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Abstract. This paper investigates a global search optimisation technique, re-
ferred to as the repeated weighted boosting search. The proposed optimisation
algorithm is extremely simple and easy to implement. Heuristic explanation is
given for the global search capability of this technique. Comparison is made with
the two better known and widely used global search techniques, known as the
genetic algorithm and adaptive simulated annealing. The effectiveness of the pro-
posed algorithm as a global optimiser is investigated through several examples.

1 Introduction

Evolutionary and natural computation has always provided inspirations for global
search optimisation techniques. Indeed, two of the best-known global optimisation algo-
rithms are the genetic algorithm (GA) [1]-[3] and adaptive simulated annealing (ASA)
[4]-[6]. The GA and ASA belong to a class of guided random search methods. The un-
derlying mechanisms for guiding optimisation search process are, however, very differ-
ent for the two methods. The GA is population based, and evolves a solution population
according to the principles of the evolution of species in nature. The ASA by contrast
evolves a single solution in the parameter space with certain guiding principles that
imitate the random behaviour of molecules during the annealing process. It adopts a re-
annealing scheme to speed up the search process and to make the optimisation process
robust.

We experiment with a guided random search algorithm, which we refer to as the
repeated weighted boosting search (RWBS). This algorithm is remarkably simple, re-
quiring a minimum software programming effort and algorithmic tuning, in compari-
son with the GA or ASA. The basic process evolves a population of initially randomly
chosen solutions by performing a convex combination of the potential solutions and
replacing the worst member of the population with it until the process converges. The
weightings used in the convex combination are adapted to reflect the “goodness” of
corresponding potential solutions using the idea from boosting [7]-[9]. The process is
repeated a number of “generations” to improve the probability of finding a global op-
timal solution. An elitist strategy is adopted by retaining the best solution found in the
current generation in the initial population of the next generation. Several examples are
included to demonstrate the effectiveness of this RWBS algorithm as a global optimi-
sation tool and to compare it with the GA and ASA in terms of convergence speed.
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The generic optimisation problem considered is defined by

min
u∈U

J(u) (1)

where u = [u1 · · · un]T is the n-dimensional parameter vector to be optimised, and U
defines the feasible set. The cost function J(u) can be multimodal and nonsmooth.

2 The Proposed Guided Random Search Method

A simple and effective strategy for forming a global optimiser is called the multistart
[10]. A local optimiser is first defined. By repeating the local optimiser multiple times
with some random sampling initialisation, a global search algorithm is formed. We
adopt this strategy in deriving the RWBS algorithm.

2.1 Weighted Boosting Search as a Local Optimiser

Consider a population of PS points, ui ∈ U for 1 ≤ i ≤ PS . Let ubest = arg minJ(u)
and uworst = arg maxJ(u), where u ∈ {ui, 1 ≤ i ≤ PS}. Now a (PS + 1)th point
is generated by performing a convex combination of ui, 1 ≤ i ≤ PS , as

uPS+1 =
PS∑

i=1

δiui (2)

where the weightings satisfy δi ≥ 0 and
∑PS

i=1 δi = 1. The point uPS+1 is always
within the convex hull defined by ui, 1 ≤ i ≤ PS . A mirror image of uPS+1 is then
generated with respect to ubest and along the direction defined by ubest − uPS+1 as

uPS+2 = ubest + (ubest − uPS+1) (3)

According to their cost function values, the best of uPS+1 and uPS+2 then replaces
uworst. The process is iterated until the population converges. The convergence is as-
sumed if ‖uPS+1 − uPS+2‖ < ξB , where the small ξB > 0 defines search accuracy.

The weightings δi, 1 ≤ i ≤ PS , should reflect the “goodness” of ui, and the process
should be capable of self-learning these weightings. We modify the AdaBoost algorithm
[8] to adapt the weightings δi, 1 ≤ i ≤ PS . Let t denote the iteration index, and give
the initial weightings δi(0) = 1

PS
, 1 ≤ i ≤ PS . Further denote Ji = J(ui) and

J̄i = Ji/
∑PS

j=1 Jj , 1 ≤ i ≤ PS . Then the weightings are updated according to

δ̃i(t) =

{
δi(t − 1)βJ̄i

t , for βt ≤ 1
δi(t − 1)β1−J̄i

t , for βt > 1
(4)

