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ABSTRACT

The paper proposes a concurrent constant modulus algo-
rithm (CMA) and soft decision-directed (SDD) scheme for low-
complexity blind equalization of high-order quadrature amplitude
modulation channels. Simulation using a fractionally-spaced equal-
ization setting is used to compare the proposed scheme with the
recently introduced state-of-art concurrent CMA and decision-
directed (DD) scheme. The proposed CMA+SDD blind equalizer is
shown to have simpler computational complexity per weight update,
faster convergence speed, and slightly improved steady-state equal-
ization performance, compared with the CMA+DD blind equalizer.

I. INTRODUCTION

For communication systems employing high bandwidth-
efficiency quadrature amplitude modulation (QAM) signalling, the
constant modulus algorithm (CMA) based equalizer is by far the
most popular blind equalization scheme [1]–[4]. It has very simple
computational requirements and readily meets the real-time com-
putational constraint. The CMA is also very robust to imperfect
carrier recovery. A particular problem of the CMA, however, is that
it only achieves a moderate level of mean square error (MSE) after
convergence, which may not be sufficiently low for the system to
obtain adequate performance. A possible solution is to switch to
a decision directed (DD) adaptation which should be able to mini-
mize the residual CMA steady state MSE [5]. However, as pointed
out in [6], in order for such a transfer to be successful, the CMA
steady state MSE should be sufficiently low. In practice, such a low
level of MSE may not always be achievable by the CMA.

De Castro and co-workers [6] have suggested an interesting so-
lution to this problem. Rather than switching to a DD adaptation
after the CMA has converged, they have proposed to operate a DD
equalizer concurrently with a CMA equalizer. To avoid error prop-
agation due to incorrect decisions, the DD weight adaptation only
takes place if the CMA adaptation is judged to have achieved a suc-
cessful adjustment with high probability. At a cost of slightly more
than doubling the complexity of the very simple CMA, this con-
current CMA+DD equalizer is reported to obtain a dramatical im-
provement in equalization performance over the CMA [6], and it
represents a state-of-art technique for low-complexity blind equal-
ization of high-order QAM channels. Another blind equalization
scheme, which is relevant to the proposed concurrent CMA and soft
decision-directed (SDD) blind equalizer, is the bootstrap maximum
a posteriori probability (MAP) blind equalizer [7],[8].

The bootstrap MAP blind scheme was originally derived in [9]
for the 4-QAM case and extended to M -QAM channels in [7],[8],

and it has been shown to outperform the CMA+DD scheme, in
terms of convergence rate and steady-state performance [10],[11].
A drawback of this bootstrap MAP scheme is that its adaptive pro-
cess requires L-stage switchings, where L = log2(M)/2, and each
stage of adaptation needs a different set of algorithm parameters.
Thus, tuning of the bootstrap MAP algorithm is quite complicated.
The proposed CMA+SDD scheme may be viewed as operating a
CMA equalizer and a last-stage bootstrap MAP equalizer concur-
rently, and it does not require complicated switching. The proposed
CMA+SDD scheme has a simpler complexity than the CMA+DD
scheme. Simulation results obtained under a fractionally-spaced
equalizer (FSE) setting show that the CMA+SDD algorithm has a
faster convergence rate and slightly better steady-state performance,
compared with the CMA+DD scheme.

II. LOW-COMPLEXITY BLIND EQUALIZATION

Blind equalization with a Ts/2-spaced FSE is considered, where
Ts denotes the symbol period. The baseband discrete-time model of
communication system with a Ts/2-spaced FSE [12] is depicted in
Fig. 1. For notational convenience, the index k is reserved for Ts-
spaced quantities and index n for Ts/2-spaced quantities through-
out the discussion. The transmitted Ts-spaced complex symbol se-
quence s(k) = sR(k) + jsI(k) is assumed to be independently
identically distributed (i.i.d.) and the symbol constellation is M -
QAM with the set of all the symbol points defined by

S = {sil = (2i − Q − 1) + j(2l − Q − 1), 1 ≤ i, l ≤ Q} (1)
where Q =

√
M = 2L, and L is an integer. The received Ts/2-

spaced signal sample is

r̄(n) =

2Nc−1∑
i=0

āis̄(n − i) + ē(n) (2)

where the Ts/2-spaced sequence {s̄(n)} is a zero-filled version of
the transmitted symbol sequence {s(k)} defined by

s̄(n) =

{
s(n/2), for even n,
0, for odd n,

(3)

s(n)s(k)
Σ2

e(n)

y(k)
2

r(n) y(n)
a w

Fig. 1. Multirate baseband model of communication system with Ts/2-spaced equal-
izer, where Ts denotes symbol period, the index k indicates Ts-spaced quantities
and index n indicates Ts/2-spaced quantities.
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Fig. 2. Multichannel model of communication system with Ts/2-spaced equalizer,
where Ts denotes symbol period, and the index k indicates Ts-spaced quantities.

the channel is specified by the Ts/2-spaced complex-valued chan-
nel impulse response (CIR) given by

ā = [ā0 ā1 ā2 ā3 · · · ā2Nc−1]
T (4)

with Nc corresponding to the Ts-spaced CIR length, and the Ts/2-
spaced sample ē(n) = ēR(n) + jēI(n) is an i.i.d. complex Gaus-
sian white noise with E[ē2

R(n)] = E[ē2
I(n)] = σ2

e .

