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Abstract. An orthogonal forward selection (OFS) algorithm based on the leave-
one-out (LOO) criterion is proposed for the construction of radial basis function
(RBF) networks with tunable nodes. This OFS-LOO algorithm is computation-
ally efficient and is capable of identifying parsimonious RBF networks that gen-
eralise well. Moreover, the proposed algorithm is fully automatic and the user
does not need to specify a termination criterion for the construction process.

1 Introduction

The radial basis function (RBF) network is a popular artificial neural network structure
that has found wide applications in machine learning and engineering. The parameters
of the RBF network include its centre vectors and variances of the basis functions as
well as the weights that connect the RBF nodes to its output node. The parameters
of a RBF network can be learned via nonlinear optimisation using the gradient based
algorithm [1], the evolutionary algorithm [2] or the E-M algorithm [3]. Such a nonlinear
learning approach is computationally expensive and may encounter the local minima
problem. Additionally, the network structure or the number of RBF nodes has to be
determined via other means. Alternatively, clustering algorithms can be applied to find
the RBF centre vectors as well as the associated basis function variances [4]-[6]. This
leaves the RBF weights to be determined by the usual linear least squares solution.
Again, the number of the clusters has to be determined via other means, such as cross
validation.

A popular approach for constructing RBF networks is to formulate the problem as
a linear learning one by considering the training input data points as candidate RBF
centres and employing a common variance for every RBF node. A parsimonious RBF
network is then identified using the efficient orthogonal least squares (OLS) algorithm
[7]-[10]. Similarly, the support vector machine (SVM) and other sparse kernel mod-
elling methods [11]-[17] also fit the kernel centres to the training input data points
and adopt a common variance for every kernels. A sparse kernel representation is then
sought. Since the common variance is not provided by the learning algorithm, it has
to be determined via cross validation. In a recent work [10], a locally regularised OLS
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(LROLS) algorithm based on the leave-one-out (LOO) mean square error criterion has
been proposed, which compares favourably with other existing state-of-the-art sparse
kernel modelling methods, in terms of model sparisty and generalisation performance.

This paper proposes an efficient construction algorithm for the RBF network with
tunable nodes. In this approach, each RBF node has a tunable centre vector and a tun-
able diagonal covariance matrix, and an orthogonal forward selection (OFS) procedure
is adopted to append the RBF nodes one by one by incrementally minimising the LOO
criterion. Because the RBF centres are not restricted to the training input points and
each node has an individually adjusted covariance matrix, the proposed OFS-LOO al-
gorithm can produce sparser representations with excellent generalisation capability, in
comparison with the existing sparse RBF or kernel modelling methods. Efficiency of
the proposed algorithm is ensured because of the orthogonalisation procedure. Further-
more, the construction process is fully automatic and there is no need for the user to
specify any additional termination criterion.

2 Construction of the RBF Network with Tunable Nodes

Consider the regression modelling problem of approximating the N pairs of training
data, {(xk, yk)}N

k=1, with the RBF network defined in

yk = ŷk + ek =
M∑

i=1

wigi(xk) + ek = gT (k)w + ek (1)

where xk ∈ Rm, ŷk denotes the RBF model output, ek = yk−ŷk is the modelling error,
M is the number of RBF nodes, w = [w1 w2 · · · wM ]T is the RBF weight vector, gi(•)
for 1 ≤ i ≤ M denote the RBF regressors, and g(k) = [g1(xk) g2(xk) · · · gM (xk)]T .
We will consider the general RBF regressor of the form

gi(x) = K

(√
(x − µi)

T
Σ−1

i (x − µi)
)

(2)

where µi is the centre vector of the ith RBF unit, the diagonal covariance matrix has
the form Σi = diag{σ2

i,1, · · · , σ2
i,m}, and K(•) is the chosen RBF or kernel function.