δi(t) =
δ̃i(t)∑PS

j=1 δ̃j(t)
, 1 ≤ i ≤ PS (5)

where

βt =
ηt

1 − ηt
, ηt =

PS∑

i=1

δi(t − 1)J̄i (6)
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The weighted boosting search (WBS) is a local optimiser that finds an optimal so-
lution within the convex region defined by the initial population. This capability can be
explained heuristically using the theory of weak learnability [7],[8]. The members of
the population ui, 1 ≤ i ≤ PS , can be seen to be produced by a “weak learner”, as they
are generated “cheaply” and do not guarantee certain optimal property. Schapire [7]
showed that any weak learning procedure can be efficiently transformed (boosted) into
a strong learning procedure with certain optimal property. In our case, this optimal
property is the ability of finding an optimal point within the defined search region.

2.2 Repeated Weighted Boosting Search as a Global Optimiser

The WBS is a local optimiser, as the solution obtained depends on the initial choice of
population. We “convert” it to a global search algorithm by repeating it NG times or
“generations” with a random sampling initialization equipping with an elitist mecha-
nism. The resulting global optimiser, the RWBS algorithm, is summarised as follows.

• Loop: generations For g = 1 : NG

– Initialise the population by setting u(g)
1 = u(g−1)

best and randomly generating rest

of the population members u(g)
i , 2 ≤ i ≤ PS , where u(g−1)

best denotes the solution

found in the previous generation. If g = 1, u(g)
1 is also randomly chosen

– Call the WBS to find a solution u(g)
best

• End of generation loop

The appropriate values for PS , NG and ξB depends on the dimension of u and
how hard the objective function to be optimised. Generally, these algorithmic param-
eters have to be found empirically, just as in any other global search algorithm. The
elitist initialisation is useful, as it keeps the information obtained by the previous search
generation, which otherwise would be lost due to the randomly sampling initialisation.
Note that for the iterative procedure of the WBS, there is no need for every members
of the population to converge to a (local) minimum, and it is sufficient to locate where
the minimum lies. Thus, ξB can be set to a relatively large value. This makes the search
efficient, achieving convergence with a small number of the cost function evaluations.
It should be obvious, although the formal proof is still required, that with sufficient
number of generations, the algorithm will guarantee to find a global optimal solution,
since the parameter space will be searched sufficiently. In a variety of optimisation ap-
plications, we have found that the RWBS is efficient in finding global optimal solutions
and achieve a similar convergence speed as the GA and ASA, in terms of the required
total number of the cost function evaluations. The RWBS algorithm has additional ad-
vantage of being very simple, needing a minimum programming effort and having few
algorithmic parameters that require tuning, in comparison with the GA and ASA.

3 Optimisation Applications

Example 1. The cost function to be optimised is depicted in Fig. 1 (a). Uniformly
random sampling in [−8, 8] was adopted for population initialisation. With PS = 4,
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Fig. 1. One-dimensional multimodal function minimisation using the RWBS: (a) cost function,
where number 100 beside the point in the graph indicates convergence to the global minimum in
all the 100 experiments, and (b) convergence performance averaged over 100 experiments.

ξB = 0.02 as well as NG > 6, the RWBS algorithm consistently converged to the
global minimum point at u = −1 in all the 100 experiments conducted, as can be
seen from the convergence performance shown in Fig. 1 (b). The averaged number of
cost function evaluations required for the algorithm to converge to the global optimal
solution is around 100, which is consistent with what can be achieved using GA and
ASA for this type of one-dimensional optimisation.

Example 2. The IIR filter with transfer function HM (z) was used to identify the system
with transfer function HS(z) by minimising the mean square error (MSE) J(u), where

HS(z) =
0.05 − 0.4z−1

1 − 1.1314z−1 + 0.25z−2 , HM (z) =
a0

1 + b1z−1 (7)

and u = [a0 b1]T . When the system input is white and the noise is absent, the MSE
cost function has a global minimum at uglobal = [−0.311 − 0.906]T with the value of
the normalised MSE 0.2772 and a local minimum at ulocal = [0.114 0.519]T with the
normalised MSE value 0.9762 [11]. In the population initialisation, the parameters were
uniformly randomly chosen as (a0, b1) ∈ (−1.0, 1.0)×(−0.999, 0.999). It was found
empirically that PS = 4, ξB = 0.05 NG > 15 were appropriate, and Fig. 2 (a) depicts
convergence performance of the RWBS algorithm averaged over 100 experiments. The
previous study [6] applied the ASA to this example. The result of using the ASA is
reproduced in Fig. 2 (b) for comparison. The distribution of the solutions obtained in
100 experiments by the RWBS algorithm is shown in Fig. 3.