To remove the channel distortion, a Ts/2-spaced equalizer is em-
ployed, which is defined by

ȳ(n) =

2m−1∑
i=0

w̄ir̄(n − i) = w̄T r̄(n) (5)

where 2m is the order or length of the Ts/2-spaced equalizer, w̄ =
[w̄0 w̄1 · · · w̄2m−1]

T is the equalizer complex-valued weight vector,
and r̄(n) = [r̄(n) r̄(n − 1) · · · r̄(n − 2m + 1)]T is the equalizer
input vector. The FSE output ȳ(n) is decimated by a factor of 2 to
create the Ts-spaced output y(k). It can easily be shown [12] that
the system model of Fig. 1 is equivalent to the model depicted in
Fig. 2 by defining

āe = [ā0 ā2 · · · ā2Nc−2]
T , āo = [ā1 ā3 · · · ā2Nc−1]

T ,
w̄e = [w̄0 w̄2 · · · w̄2m−2]

T , w̄o = [w̄1 w̄3 · · · w̄2m−1]
T (6)

and
ee(k) = ē(2n), eo(k) = ē(2n + 1),
re(k) = r̄(2n), ro(k) = r̄(2n + 1).

(7)

Further define

w = [w0 w1 · · ·w2m−1]
T =

[
(w̄o)T (w̄e)T

]T
(8)

r(k) = [r(k) r(k − 1) · · · r(k − 2m + 1)]T

=
[
(re(k))T (ro(k))T

]T
(9)

with re(k) = [re(k) re(k − 1) · · · re(k − m + 1)]T and ro(k) =
[ro(k) ro(k−1) · · · ro(k−m+1)]T . Then the Ts-spaced equalizer
output y(k) is given by

y(k) =

2m−1∑
i=0

wir(k − i) = wT r(k) . (10)

A. Concurrent CMA and decision directed equalizer

De Castro and co-workers [6] proposed a blind equalization
scheme that consists of a CMA equalizer and a DD equalizer op-
erating concurrently. Specifically, let w = wc + wd. Here wc is
the weight vector of the CMA equalizer which is designed to mini-
mize the CMA cost function

J̄CMA(w) = E
[(

|y(k)|2 − ∆2

)2
]

(11)

using a stochastic gradient algorithm, where ∆2 is a real positive
constant defined by ∆2 = E

[
|s(k)|4

]
/E

[
|s(k)|2

]
, while wd is the

weight vector of the DD equalizer which is designed to minimize
the decision based MSE

J̄DD(w) =
1

2
E

[
|Q[y(k)] − y(k)|2

]
(12)

by adjusting wd, where Q[y(k)] denotes the quantized equalizer
output defined by

Q[y(k)] = arg min
sil∈S

|y(k) − sil|2. (13)

More precisely, at symbol-spaced sample k, given

y(k) = wT
c (k)r(k) + wT

d (k)r(k), (14)

the CMA part adapts wc according to the rule

ε(k) = y(k)
(
∆2 − |y(k)|2

)
wc(k + 1) = wc(k) + µcε(k)r∗(k)

}
(15)

where µc is a small positive adaptive gain and r∗(k) is the complex
conjugate of r(k). The DD adaptation follows immediately after
the CMA adaptation but it only takes place if the CMA adjustment
is viewed to be a successful one. Let

ỹ(k) = wT
c (k + 1)r(k) + wT

d (k)r(k). (16)

Then the DD part adjusts wd according to [6]:

wd(k+1) = wd(k)+µdδ(Q[ỹ(k)]−Q[y(k)])(Q[y(k)]−y(k))r∗(k)
(17)

where µd is the adaptive gain of the DD equalizer and the indicator
function

δ(x) =

{
1, x = 0 + j0,
0, x �= 0 + j0.

(18)

It can be seen that wd is updated only if the equalizer hard de-
cisions before and after the CMA adaptation are the same. A po-
tential problem of (hard) decision-directed adaptation is that if the
decision is wrong, error propagation occurs which subsequently de-
grades equalizer adaptation. As analyzed in [6], if the equalizer hard
decisions before and after the CMA adaptation are the same, the de-
cision probably is a right one. The DD adaptation, when is safe to
perform, has a much faster convergence speed and is capable of
lowering the steady state MSE, compared with the pure CMA. The
adaptive gain µd for the DD equalizer can often be chosen much
larger than µc for the CMA. The complexity of this CMA+DD blind
equalizer is compared with that of the CMA in Table I.
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Fig. 3. Illustration of local decision regions for soft decision-directed adaptation with
64-QAM constellation.

