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Abstract. We propose a simple yet computationally efficient construc-
tion algorithm for two-class kernel classifiers. In order to optimise clas-
sifier’s generalisation capability, an orthogonal forward selection proce-
dure is used to select kernels one by one by minimising the leave-one-out
(LOO) misclassification rate directly. It is shown that the computation
of the LOO misclassification rate is very efficient owing to orthogonali-
sation. Examples are used to demonstrate that the proposed algorithm
is a viable alternative to construct sparse two-class kernel classifiers in
terms of performance and computational efficiency.

1 Introduction

The two-class classification problems can be configured into a regression frame-
work that solves a separating hyperplane for two classes, with the known class
labels used as the desired output examples for model training in supervised
learning. Models are usually identified according to some objective criteria. In-
formation based criteria, such as the AIC [1], often include a penalty term to
avoid an oversized model which may tend to overfit to the training data set. Par-
simonious models are also preferable in engineering applications since a model’s
computational complexity scales with its model complexity. Moreover a parsi-
monious model is easier to interpret from the viewpoint of knowledge extrac-
tion. Consequently a practical nonlinear modelling principle is to find the small-
est model that generalises well. Model construction techniques that have been
widely studied include the support vector machine (SVM), relevance vector ma-
chine (RVM), and orthogonal forward regression [2,3,4,5]. The orthogonal least
square algorithm [6] was developed as a practical linear-in-the-parameters mod-
els construction algorithm. A large class of nonlinear representations, e.g. the
radial basis function (RBF) network and SVM, can be classified as the linear-in-
the-parameters models. An orthogonal forward selection (OFS) procedure can be
applied to construct parsimonious two-class classifiers by incrementally maximis-
ing the Fisher ratio of class separability measure [7,8]. Alternatively the SVM
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is based on the structural risk minimisation (SRM) principle and approximately
minimises an upper bound on the generalisation error [2] via minimising of the
norm of weights in the feature space [9]. The SVM is characterised by a kernel
function, lending its solution as that of the convex quadratic programming, such
that the resultant model is sparse with a subset of the training data set used as
support vectors.

In regression, a fundamental concept in the evaluation of model generalisation
capability is that of cross validation [10]. The leave-one-out (LOO) cross valida-
tion is often used to estimate generalisation error for choosing among different
model architectures [10]. LOO errors can be derived using algebraic operation
rather than actually splitting the training data set for linear-in-the-parameters
models. The calculation of LOO errors however is computational expensive. The
generalised cross validation [11] has been introduced as a variant of LOO cross
validation to improve computational efficiency. Regressors can incrementally be
appended in an efficient OFS procedure while minimising the LOO errors [12,13]
to yield a sparse regression model that generalises well.

This paper considers the construction of parsimonious two-class linear-in-the-
parameters kernel classifiers using LOO cross validation. The proposed method
extends the OFS procedure for regression in [12,13] to the classification problem
by using the LOO misclassification rate, the true generalisation capability of a
classifier, for model selection. Note that in classification the modelling objec-
tive is to minimise the number of misclassified samples rather than the mean
square LOO error. An analytic formula for LOO misclassification rate is derived
based on the regularised orthogonal least squares (ROLS) parameter estimates
[13]. Furthermore it is shown that the orthogonalisation procedure brings the
advantage of calculating the LOO misclassification rate via a set of forward re-
cursive updating formula at minimal computational expense. A fast two-class
kernel classifier construction algorithm is presented using this OFS procedure
by directly minimising the LOO misclassification rate to optimise the model
generalisation. Numerical examples are used to demonstrate the effectiveness of
the proposed approach, in comparison with other current kernel based classifiers.

2 Two-Class Kernel Classifier

Consider the problem of training a two-class classifier f(x) : �n → {1, −1} based
on a training data set DN = {x(i), y(i)}N

i=1, where y(i) ∈ {1, −1} denotes the
class type for each data sample x(i) ∈ �n. We adopt the linear-in-the-parameters
classifier given by

ŷ(i) = sgn(f(i)) with f(i) =
L∑

j=1

θjpj(x(i)) (1)

where ŷ(i) is the estimated class label for x(i), pj(•) denotes the classifier kernels
with a known nonlinear basis function, θj are the classifier’s coefficients and L
is the number of kernels. The Gaussian kernel function
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pj(x) = e−
‖x−cj‖2

2σ2 (2)

is employed in this study, where cj ∈ �n is the jth kernel centre and σ2 the
kernel variance. Other kernel functions can obviously be used here.