By defining y = [y1 y2 · · · yN ]T , e = [e1 e2 · · · eN ]T , and G = [g1 g2 · · ·gM ] with

gk = [gk(x1) gk(x2) · · · gk(xN )]T , 1 ≤ k ≤ M (3)

the regression model (1) over the training data set can be written in the matrix form

y = Gw + e (4)

Note that gk denotes the kth column of G while gT (k) is the kth row of G.
Let an orthogonal decomposition of the regression matrix G be G = PA, where

A is the upper triangular matrix with unity diagonal elements and P = [p1 p2 · · ·pM ]
with the orthogonal columns that satisfy pT

i pj = 0, if i �= j. The regression model (4)
can alternatively be expressed as

y = Pθ + e (5)
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where the weight vector θ = [θ1 θ2 · · · θM ]T in the orthogonal model space satisfies
the triangular system Aw = θ. Since the space spanned by the original model bases
gi(•), 1 ≤ i ≤ M , is identical to the space spanned by the orthogonal model bases, the
RBF model output is equivalently expressed by

ŷk = pT (k)θ (6)

where pT (k) = [p1(k) p2(k) · · · pM (k)] is the kth row of P.

2.1 Orthogonal Forward Selection Based on the Leave-One-Out Criterion

The LOO mean square error is a measure of the model generalisation capability [10].
For the n-term RBF model, the LOO criterion is defined as

Jn =
1
N

N∑

i=1

(
e
(n,−i)
i

)2
=

1
N

N∑

i=1

(
e
(n)
i

η
(n)
i

)2

(7)

where e
(n,−i)
i denotes the LOO modelling error of the n-term model, e

(n)
i the usual

n-term modelling error, and η
(n)
i the LOO modelling error weighting. Note that e

(n)
k

and η
(n)
k can be computed recursively using

e
(n)
k = yk −

n∑

i=1

θipi(k) = e
(n−1)
k − θnpn(k) (8)

and

η
(n)
k = 1 −

n∑

i=1

p2
i (k)

pT
i pi + λ

= η
(n−1)
k − p2

n(k)
pT

npn + λ
(9)

respectively, where λ ≥ 0 is a small regularisation parameter. Therefore, the computa-
tion of the LOO criterion Jn is very efficient.

The proposed OFS-LOO algorithm appends the RBF nodes one by one by incre-
mentally minimising the LOO criterion Jn. Specifically, at the nth stage of the con-
struction procedure, the nth RBF node is determined by minimising Jn with respect to
the node’s centre vector µn and diagonal covariance matrix Σn

min
µn,Σn

Jn (µn, Σn) (10)

The construction procedure is automatically terminated if JM ≤ JM+1, yielding an M -
term RBF network. Note that the LOO criterion Jn is at least locally convex and such
an M exists [10]. After the OFS-LOO model construction, the LROLS-LOO algorithm
of [10] can be applied to further reduce the model size and to automatically update
regularisation parameters. Note that the refinement involving the LROLS-LOO requires
a minimal computation, as the selected model size M is typically very small.
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2.2 Positioning and Shaping a RBF Node

The task at the nth stage of the model construction is to position and shape the nth
RBF node by solving the optimisation problem (10). Since this optimisation problem is
non-convex, a gradient-based algorithm may become trapped at a local minimum. We
adopt a global search algorithm called the repeated weighted boosting search (RWBS)
[18] to determine µn and Σn. The algorithm is summarised as follows. Let u be the
vector that contains µn and Σn. Give the following initial conditions:

e
(0)
k = yk and η

(0)
k = 1, 1 ≤ k ≤ N, and J0 =

1
N

yT y =
1
N

N∑

k=1

y2
k (11)

Specify the following algorithmic parameters: PS – population size, NG – number of
generations in the repeated search, and ξB – accuracy for terminating the weighted
boosting search.

Outer loop: generations For l = 1 : NG

Generation initialisation: Initialise the population by setting u[l]
1 = u[l−1]

best and ran-

domly generating rest of the population members u[l]
i , 2 ≤ i ≤ PS , where u[l−1]

best

denotes the solution found in the previous generation. If l = 1, u[l]
1 is also randomly

chosen.
Weighted boosting search initialisation: Assign the initial distribution weightings
δi(0) = 1

PS
, 1 ≤ i ≤ PS , for the population. Then

1. For 1 ≤ i ≤ PS , generate gi)
n from u[l]

i , the candidates for the nth model
column, and orthogonalise them:

α
i)
j,n =

pT
j gi)

n

pT
j pj

, 1 ≤ j < n (12)

pi)
n = gi)

n −
n−1∑

j=1

α
i)
j,npj (13)