B. Concurrent CMA and soft decision directed equalizer

After the equalization is accomplished, the equalizer soft output
y(k) can approximately be expressed in two terms:

y(k) ≈ x(k) + v(k) (19)

where x(k) = s(k − kd), kd is an integer, and v(k) = vR(k) +
jvI(k) is approximately a Gaussian white noise. Thus, if the equal-
izer weights have correctly been chosen, the equalizer output can
be modelled approximately by M Gaussian clusters with the clus-
ter means being sil for 1 ≤ i, l ≤ Q. All the clusters have an
approximate covariance[

E[v2
R(k)] E[vR(k)vI(k)]

E[vI(k)vR(k)] E[v2
I (k)]

]
≈

[
ρ 0
0 ρ

]
. (20)

Under the above conditions, the a posteriori probability density
function (p.d.f.) of y(k) is approximately

p(w, y(k)) ≈
Q∑

q=1

Q∑
l=1

pql

2πρ
exp

(
−|y(k) − sql|2

2ρ

)
, (21)

where pql are the a priori probabilities of sql, 1 ≤ q, l ≤ Q, and
they are all equal.

The computation of the p.d.f. (21) involves the evaluation of M
exp(•) function values. A local approximation can be adopted for
this p.d.f. which only evaluates four exp(•) function values. This is
achieved by dividing the complex plane into M/4 regular regions,
as illustrated in Fig. 3. Each region Si,l contains four symbol points

Si,l = {spq, p = 2i − 1, 2i, q = 2l − 1, 2l}. (22)

If the equalizer output y(k) is within the region Si,l, a local approx-
imation to the a posteriori p.d.f. of y(k) is

p̂(w, y(k)) ≈
2i∑

p=2i−1

2l∑
q=2l−1

1

8πρ
exp

(
−|y(k) − spq|2

2ρ

)
(23)

where each a priori probability has been set to 1
4

. Obviously this
approximation is only valid when the equalization goal has been

TABLE I

COMPARISON OF COMPUTATIONAL COMPLEXITY PER WEIGHT UPDATE. THE

EQUALIZER ORDER IS 2m.

equalizer multiplications additions exp(•)
CMA 8 × 2m + 6 8 × 2m −

CMA+DD 16 × 2m + 8 20 × 2m −
CMA+SDD 12 × 2m + 29 14 × 2m + 21 4

accomplished. A bootstrap optimization process however can be
performed to achieve the MAP solution, as is presented in [7],[8].

The proposed scheme operates a CMA equalizer and a SDD
equalizer concurrently. The CMA part is identical to that of the
concurrent CMA and DD scheme. The SDD equalizer is designed
to maximize log of the local a posteriori p.d.f. criterion

J̄LMAP(w) = E[JLMAP(w, y(k))] (24)

by adjusting wd using a stochastic gradient algorithm, where

JLMAP(w, y(k)) = ρ log (p̂(w, y(k))) . (25)

Specifically, the SDD equalizer adapts wd according to

wd(k + 1) = wd(k) + µd
∂JLMAP(w(k), y(k))

∂wd
(26)

where
∂JLMAP(w, y(k))

∂wd
=

∑2i

p=2i−1

∑2l

q=2l−1
exp

(
− |y(k)−spq|2

2ρ

)
(spq − y(k))∑2i

p=2i−1

∑2l

q=2l−1
exp

(
− |y(k)−spq|2

2ρ

) r∗(k)

(27)
and µd is an adaptive gain. The choice of ρ should ensure a proper
separation of the four clusters in Si,l. If the value of ρ is too large,
a desired degree of separation may not be achieved. On the other
hand, if a too small ρ is used, the algorithm attempts to impose a
very tight control in the size of clusters and may fail to do so. Apart
from these two extreme cases, the performance of the algorithm
does not critically depend on the value of ρ. As the minimum dis-
tance between the two neighbouring symbol points is 2, typically ρ
is chosen to be less than 1.

