = 1Kp2��n KXk=1 exp�� (yR � yR(k))22�2n �
(17)

and an approximation of the BER is~PE(w) = 1K KXk=1Q (~gk(w)) (18)

with ~gk(w) = sgn(b1(k))yR(k)�n : (19)

This approximation is valid provided that the width�n is
chosen appropriately. Adopting this approach and consid-
ering sample-by-sample adaptation leads to the stochastic
gradient adaptive MBER algorithm called ALBER:w(k + 1) = w(k) + � sgn(b1(k))2p2��n exp��y2R(k)2�2n �x(k):

(20)
This ALBER algorithm has a similar computational com-
plexity to the very simple least mean square algorithm.

15
o

30
o

o

λ /2λ /2

60 60o

30
o

interferer
interferer

interferer

1
interferer 2

interferer

3
source 
desired

5

4

6

Figure 1: Locations of the desired source and the interfering
sources with respect to the three-element linear array with�=2
element spacing,� being the wavelength.
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(a) SIRi = 0 dB for 2 � i � 6.
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(b) SIRi = 0 dB for i = 2; 4; 5; 6, and SIR3 = �6 dB.

Figure 2:Comparison of bit error rate performance.

5. SIMULATION STUDY

The example consisted of six sources and a three-element
antenna array. Fig. 1 shows the locations of the desired
source and the interfering sources graphically. Fig. 2 com-
pares the BER performance of the MBER solution with that
of the MMSE solution under two different conditions: (a) the
desired user and all the five interfering sources had equal
power, and (b) the desired user and the interfering sources2; 4; 5; 6 had equal power, but the interfering source3 had
6 dB more power than the desired user. Under the condition
given in Fig. 2 (b), the MMSE beamformer had a very high
error rate floor of above18 . The reason for this was investi-
gated. Given SNR= 14 dB, SIRi = 0 dB for i = 2; 4; 5; 6
and SIR3 = �6 dB, Fig. 3 compares the conditional p.d.f.
givenb1(k) = +1 of the MMSE beamformer with that of
the MBER beamformer, where the beamformer weight vec-
tor had been normalized to a unit length. It can be seen that
under the given condition the resultingY(�)R andY(+)R for
the MMSE beamforming were linearly inseparable. There
wereNsb = 32 points inY(+)R , and a cluster of four points
was on the wrong side of the decision boundaryyR = 0 for
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Figure 3:Conditional probability density function of beamformer
givenb1(k) = +1. SNR= 14 dB, SIRi = 0 dB for i = 2; 4; 5; 6,
and SIR3 = �6 dB.

the MMSE beamforming.

Performance of the block-data gradient adaptive MBER al-
gorithm was next studied. Fig. 4 illustrates the convergence
rates of the algorithm given SNR= 14 dB, SIRi = 0 dB
for 2 � i � 6 and the two different initial weight vec-
tors. It can be seen that this block-data adaptive MBER al-
gorithm generally converged rapidly. As the BER surface
is highly complicated, the initial condition will influence
convergence rate. We have found out that the MMSE so-
lutionwMMSE is typically not a good initial choice in terms
of convergence rate. Performance of the stochastic gradi-
ent adaptive MBER algorithm was also investigated. Fig. 5
shows the learning curves of the ALBER algorithm under
the same conditions of Fig. 4, where DD denotes decision-
directed adaptation witĥb1(k) substitutingb1(k). It can
be seen that the ALBER algorithm had a reasonable con-
vergence speed. Note that the steady-state BER misadjust-
ment was higher when the initial weight vector was set towMMSE, compared with the other initial condition.

6. CONCLUSIONS

An adaptive MBER beamforming technique has been pro-
posed. It has been demonstrated that the MBER beam-
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(a) Initialw0 = wMMSE.
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(b) Initialw0 = [0:1 + j0:0 0:1 + j0:0 0:1 + j0:0℄T .

Figure 4: Convergence rates of block-data adaptive gradient
MBER algorithm. SNR= 14 dB and SIRi = 0 dB for 2 � i � 6.
Block sizeK = 200, � = 0:6 and�2n = 4�2n = 0:08.

former utilizes the system resource more intelligently than
the standard MMSE beamformer and, consequently, achieves
a better performance in terms of a smaller BER. The results
also suggest that the MBER solution is robust to the near-
far effect. Adaptive implementation of the MBER beam-
forming solution has been developed based on the classical
approach of Parzen window estimate for the p.d.f. of the
beamformer output. A block-data conjugate gradient adap-
tive MBER algorithm has been shown to converge rapidly
and requires a reasonably small block size to accurately ap-
proximate the theoretical MBER solution. A LMS-style
stochastic gradient adaptive MBER algorithm called the AL-
BER has been shown to perform well. Current work is in-
vestigating the extension of the proposed adaptive MBER
beamforming to other modulation schemes.
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