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ABSTRACT

The conventional decision feedback equalizer (DFE) sepa-
rates the different signal classes using a single hyperplane.
It is well known that the popular minimum mean square er-
ror (MMSE) design is generally not the optimal minimum
bit error rate (MBER) solution. We propose a method of de-
signing the separating hyperplane for the conventional DFE
based on support vector machines (SVMs). The SVM de-
sign achieves asymptotically the MBER solution and can be
computed efficiently.

1. INTRODUCTION

The conventional or linear-combiner DFE is widely used in
practice, since it provides a good balance between perfor-
mance and complexity. Geometrically, a DFE forms a hy-
perplane in the signal space. The most popular design strat-
egy is the MMSE design with an advantage that it leads to a
simple adaptive implementation. A better design in terms of
performance is to choose the equalizer coefficients to mini-
mize bit error rate (BER) directly [1],[2]. The performance
of the resulting MBER DFE is superior to the MMSE DFE,
but its adaptive implementation is computationally much
more complex. Moreover, unlike the mean square error sur-
face, which is quadratic, the BER surface can be highly ir-
regular and a gradient algorithm cannot generally guarantee
to converge to a global minimum.

The method of SVMs is very powerful in solving various
classification and regression problems [3],[4]. The idea of
SVMs originates from finding an optimal hyperplane to sep-
arate two classes with maximum margin, and this is very rel-
evant to the DFE. We use the method of SVMs to obtain the
separating hyperplane for the DFE. The SVM design leads
to a well-conditioned quadratic programming defined by a
few channel states called support vectors (SVs) that lie on
the margin. The SVM solution is unique and can be com-
puted efficiently. Moreover it does not depend on the noise
variance and it is asymptotically the MBER solution. Simu-

lation results indicate that the performance of the SVM DFE
is virtually indistinguishable from the MBER DFE. Adap-
tive implementation of the SVM DFE is also discussed.

2. THE DFE STRUCTURE

We will assume that the real-valued channel generates the
received signal samples of:y(k) = na�1Xi=0 ais(k � i) + e(k) ; (1)

wherena is the channel impulse response (CIR) length,ai
denotes the channel taps, the Gaussian white noisee(k)
has zero mean and variance�2e , and the symbol sequencefs(k)g takes values from the setf�1g. An extension toM -PAM channels will be given later. The DFE studied in
this paper produces an estimateŝ(k � d) of s(k � d) by
quantizing the filter output of:f(y(k); ŝb(k)) = wTy(k) + bT ŝb(k) ; (2)

wherey(k) = [y(k) y(k � 1) � � � y(k � m + 1)℄T andŝb(k) = [ŝ(k � d � 1) � � � ŝ(k � d � n)℄T are the obser-
vation and past detected symbol vectors, respectively, whilew = [w0 w1 � � �wm�1℄T andb = [b1 � � � bn℄T are the co-
efficient vectors of the feedforward and feedback filters, re-
spectively. Without the loss of generality, the decision delayd = na � 1, feedforward orderm = na and feedback or-
dern = na � 1 are chosen, as this choice is sufficient to
guarantee the linear separability.

The observation vector can be expressed as:y(k) = F1sf (k)+F2 sb(k) + e(k), wheresf (k) = [s(k) � � � s(k � d)℄T ,sb(k) = [s(k � d� 1) � � � s(k � d� n)℄T , andF1 = 266664 a0 a1 � � � ana�10 a0 . . .
...

...
. . .

. . . a10 � � � 0 a0 377775 (3)



F2 = 266666664 0 0 � � � 0ana�1 0 . . .
...ana�2 ana�1 . . . 0

...
. . .

. . . 0a1 � � � ana�2 ana�1
377777775 (4)

are them� (d+ 1) andm� n CIR matrices, respectively.
Under the assumption of correct decision feedback, we haveŝb(k) = sb(k), and the decision feedback translates the
original signal spacey(k) into a new spacer(k):r(k) 4= y(k)� F2 ŝb(k) : (5)

In the translated space, the DFE can be described by:f(r(k)) = wT r(k) : (6)

Let theNf = 2d+1 possible sequences ofsf (k) be sfj ,1 � j � Nf . The set of the noiseless channel states in the

translated space, namelyR 4= frj = F1 sfj ; 1 � j � Nfg,
can be partitioned into the two subsets:R(�1) 4= frj 2 R : s(k � d) = �1g : (7)

Lemma 1 R(+1) andR(�1) are linearly separable.