θi)
n =

(
pi)

n

)T

y
(
pi)

n

)T

pi)
n + λ

(14)

2. For 1 ≤ i ≤ PS , calculate the LOO cost function value of each u[l]
i :

e
(n)
k (i) = e

(n−1)
k − pi)

n (k)θi)
n , 1 ≤ k ≤ N (15)

η
(n)
k (i) = η

(n−1)
k −

(
p

i)
n (k)

)2

(
pi)

n

)T

pi)
n + λ

, 1 ≤ k ≤ N (16)

J i)
n =

1
N

N∑

k=1

(
e
(n)
k (i)

η
(n)
k (i)

)2

(17)

where p
i)
n (k) is the kth element of pi)

n .
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Inner loop: weighted boosting search t = 0; t = t + 1
Step 1: Boosting
1. Find

ibest = arg min
1≤i≤PS

J i)
n and iworst = arg max

1≤i≤PS

J i)
n

Denote u[l]
best = u[l]

ibest
and u[l]

worst = u[l]
iworst

.
2. Normalise the cost function values

J̄ i)
n =

J
i)
n

∑PS

m=1 J
m)
n

, 1 ≤ i ≤ PS

3. Compute a weighting factor βt according to

ξt =
PS∑

i=1

δi(t − 1)J̄ i)
n , βt =

ξt

1 − ξt

4. Update the distribution weightings for 1 ≤ i ≤ PS

δi(t) =

{
δi(t − 1)βJ̄i)

n
t , for βt ≤ 1

δi(t − 1)β1−J̄i)
n

t , for βt > 1

and normalise them

δi(t) =
δi(t)∑PS

m=1 δm(t)
, 1 ≤ i ≤ PS

Step 2: Parameter updating
1. Construct the (PS + 1)th point using the formula

uPS+1 =
PS∑

i=1

δi(t)u
[l]
i

2. Construct the (PS + 2)th point using the formula

uPS+2 = u[l]
best +

(
u[l]

best − uPS+1

)

3. Calculate gPS+1)
n and gPS+2)

n from uPS+1 and uPS+2, orthogonalise these two
candidate model columns (as in (12) to (14)), and compute their corresponding
LOO cost function values J

i)
n , i = PS + 1, PS + 2 (as in (15) to (17)). Then

find
i∗ = arg min

i=PS+1,PS+2
J i)

n

The pair (ui∗ , J
i∗)
n ) then replaces (u[l]

worst, J
iworst)
n ) in the population

If ‖uPS+1 − uPS+2‖ < ξB , exit inner loop.
End of inner loop

The solution found in the lth generation is u = u[l]
best.
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End of outer loop
This yields the solution u = u[NG]

best , i.e. µn and Σn of the nth RBF node, the
nth model column gn, the orthogonalisation coefficients αj,n, 1 ≤ j < n, the
corresponding orthogonal model column pn, and the weight θn, as well as the n-
term modelling errors e

(n)
k and associated LOO modelling error weightings η

(n)
k

for 1 ≤ k ≤ N .

3 Modelling Examples

Example 1. The engine data set [19] was used to demonstrate the effectiveness of
the proposed OFS-LOO algorithm. The data were collected from a Leyland TL11 tur-
bocharged, direct injection diesel engine operated at low engine speed, where the input
u(t) was the fuel rack position and the output y(t) was the engine speed. The input-
output data set, depicted in Fig. 1, contained 410 samples. The first 210 data points
were used in training and the last 200 points in model validation. The previous study
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Fig. 1. The engine data set: (a) input u(t) and (b) output y(t)
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Fig. 2. The LOO mean square error as a function of the model size for the engine data set
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Table 1. Comparison of the three models obtained by the SVM, LROLS-LOO and OFS-LOO
algorithms for the engine data set

algorithm RBF type model size MSE over training set MSE over test set
SVM fixed Gaussian 92 0.000447 0.000498

LROLS-LOO fixed Gaussian 22 0.000453 0.000490
OFS-LOO tunable Gaussian 15 0.000466 0.000480
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Fig. 3. Modelling performance for the engine data set by the 15-node RBF network constructed
by the OFS-LOO algorithm: (a) the model output ŷk superimposed on the system output yk, and
(b) the modelling error ek = yk − ŷk

[9],[10] has shown that this data set can be modelled adequately as yi = fs(xi) + ei

with yi = y(i), xi = [y(i− 1) u(i− 1) u(i− 2)]T , where fs(•) describes the unknown
underlying system to be identified and ei denotes the system noise.