Example 3. For this 2nd-order IIR filter design, the system and filter transfer functions
are given by

HS(z) =
−0.3 + 0.4z−1 − 0.5z−2

1 − 1.2z−1 + 0.5z−2 − 0.1z−3 , HM (z) =
a0 + a1z

−1

1 + b1z−1 + b2z−2 (8)

respectively. In the simulation, the system input was a uniformly distributed white se-
quence, taking values from (−1, 1), and the signal to noise ratio was SNR=30 dB.
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Fig. 2. Convergence performance averaged over 100 experiments for the 1st-order IIR filter de-
sign: (a) using the RWBS, and (b) using the ASA.
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Fig. 3. Distribution of solutions (a0, b1) (small circles) obtained in 100 experiments for the 1st-
order IIR filter design by the RWBS: (a) showing the entire search space, and (b) zooming in
the global minimum, where large square indicate the global minimum and large circle the local
minimum.

The data length used in calculating the MSE cost function was 2000. The MSE for this
example was multi-modal and the gradient-based algorithm performed poorly as was
demonstrated clearly in [6]. In the actual optimisation, the lattice form of the IIR filter
was used, and the filter coefficient vector used in optimisation was u = [a0 a1 κ0 κ1]T ,
where κ0 and κ1 are the lattice-form reflection coefficients. In the population initial-
isation, the parameters were uniformly randomly chosen as ai ∈ (−1.0, 1.0) and
κi ∈ (−0.999, 0.999) for i = 0, 1. It was found out that NB = 10, ξB = 0.05
and NG > 20 were appropriate for the RWBS algorithm, and Fig. 4 (a) depicts con-
vergence performance of the RWBS algorithm averaged over 500 experiments. In [6],
convergence performance using the ASA was obtained by averaging over 100 experi-
ments, and this result is also re-plotted in Fig. 4 (b) as a comparison. The distribution
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Fig. 4. Convergence performance for the 2nd-order IIR filter design: (a) using the RWBS averaged
over 500 experiments, and (b) using the ASA averaged over 100 experiments.
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Fig. 5. Distribution of the solutions obtained in 500 experiments for the 2nd-order IIR filter design
by the RWBS: (a) showing (a0, a1) as circles and (κ0, κ1) as crosses, and (b) showing (a0, a1)
as circles, (b1, b2) as squares, and (κ0, κ1) as crosses.

of the solutions obtained in 500 experiments by the RWBS is illustrated in Fig. 5. It
is clear that for this example there are infinitely many global minima, and the global
minimum solutions for (b1, b2) form a one-dimensional space.

Example 4. Consider a blind joint maximum likelihood (ML) channel estimation and
data detection for the single-input multiple-output (SIMO) system that employs a single
transmitter antenna and L (> 1) receiver antennas. In a SIMO system, the symbol-rate
sampled antennas’ outputs xl(k), 1 ≤ l ≤ L, are given by

xl(k) =
nc−1∑

i=0

ci,ls(k − i) + nl(k) (9)
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where nl(k) is the complex-valued Gaussian white noise associated with the lth channel
and E[|nl(k)|2] = 2σ2

n, {s(k)} is the transmitted symbol sequence taking values from
the quadrature phase shift keying (QPSK) symbol set {±1± j}, and ci,l are the channel
impulse response (CIR) taps associated with the lth receive antenna. Let

x = [x1(1) x1(2) · · · x1(N) x2(1) · · · xL(1) xL(2) · · ·xL(N)]T

s = [s(−nc + 2) · · · s(0) s(1) · · · s(N)]T (10)

c = [c0,1 c1,1 · · · cnc−1,1 c0,2 · · · c0,L c1,L · · · cnc−1,L]T

be the vector of N × L received signal samples, the corresponding transmitted data se-
quence and the vector of the SIMO CIRs, respectively. The probability density function
of the received data vector x conditioned on c and s is

p(x|c, s) =
1

(2πσ2
n)NL

e
− 1

2σ2
n

∑ N
k=1

∑ L
l=1|xl(k)−∑ nc−1

i=0 ci,ls(k−i)|2
(11)

