
Locally Regularised Orthogonal Least Squares Algorithm for the
Construction of Sparse Kernel Regression Models

Sheng Chen
Department of Electronics and Computer Science

University of Southampton
Southampton SO17 1BJ

United Kingdom
Email: sqc@ecs.soton.ac.uk

ABSTRACT

The paper proposes to combine an orthogonal least squares
(OLS) model selection with local regularisation for efficient
sparse kernel data modelling. By assigning each orthogonal
weight in the regression model with an individual regularisa-
tion parameter, the ability for the OLS model selection to pro-
duce a very parsimonious model with excellent generalisation
performance is greatly enhanced.

I. I NTRODUCTION

A basic principle in practical data modelling is the parsi-
monious principle. The OLS algorithm [1],[2] is an efficient
learning procedure for constructing sparse regression models.
A key feature of the OLS algorithm is its ability to selects sig-
nificant regressors. The parsimonious principle alone however
is not entirely immune to overfitting. If data are highly noisy,
small models constructed may still fit into noise. A useful
technique for overcoming overfitting is regularisation [3],[4].
By combining the parsimonious principle with a regularisa-
tion method, a regularised OLS algorithm has been developed
[5]. As this algorithm employs a same regularisation param-
eter for every weights in the model, it will be referred to as
the uniformly regularised OLS (UROLS) algorithm. From the
Bayesian viewpoint, a regularisation parameter is equivalent to
the ratio of the related hyperparameter to the noise parameter
[6].

An effective Bayesian learning method is the evidence pro-
cedure which iteratively optimises model parameters and as-
sociated hyperparameters [6]. For kernel regression models,
this leads to the relevance vector machine (RVM) method [7].
A key feature of the RVM is the introduction of an individual
hyperparameter for each weight, which is responsible for the
sparsity properties of the RVM method. This paper proposes
a regularised OLS algorithm by combining the OLS selection
and the idea of associating each model weight with an indi-
vidual regularisation parameter. The algorithm will be called
the locally regularised OLS (LROLS). As regularisation is in-
troduced in the orthogonal weight space, the Hessian matrix
needed for updating regularisation parameters is diagonal, giv-

ing considerably numerical advantages. The algorithm retains
the ability to select significant regressors, and local regularisa-
tion further enforces sparsity. The end result is a simple and
efficient algorithm for constructing sparse models that gener-
alise well.

II. T HE GENERAL KERNEL REGRESSION MODEL

Consider the kernel regression model of the form:y(k) = ŷ(k) + e(k) = nMXi=1 �i�i(k) + e(k); 1 � k � N; (1)

wherey(k) is the target,e(k) is the error betweeny(k) and
the model output̂y(k), �i are the model weights,�i(k) are the
regressors,nM is the total number of candidate regressors, andN the number of training samples. By definingy = [y(1) � � � y(N)℄T ; (2)� = [�1 � � ��nM ℄; (3)�i = [�i(1) � � ��i(N)℄T ; (4)� = [�1 � � � �nM ℄T ; (5)e = [e(1) � � � e(N)℄T ; (6)

the regression model (1) can be written in the matrix formy = �� + e: (7)

Let an orthogonal decomposition of the matrix� be� =WA (8)

where A = 266664 1 a1;2 � � � a1;nM0 1 . . .
...

...
. ..

. . . anM�1;nM0 � � � 0 1 377775 (9)

and W = [w1 � � �wnM ℄ (10)
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Fig. 1. Noisy training datay (dots) and underlying functionf(x) (curve) for
the simple scalar function modelling problem.

with columns satisfyingwTi wj = 0, if i 6= j. The regression
model (7) can alternatively be expressed asy =Wg+ e (11)

where the orthogonal weight vectorg = [g1 � � � gnM ℄T satisfy
the triangular system A� = g: (12)

KnowingA andg, � can readily be solved from (12).

III. T HE LOCALLY REGULARISED OLS ALGORITHM

According to the Bayesian learning principle [6], the follow-
ing error criterion can be adopted:JB(g;h; �) = �eTe+ nMXi=1 hig2i = �eT e+ gTHg (13)

where� is the noise parameter,h = [h1 � � �hnM ℄T is the
hyperparameter vector, andH = diagfh1; � � � ; hnM g. Let�i = hi=�. An equivalent error criterion to (13) is:JR(g;�) = eTe+ nMXi=1 �ig2i = eTe+ gT�g (14)

where� = [�1 � � ��nM ℄T is the regularisation parameter vec-
tor, and� = diagf�1; � � � ; �nM g. It can readily be shown that
the criterion (14) can be expressed aseTe+ gT�g = yTy � nMXi=1 �wTi wi + �i� g2i : (15)

Normalising (15) byyTy yields�eT e+ gT�g� =yTy = 1� nMXi=1 �wTi wi + �i� g2i =yTy:
(16)

As in the case of the OLS algorithm [1], the regularised error
reduction ratio due towi is defined by[rerr℄i = �wTi wi + �i� g2i =yTy: (17)
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Fig. 2. Model mapping (curve) produced by the OLS algorithm for the simple
scalar function modelling problem. Dots indicate noisy training datay and
circles the RBF centers.

Based on this ratio, significant regressors is selected in a man-
ner exactly as in the case of the OLS algorithm [1]. The selec-
tion is terminated at thens-th stage when1� nsXl=1 [rerr℄l < � (18)

is satisfied, where0 < � < 1 is a chosen tolerance. This
produces a sparse model containingns (� nM ) significant
regressors. Notice that, in the selection procedure, ifwTi wi
is too small, this term will not be selected. Thus, any ill-
conditioning can automatically be avoided.