Define ξ(i) = y(i) − f(i) as the modelling residual sequence. Then the model
(1) over the training data set DN can be written in vector form as

y = Pθ + Ξ (3)

where Ξ = [ξ(1) · · · ξ(N)]T , θ = [θ1 · · · θL]T , and P = [p1 · · ·pL] ∈ �N×L is the
regression matrix with column vectors pj = [pj(x(1)) · · · pj(x(N))]T . Denote
the row vectors in P as pT (i) = [p1(i) · · · pL(i)], 1 ≤ i ≤ N . Geometrically a
parameter vector θ defines a hyperplane by

L∑

j=1

θjpj(x) = 0 (4)

which divides the data into two classes.
Let an orthogonal decomposition of P be P = WA, where A = {aij} is an

L × L unit upper triangular matrix and W is an N × L matrix with orthogonal
columns that satisfy

WT W = diag{κ1, · · · , κL} (5)

with
κj = wT

j wj , 1 ≤ j ≤ L (6)

where wj is the jth column vector of W. The row vectors of W are denoted
as wT (i) = [w1(i) · · · wL(i)], 1 ≤ i ≤ N . The model (3) can alternatively be
expressed as

y = (PA−1)(Aθ) + Ξ = Wγ + Ξ (7)

in which γ = [γ1 · · · γL]T is an auxiliary weight vector, for which the ROLS
parameter estimates are [13]

γj =
wT

j y
κj + λj

, 1 ≤ j ≤ L (8)

where λj are small positive regularisation parameters. If all λj are set to zero,
the parameter estimator is the usual least squares estimator. The original model
coefficient vector θ can be calculated from Aθ = γ through back-substitution.

The regularisation parameters λj can be optimised iteratively using an evi-
dence procedure [14,3,13]. The following updating formula quoted from [13] are
used to determine the regularisation parameters.

λnew
j =

ρnew
j

N − ρold

ΞT Ξ

N − γ2
j

, 1 ≤ j ≤ L (9)

where

ρj =
wT

j wj

λj + wT
j wj

and ρ =
L∑

j=1

ρj . (10)
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3 Leave-One-Out Misclassification Rate

The misclassification rate for a given two-class classifier based on (1) can be
evaluated based on the misclassified data examples as

J =
1
N

N∑

i=1

Id[y(i)f(i)] (11)

where Id[•] denotes the misclassification indication function and is defined as

Id[v] =
{

1 if v < 0,
0 if v ≥ 0.

(12)

Cross validation criteria are metrics that measures a model’s generalisation
capability [10]. One commonly used version of cross-validation is the so-called
LOO cross-validation. The idea is as follows. For any predictor, each data point in
the estimation data set DN is sequentially set aside in turn, a model is estimated
using the remaining (N − 1) data, and the prediction error is derived for the
data point that was removed from training. By excluding the ith data example
in estimation data set, the output of the model for the ith data example using
a model estimated by using remaining (N − 1) data examples is denoted as
f (−i)(i). The associated predicted class label is calculated by

ŷ(−i)(i) = sgn(f (−i)(i)). (13)

It is highly desirable to derive a classifier with good generalisation capability,
i.e. to derive a classifier with a minimal misclassification error rate over a new
data set that is not used in model estimation. The LOO cross validation is often
used to estimate generalisation error for choosing among different models [10].
The LOO misclassification rate is computed by

J (−) =
1
N

N∑

i=1

Id[y(i)f (−i)(i)] =
1
N

N∑

i=1

Id[g(i)] (14)

where g(i) = y(i)f (−i)(i). If g(i) < 0, this means that the ith data sample is
misclassified, as the class label produced by the model f (−i) is different from the
actual class label y(i).

Instead of directly calculating (13) for the predicted class labels, which re-
quires extensive computational effort, it is shown in the following that the LOO
misclassification rate can be evaluated without actually sequentially splitting the
estimation data set.