The MMSE solutionwMMSE is an example of the separat-
ing hyperplane. The non-optimal nature of the MMSE solu-
tion however becomes clear in the asymptotic case of large
signal to noise ratio (SNR).

Lemma 2 limSNR!1wMMSE = �0 0 � � � 0 1a0 �T : (8)

For the proofs of these two lemmas, see [1].

The weight vector of the optimal separating hyperplane can
be obtained by minimizing the BERPE(w) [1]wMBER = argminw PE(w) ; (9)

where PE(w) = 2Ns Xrj2R(+1)Q� jwT rj jkwk�e� ; (10)Ns = 2d is the number of states inR(+1) andQ(x) = Z 1x 1p2� exp��x22 � dx : (11)

3. THE SVM DFE

The minimum distance from the nearest point inR to a sep-
arating hyperplane, defined bywT r = 0, is given by:�(w) = minri2R(+1) jwT rijkwk + minrj2R(�1) jwT rj jkwk ; (12)

which is referred to as the margin. The SVM design finds
the hyperplane that maximizes this margin. Since the weight
vectorw of the hyperplanewT r = 0 is linear dependent, it
is appropriate to consider a canonical hyperplane [3] wherew is constrained byminri2R jwT rij = 1 : (13)

Define the integer setIR 4= fi : ri 2 Rg and the class
indicatoryi = �1; 8ri 2 R(�1). The maximization of
the margin (12) with the constraint (13) using the classical
Lagrangian theory [5] gives rise to the optimal separating
hyperplane: wSVM = Xi2IR �gi yi ri ; (14)

where�g = argming 12 Xi2IR Xj2IR gigj yiyj rTi rj �Xi2IR gi ; (15)gi � 0; 8i 2 IR : (16)

The optimization problem (15) with (16) is a quadratic pro-
gramming problem, whose solution�g can be computed ef-
ficiently. As gi are the Lagrange multipliers of the primal
problem, from the Kuhn-Tucker conditions [5]�gi �yiwTSVMri � 1� = 0 ; (17)

only those pointsri, which satisfyyiwTSVMri = 1, will
have non-zero Lagrange multipliers. These points are the
SVs [3]. All the SVs lie on the margin and the number of
SVs can be very small. LetRSV be the set of SVs. The
hyperplanewSVM is uniquely determined byRSV.

Thus, the identical solution is obtained by substitutingR
with RSV in (14) to (16). However, the SVs are unknown
a priori. We can select a smaller subsetRSub of R, which
contains all the SVs. We first point out that, because we
restrict the DFE to the linear structure (6) in the translated
space, the decision boundary is a hyperplane. If we allow
a nonlinear structure, the decision boundary will become a
hypersurface. The true optimal solution for the DFE with-
out restricting it to linear filtering is the nonlinear Bayesian
solution [6],[7]. Asymptotically, the Bayesian boundary is



piecewise linear, consisting of a set of hyperplanes. Each
of these hyperplanes is defined by a pair ofdominant states
in R(�1) [8]. The following algorithm can be used to select
these pairs of the dominant states that define the set of the
asymptotic hyperplanes [9]:

FORr+i 2 R(+1)
FORr�j 2 R(�1)x = (r+i + r�j )=2d0 = kr+i � xk

IF
�kr+l � xk > d0;8r+l 2 R(+1); l 6= i� AND�kr�l � xk > d0;8r�l 2 R(�1); l 6= j�RSub  (r+i ; r�j )

END IF
NEXT r�j

NEXT r+i
AsRSub can be a smaller subset ofR, using it to substituteR in the quadratic programming described by (14) to (16)
will result in considerable savings in computation. This is
allowed, sinceRSV � RSub.
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Figure 1: Two asymptotic decision hyperplanes for the CIR
of a = [0:5 1:0℄T .

We comment thatwSVM is the asymptotic MBER solution,
that is, limSNR!1wMBER = wSVM. In general,wSVM
will not be identical towMBER, but the difference is prac-
tically negligible for useful SNR conditions. Consider the
CIR of a = [0:5 1:0℄T . The hyperplane of the SVM so-
lution is depicted in Fig. 1. This is identical to the asymp-
totic MBER solution. When the SNR is reduced to 15 dB,wSVM remains unchanged with a slope of -1, butwMBER is
changed from a slope of -1 to -1.02. Such a small difference
will hardly cause any difference in BER performance.