The joint ML estimate of c and s is obtained by maximising p(x|c, s) over c and s
jointly. Equivalently, the joint ML estimate is the minimum of the cost function

JML(ĉ, ŝ) =
1
N

N∑

k=1

L∑

l=1

∣∣∣∣∣xl(k) −
nc−1∑

i=0

ĉi,lŝ(k − i)

∣∣∣∣∣

2

(12)

The joint minimisation process (ĉ∗, ŝ∗) = arg [minĉ,ŝ JML(ĉ, ŝ)] can be solved itera-
tively first over the data sequences ŝ and then over all the possible channels ĉ:

(ĉ∗, ŝ∗) = arg
[
min

ĉ

(
min

ŝ
JML(ĉ, ŝ)

)]
(13)

The inner optimisation can readily be carried out using the Viterbi algorithm (VA). We
employ the RWBS algorithm to perform the outer optimisation task, and the proposed
blind joint ML optimisation scheme can be summarised as follows.

Outer level Optimisation. The RWBS searches the SIMO channel parameter space to
find a global optimal estimate ĉ∗ by minimising the MSE JMSE(ĉ) = JML(ĉ, s̃∗).

Inner level optimisation. Given the channel estimate ĉ, the VA provides the ML de-
coded data sequence s̃∗, and feeds back the corresponding value of the likelihood
metric JML(ĉ, s̃∗) to the upper level.

The SIMO CIRs, listed in Table 1, were simulated with the data length N = 50.
In practice, the value of JMSE(ĉ) is all that the upper level optimiser can see, and the
convergence of the algorithm can only be observed through this MSE. In simulation,
the performance of the algorithm can also be assessed by the mean tap error defined as

MTE = ‖c − a · ĉ‖2 (14)

where

a =
{

±1, if ĉ → ±c
∓j, if ĉ → ±jc (15)
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Table 1. The simulated SIMO system

l Channel impulse response
1 0.365-0.274j 0.730+0.183j -0.440+0.176j
2 0.278+0.238j -0.636+0.104j 0.667-0.074j
3 -0.639+0.249j -0.517-0.308j 0.365+0.183j
4 -0.154+0.693j -0.539-0.077j 0.268-0.358j
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Fig. 6. Convergence performance of blind joint ML estimation using the RWBS averaged over 50
runs: (a) MSE and (b) MTE against number of VA evaluations.
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Fig. 7. Convergence performance of blind joint ML estimation using the GA averaged over 50
runs: (a) MSE and (b) MTE against number of VA evaluations.

Note that since (ĉ∗, ŝ∗), (−ĉ∗, −ŝ∗), (−jĉ∗, +jŝ∗) and (+jĉ∗, −jŝ∗) are all the
solutions of the joint ML estimation problem, the channel estimate ĉ can converges to
c, −c, jc or −jc. Fig. 6 shows the evolutions of the MSE and MTE averaged over 50
runs and for different values of signal to noise ratio (SNR), obtained by the blind joint
ML optimisation scheme using the RWBS. From Fig. 6, it can be seen that the MSE
converged to the noise floor. We also investigated using the GA to perform the upper-
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level optimisation, and the results obtained by this GA-based blind joint ML estimation
scheme are presented in Fig. 7. It is worth pointing out that the dimension of the search
space was n = 24 for this example.

4 Conclusions

A guided random search optimisation algorithm has been proposed. The local opti-
miser in this global search method evolves a population of the potential solutions by
forming a convex combination of the solution population with boosting adaptation. A
repeating loop involving a combined elitist and random sampling initialisation strategy
is adopted to guarantee a fast global convergence. The proposed guided random search
method, referred to as the RWBS, is remarkably simple, involving minimum software
programming effort and having very few algorithmic parameters that require tuning.
The versatility of the proposed method has been demonstrated using several examples,
and the results obtained show that the proposed global search algorithm is as efficient
as the GA and ASA in terms of global convergence speed, characterised by the total
number of cost function evaluations required to attend a global optimal solution.
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