4 The Proposed Fast Classifier Construction Algorithm

We propose a fast OFS kernel classifier construction algorithm that directly
minimises the LOO misclassification rate (F-OFS-LOO). The LOO modelling
residual is given by

ξ(−i)(i) = y(i) − f (−i)(i). (15)
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It has been shown that the LOO model residuals can be derived using an al-
gebraic operation rather than actually splitting the training data set based on
the Sherman-Morrison-Woodbury theorem [15]. For models evaluated using the
ROLS parameter estimates, it can be shown that the LOO model residuals are
given by [13]

ξ(−i)(i) =
ξ(i)

1 − w(i)T [WT W + Λ]−1w(i)

=
y(i) − f(i)

1 −
∑L

j=1
w2

j (i)
κj+λj

(16)

where Λ = diag{λ1, · · · , λL}. Hence

y(i) − f (−i)(i) =
y(i) − f(i)

1 −
∑L

j=1
w2

j (i)
κj+λj

. (17)

Multiplying the both sides of (17) with y(i) and applying y2(i) = 1, ∀i, yields

1 − y(i)f (−i)(i) =
1 − f(i)y(i)

1 −
∑L

j=1
w2

j (i)
κj+λj

. (18)

Thus

y(i)f (−i)(i) =

∑L
j=1 γjwj(i)y(i) −

∑L
j=1

w2
j (i)

κj+λj

1 −
∑L

j=1
w2

j (i)
κj+λj

. (19)

In the following it is shown that computational expense associated with clas-
sifier regressors determination can be significantly reduced by utilising the OFS
process via a recursive formula. In the OFS process, the model size is configured
as a growing variable k. Consider the model construction by using a subset of k
regressors (k � L), that is, a subset selected from the full model set consisting
of the L initial regressors (given by (3)) to approximate the system. By replacing
L with a variable model size k, and y(i)f (−i)(i) with gk(i), (19) is represented by

gk(i) =

∑k
j=1 γjwj(i)y(i) −

∑k
j=1

w2
j (i)

κj+λj

1 −
∑k

j=1
w2

j (i)
κj+λj

=
αk(i)
βk(i)

(20)

where αk(i) and βk(i) can be represented using the following recursive formula,
respectively

αk(i) =
k∑

j=1

γjwj(i)y(i) −
k∑

j=1

w2
j (i)

κj + λj

= αk−1(i) + γkwk(i)y(i) − w2
k(i)

κk + λj
, (21)
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βk(i) = 1 −
k∑

j=1

w2
j (i)

κj + λj
= βk−1(i) − w2

k(i)
κk + λj

. (22)

Thus the LOO misclassification rate for a new model with the size increased
from (k − 1) to k is calculated by

J
(−)
k =

1
N

N∑

i=1

Id[gk(i)]. (23)

This is advantageous in that, for a new model whose size is increased from (k−1)
to k, we only need to adjust both the numerator αk(i) and the denominator βk(i)
based on those of the model size (k − 1), with a minimal computational effort.
The Gram-Schmidt procedure is used to construct the orthogonal basis wk in an
OFS manner [12,13]. At the kth regression step the regressor that results in the
minimum LOO misclassification rate J

(−)
k is selected. The detailed algorithm is

summarised as follows.
F-OFS-LOO based on Gram-Schmidt orthogonalisation:

1. Initialise α0(i) = 0 and β0(i) = 1 for 1 ≤ i ≤ N . Set regularisation parame-
ters λj to a very small positive value λ.

2. At the kth step where k ≥ 1, for 1 ≤ l ≤ L, l 	= l1, · · ·, l 	= lk−1, compute

a
(l)
jk =

{
wT

j pl

wT
j wj

, 1 ≤ j < k,

1, j = k,

w(l)
k =

{
pl, k = 1,

pl −
∑k−1

j=1 a
(l)
jkwj , k ≥ 2,

κ
(l)
k = (w(l)

k )T w(l)
k ,

γ
(l)
k =

(w(l)
k )T y

κ
(l)
k + λ

,

α
(l)
k (i) = αk−1(i) + γ

(l)
k w

(l)
k (i)y(i) − [w(l)

k (i)]2

κ
(l)
k + λ

,

β
(l)
k (i) = βk−1(i) − [w(l)

k (i)]2

κ
(l)
k + λ

,

g
(l)
k (i) =

α
(l)
k (i)

β
(l)
k (i)

,

for 1 ≤ i ≤ N , and

J
(−, l)
k =

1
N

N∑

i=1

Id[g(l)
k (i)].
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Find
lk = arg[min{J

(−, l)
k , 1 ≤ l ≤ L, l 	= l1, · · · , l 	= lk−1}]

and select J
(−)
k = J

(−,lk)
k , ajk = a

(lk)
jk for 1 ≤ j ≤ k, αk(i) = α

(lk)
k (i) and

βk(i) = β
(lk)
k (i) for 1 ≤ i ≤ N , and

wk = w(lk)
k =

{
plk , k = 1,

plk −
∑k−1

j=1 ajkwj , k ≥ 2.