A numerical example with a four-tap CIR ofa = [0:35 0:80 1:00 0:80℄T (18)

was used in our simulations. The DFE was accordingly cho-
sen to bed = 3, m = 4 andn = 3. The full set of statesR has sixteen points. The subset selection produced a sub-
setRSub of eight states, four of them being the SVs. The
BERs of the MMSE and SVM DFEs with detected symbols
being fed back are plotted in Fig.2. The BER of the MBER
DFE was practically indistinguishable from that of the SVM
DFE. Therefore, the BER curve of the MBER DFE is not in-
cluded. From Fig.2, it can be seen that the performance of
the SVM DFE is significantly better than that of the MMSE
DFE. At the BER of10�4, the SVM DFE has a SNR gain
of about 2 dB over the MMSE solution.
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Figure 2: Performance comparison for the CIR ofa =[0:35 0:80 1:00 0:80℄T .

4. EXTENSION TO M -PAM

For theM -PAM case,s(k) takes values from the setsi = 2i�M � 1; 1 � i �M : (19)

Let theNf = Md+1 sequences ofsf (k) besfj , 1 � j �Nf . The set of the noiseless channel states in the translated

space,R 4= frj = F1sfj ; 1 � j � Nfg, can be partitioned
intoM subsetsR(i) 4= frj 2 R : s(k � d) = sig; 1 � i �M : (20)

Lemma 3 R(i), 1 � i �M , are linearly separable.

The decision boundary of the DFE consists ofM � 1 par-
allel hyperplanes defined by:fr : wT r = 2i � Mg,1 � i �M � 1. One of the hyperplanes isfr : wT r = 0g.
The minimum symbol error rate (MSER) solutionwMSER
can be obtained by minimizing the symbol error rate [10].



It can readily be seen from (3) that the subsetR(i+1) is a
translation ofR(i):R(i+1) = R(i) + (si+1 � si)arev = R(i) + 2arev ; (21)

wherearev = [ana�1 � � � a1a0℄T . Thus, the weight vectorw is linear dependent and has to obey the constraint:wT arev = 1 : (22)

Similar to the binary case, the SVM solutionwSVM is deter-
mined by the two subsetsR(l) andR(l+1), wherel = M=2,
via a simple quadratic programming with the extra con-
straint (22). This SVM solution is the asymptotic MSER
solution.

5. ADAPTIVE IMPLEMENTATION

An indirect adaptation scheme is suitable for adaptive im-
plementation of the SVM DFE. The scheme first estimates
a channel model̂a using the LMS algorithm and then com-
putes the weight vectorwSVM of the SVM DFE based on
the channel estimatêa. This indirect approach, as opposed
to a direct adaptation of the equalizer weight vector using
the LMS algorithm, has the advantage of shorter training
period. This is because the correlation matrix of the LMS
channel estimator has an eigenvalue spread of one, while the
correlation matrix of the LMS algorithm for updating the
equalizer weight vector can have a large eigenvalue spread.

Implementing the SVM DFE in data storage systems is par-
ticularly simple, as in many commercial disk drives, the
equalizers are trained at the factory floor and then “frozen”
before shipping. Thus training can be done off-line in one
go. For time-varying communication links, it is possible to
implement the SVM DFE based on a block-by-block adap-
tation. For example, in some TDMA communication sys-
tems, transmission is organized in frames. Each frame con-
tains a training sequence, which can be used in channel es-
timation. The estimated channel is then used to design the
SVM DFE to detect data in the frame. The adaptive SVM
DFE is computationally more complex than the adaptive
MMSE DFE. The increase in computation, however, can
partly be justified by an improved performance.

6. CONCLUSIONS

We have proposed a new DFE design based on the method
of SVMs. The SVM DFE, being the asymptotic MBER so-
lution, is superior in terms of performance to the MMSE
DFE. The SVM approach results in an efficient quadratic
programming solution. Adaptive implementation of the SVM

DFE is also discussed, and it is possible to realize the SVM
DFE in data storage systems and over slow time-varying
communication links.
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