In the work [10], various state-of-the-art RBF and kernel modelling techniques were
applied to construct Gaussian RBF network models for this data set, and the LROLS-
LOO algorithm produced the best result. We applied the proposed OFS-LOO technique
to this data set. Fig. 2 depicts the LOO mean square error (MSE) as a function of
the model size during the modelling process using the OFS-LOO. It can be seen that
the algorithm automatically constructed a 17-term RBF model, since J18 > J17. The
LROLS-LOO algorithm was then employed to further simplify this obtained model,
yielding a final 15-term RBF network. This 15-term model is compared with the model
quoted from [10], which was obtained purely by the LROLS-LOO method, in Table 1.
As a comparison, the model obtained by the SVM algorithm is also listed in Table 1.
Fig. 3 illustrates the modelling performance of the 15-node RBF network constructed
by the OFS-LOO algorithm.

Example 2. This example constructed a model for the gas furnace data set (Series J
in [20]). The data set, depicted in Fig. 4, contained 296 pairs of input-output points.
The input uk was the coded input gas feed rate and the output yk represented CO2
concentration from the gas furnace. All the 296 data points were used in training, and
the input vector was defined as xk = [yk−1 yk−2 yk−3 uk−1 uk−2 uk−3]T . In the
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Fig. 4. The gas furnace data set: (a) input u(t) and (b) output y(t)

Table 2. Comparison of the three models obtained by the SVM, LROLS-LOO and OFS-LOO
algorithms for the gas furnace data set

algorithm RBF type model size training MSE LOO MSE
SVM fixed Gaussian 62 0.052416 0.054376

LROLS-LOO fixed thin-plate-spline 28 0.053306 0.053685
OFS-LOO tunable Gaussian 15 0.054306 0.054306
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Fig. 5. The LOO mean square error as a function of the model size for the gas furnace data set

study [10], several existing RBF modelling techniques were applied to this data set
using the thin-plate-spline basis functions defined by

K(‖x − xi‖) = ‖x − xi‖2 log (‖x − xi‖) , 1 ≤ i ≤ N, (18)

and the best result was obtained by the LROLS-LOO algorithm. The RBF network
constructed by the LROLS-LOO algorithm is given in Table 2, where the LOO MSE
was used to indicate the model generalization performance since there was no test data
set. We also applied the SVM algorithm to fit a RBF network with the Gaussian basis
function to this data set and the resulting model is also listed in Table 2.
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Fig. 6. Modelling performance for the gas furnace data set by the 15-node RBF network con-
structed by the OFS-LOO algorithm: (a) the model output ŷk superimposed on the system output
yk, and (b) the modelling error ek = yk − ŷk

We applied the proposed OFS-LOO technique to this data set. Fig. 5 depicts the
LOO MSE as a function of the model size during the modelling process using the OFS-
LOO. It can be seen that the algorithm automatically constructed a 16-term RBF model,
since J17 ≥ J16. The LROLS-LOO algorithm was then employed to further simplify
this obtained model, yielding a final 15-term RBF network. This 15-term model is
compared with the two models obtained by the SVM and LROLS-LOO algorithms,
in Table 2. Fig. 6 illustrates the modelling performance of this 15-node RBF network
constructed by the OFS-LOO algorithm.

4 Conclusions

A novel construction algorithm has been proposed for RBF networks with tunable
nodes. Unlike most of the sparse RBF or kernel modelling methods, the RBF centres
are not restricted to the training input data points and each node has an individually ad-
justed diagonal covariance matrix. The proposed OFS-LOO method appends the RBF
nodes one by one by incrementally minimising the LOO mean square error. This con-
struction process is computationally efficient due to the orthogonalisation procedure
employed. Moreover, the model construction is fully automatic and the user does not
need to specify a termination criterion.
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