3. The procedure is monitored and terminated at the k = nθ step, when J
(−)
k ≥

J
(−)
k−1. Otherwise, set k = k + 1, and go to step 2.

The above procedure derives a model with nθ � L regressors. Finally with a
predetermined number of iterations, the procedure as given in (9) and (10) (with
L replaced by nθ) is applied to optimise the regularisation parameters that are
used in the final model.

The computational complexity in the above F-OFS-LOO algorithm is in the
order of O(NL). The actual computation cost varies with the final model size,
and the smaller the derived model size nθ, the smaller the computation expense.
When N is very large, e.g. over several thousands, a reduced subset of data points
can be used as the kernel centres so that L � N to control the computational
complexity. Note that the proposed procedure for regularisation parameter op-
timisation is operated based on nθ � L selected regressors, hence the additional
computation cost involved in regularisation parameter optimisation is very small
at the level O(Nnθ).

5 Illustrative Examples

Experiments were performed to compare the proposed F-OFS-LOO algorithm
with several existing classification algorithms as published in [16]. Three data
sets investigated were Breast Cancer, Diabetes and Heart, which are available
from [17]. Each data set contains 100 realizations of training and test data sets,
respectively. Kernel classifiers were constructed over 100 training data sets and
generalisation performance was evaluated using the average misclassification rate
of the corresponding classifiers over the 100 test data sets. The Gaussian kernel
function was employed in the experiments. Values of σ2 were predetermined to
derive individual models for each realization. For each realization of all three
data sets, the full training data sets were used as the RBF centres to form
the candidate regressor sets. The performance are summarised in Tables 1 to
3, respectively. The results have clearly shown that the proposed approach can
construct parsimonious classifiers with competitive classification accuracy for
these data sets.

6 Conclusions

Based upon the idea of using the orthogonal forward selection procedure to
optimise model generalisation, a computationally efficient algorithm has been
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Table 1. Average misclassification rate in % over 100 realizations of Breast Cancer
test data set and classifier size. The results of first 6 methods are quoted from [16,17].

Misclassification rate Model Size
RBF 27.6 ± 4.7 5
Adaboost with RBF 30.4 ± 4.7 5
AdaBoostReg 26.5 ± 4.5 5
LPReg-AdaBoost 26.8 ± 6.1 5
QPReg-AdaBoost 25.9 ± 4.6 5
SVM with RBF kernel 26.0 ± 4.7 not available
Proposed F-OFS-LOO 25.74 ± 5 6 ± 2

Table 2. Average misclassification rate in % over 100 realizations of Diabetes test data
set and classifier size. The results of first 6 methods are quoted from [16,17].

Misclassification rate Model Size
RBF 24.3 ± 1.9 15
Adaboost with RBF 26.5 ± 2.3 15
AdaBoostReg 23.8 ± 1.8 15
LPReg-AdaBoost 24.1 ± 1.9 15
QPReg-AdaBoost 25.4 ± 2.2 15
SVM with RBF kernel 23.5 ± 1.7 not available
Proposed F-OFS-LOO 23.0 ± 1.7 6 ± 1

Table 3. Average misclassification rate in % over 100 realizations of Heart test data
set and classifier size. The results of first 6 methods are quoted from [16,17].

Misclassification rate Model Size
RBF 17.6 ± 3.3 4
Adaboost with RBF 20.3 ± 3.4 4
AdaBoostReg 16.5 ± 3.5 4
LPReg-AdaBoost 17.5 ± 3.5 4
QPReg-AdaBoost 17.2 ± 3.4 4
SVM with RBF kernel 16.0 ± 3.3 not available
Proposed F-OFS-LOO 15.8 ± 3.7 10 ± 3

introduced to construct sparse two-class kernel classifiers by directly minimising
the leave-one-out misclassification rate. The contribution includes developing a
set of forward recursive updating formula of the LOO misclassification rate in
the proposed algorithm. Experimental results on three benchmark examples are
used to demonstrate the effectiveness of the proposed approach.
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