Soft decision nature is evident in (27). Rather than committed
to a single hard decision Q[y(k)] as the DD scheme does, alterna-
tive decisions are also considered in a local region Si,l that includes
Q[y(k)], and each tentative decision is weighted by an exponential
term exp(•) which is a function of the distance between the equal-
izer soft output y(k) and the tentative decision spq . This soft de-
cision nature enables a simultaneous update of wc and wd without
worrying error propagation and, therefore, simplifies the operation.
It also has an effect that a larger adaptive gain µd can often be used,
compared with the DD scheme. It is also obvious that this SDD
scheme corresponds to the last stage of the bootstrap MAP scheme
given in [7],[8]. The complexity of the this CMA+SDD scheme is
given in Table I, where it can be seen that computational complex-
ity per weight update of this proposed new scheme is simpler than
that of the CMA+DD scheme. The four exp(•) evaluations can be
implemented through look up table in practice.
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TABLE II

A SIMULATED Ts/2-SPACED 22-TAP CHANNEL IMPULSE RESPONSE, WHERE Ts

DENOTES SYMBOL PERIOD.

Tap No. Re Im Tap No. Re Im
0 0.0145 -0.0006 11 0.0294 -0.0049
1 0.0750 0.0176 12 -0.0181 0.0032
2 0.3951 0.0033 13 0.0091 0.0003
3 0.7491 -0.1718 14 -0.0038 -0.0023
4 0.1951 0.0972 15 0.0019 0.0027
5 -0.2856 0.1896 16 -0.0018 -0.0014
6 0.0575 -0.2096 17 0.0006 0.0003
7 0.0655 0.1139 18 0.0005 0.0000
8 -0.0825 -0.0424 19 -0.0008 -0.0001
9 0.0623 0.0085 20 0.0000 -0.0002
10 -0.0438 0.0034 21 0.0001 0.0006

III. SIMULATION STUDY

The performance of the CMA+SDD and CMA+DD blind equal-
izers were evaluated in a computer simulation using the standard
CMA blind equalizer as a benchmark. Two performance criteria
were used to assess the convergence rate of a blind equalizer. The
first one was a decision-based estimated MSE at each adaptation
sample based on a block of NMSE Ts-spaced data samples

MSE =
1

NMSE

NMSE∑
k=1

|Q[y(k)] − y(k)|2. (28)

The second one was the maximum distortion (MD) measure defined
by

MD =

∑Nf−1

i=0
|fi| − |fimax |
|fimax |

(29)

where {fi}Nf−1

i=0 was the combined impulse response of the channel
and equalizer defined by w̄o � āe + w̄e � āo with � denoting con-
volution and Nf = Nc + m − 1 being the length of the Ts-spaced
combined impulse response, and

fimax = max{fi, 0 ≤ i ≤ Nf − 1}. (30)

The equalizer output signal constellation after convergence was also
shown using Ntest = 6000 Ts-spaced testing data samples not used
in adaptation.

Extended simulation was performed but space limitation means
that only a typical set of results can be presented. In the chosen sim-
ulated example, 256-QAM data symbols were transmitted through
a Ts/2-spaced 22-tap channel whose CIR is given in Table II. The
noise power was set to σ2

e = 4.24×10−5, corresponding to a chan-
nel signal to noise ratio of 60 dB. The Ts/2-spaced equalizer had 26
taps and the length of the data block for estimating the MSE at each
adaptation was NMSE = 1000. The adaptive gain for the CMA had
to be set to µc = 10−8 to avoid divergence. The two adaptive gains
of the CMA+DD equalizer were set to µc = 10−8 and µd = 10−5.
For the CMA+SDD equalizer, the two adaptive gains were set to
µc = 10−8 and µd = 2 × 10−5 with a width ρ = 0.4. The equal-
izer length and all the adaptive algorithm parameters were chosen
empirically to ensure fast convergence speed and good steady-state
performance.
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Fig. 4. Comparison of convergence performance in terms of (a) estimated MSE and
(b) MD measure.

The learning curves of the three blind equalizers, in terms of
the estimated MSE and MD measure, are depicted in Fig. 4 (a)
and (b), respectively, while the equalizer output signal constella-
tions after convergence are illustrated in Fig. 5. For this exam-
ple, faster convergence speed of the proposed new scheme over the
CMA+DD scheme can clearly be seen. The results also indicate
that the steady-state equalization performance of the CMA+SDD
algorithm is slightly better than the CMA+DD algorithm.

IV. CONCLUSIONS

In this paper, a novel low-complexity blind equalization scheme
has been proposed based on operating a CMA equalizer and a
SDD equalizer concurrently. Compared with a state-of-art low-
complexity blind equalization scheme, namely the recently intro-
duced concurrent CMA and DD blind equalizer, the proposed con-
current CMA and SDD blind equalizer has simpler computational
requirements, faster convergence rate and slightly better steady-
state equalization performance. This new blind equalizer, together
with the concurrent CMA and DD blind equalizer, offer practical
alternatives to blind equalization of higher-order QAM channels
and provide significant equalization improvement over the standard
CMA based blind equalizer.
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Fig. 5. Equalizer output signal constellations after convergence (a) the CMA, (b) the
CMA+DD, and (c) CMA+SDD.

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society


	Select a link below
	Return to Main Menu
	Return to Previous View