The Bayesian evidence procedure [6] can readily be used to
optimise the regularisation parameters. Applying this evidence
procedure leads to the updating formulas:�newi = 
oldiN � 
old eT eg2i ; 1 � i � nM ; (19)

where 
i = wTi wi�i +wTi wi (20)

and 
 = nMXi=1 
i: (21)

Usually a few iterations are sufficient to find an optimal�.

IV. T WO EXAMPLES

Example 1. Consider modelling the scalar functionf(x) = sin(2�x); 0 � x � 1; (22)

by a Gaussian radial basis function (RBF) model. The Gaus-
sian kernel function used had a variance of 0.04. One hundred
training data were generated fromy = f(x) + �, where the
inputx was uniformly distributed in(0; 1) and the noise� was
Gaussian with zero mean and variance 0.16. The noisy train-
ing pointsy and the underlying functionf(x) are plotted in
Fig. 1. As each training datax was considered as a candidate
RBF center, there werenM = 100 regressors in the model (1).
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Fig. 3. Model mapping (curve) produced by the UROLS algorithm for the
simple scalar function modelling problem. Dots indicate noisy training
datay and circles the RBF centers.

The training data were very noisy, and this learning problem
was very ill-conditioned.

The selection process of the OLS algorithm is listed in Ta-
ble I. Notice that the normalised MSE continuously decreased
as more terms were added. The procedure stopped at the 16-
th stage, when it detected that adding one more term would
cause the problem to be singular. This produced a 15-term
model. The model weights had very large value, a typical sign
of overfitting. The MSE over the training set was smaller than
the noise variance, indicating that the model was fitted intothe
noise. Overfitting can also be seen clearly by the model map
given in Fig. 2.

The UROLS selection procedure, after the single� had con-
verged, is listed in Table II. The selection stopped at the 14-th
stage, as there was no more candidate which would not cause
an ill-conditioning or singular problem. The modelling accu-
racy 1 �P[rerr℄l remained unchanged after the 11-th stage.
The weight of the 13-th regressor was effectively zero, indicat-
ing a 12-term model. The model map produced by this 12-term
model is depicted in Fig. 3, where it is clearly seen that over-
fitting did not occur.

The LROLS selection procedure, after� had converged, is

TABLE I

OLS SELECTION FOR THE SIMPLE SCALAR FUNCTION MODELLING.

stagel 1�P[err℄l weight�l
1 0.6461718264 2.60935e+06
2 0.2840641827 -2.28370e+06
3 0.2416057207 -1.29831e+08
4 0.2260673781 -2.21722e+09
5 0.2189319619 3.63027e+08
6 0.2179112365 1.66438e+09
7 0.2169210404 -3.19282e+09
8 0.2156145110 1.70011e+09
9 0.2135190658 4.06932e+09
10 0.2113153903 -1.94658e+09
11 0.2108713704 -2.72236e+08
12 0.2095033180 -4.28658e+07
13 0.2093349973 5.60372e+06
14 0.2091282455 -1.59224e+06
15 0.2068241235 3.83400e+05
stop due to no term selected at 16 stage
MSE over noisy training set: 0.147430
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Fig. 4. Model mapping (curve) produced by the LROLS algorithm for the
simple scalar function modelling problem. Dots indicate noisy training
datay and circles the RBF centers.

listed in Table III. The selection stopped at the 14-th stage,
as there was no more candidate which would not cause an
ill-conditioning or singular problem. The modelling accuracy1�P[rerr℄l however remained unchanged after the 6-th stage.
The regularisation parameters related with the 7-th to 13-th
terms were all very large, and the associated model weights
were effectively zero. This clearly indicated a 6-term model.
The model map produced by this 6-term model is depicted in
Fig. 4, where it can be seen that the generalisation performance
of this 6-term model was similar to that of the 12-term model
produced by the UROLS algorithm.

Example 2. This example constructed a model representing
the relationship between the fuel rack position (input) andthe
engine speed (output) for a Leyland TL11 turbocharged, di-
rect injection diesel engine operated at low engine speed. It
is known that at low engine speed, the relationship between
the input and output is nonlinear [8]. Detailed system descrip-
tion and experimental setup can be found in [8]. The data set
contained 410 samples. The first 210 data points were used in
modelling and the last 200 points in model validation. A RBF
model of the form:ŷ(k) = fRBF (y(k � 1); u(k � 1); u(k � 2)) (23)

TABLE II

UROLSSELECTION FOR THE SIMPLE SCALAR FUNCTION MODELLING

AFTER� HAS CONVERGED.

stagel 1�P[rerr℄l weight�l
1 0.6490143575 1.62388e+00
2 0.2908595802 -2.28935e+00
3 0.2508542689 -8.48791e-01
4 0.2361130705 8.22056e-01
5 0.2322792890 1.03731e+00
6 0.2312755537 -3.73154e-01
7 0.2312749762 3.01529e-02
8 0.2312737869 -1.51268e-02
9 0.2312736479 -5.40054e-03
10 0.2312736475 3.76698e-04
11 0.2312736474 9.55162e-05
12 0.2312736474 -1.27653e-05
13 0.2312736474 -2.25256e-07
stop due to no term selected at 14 stage
MSE over noisy training set: 0.156678

regularization parameter�: 3.09037e-01



was used to model the data. As each data vector[y(k�1) u(k�1) u(k� 2)℄T was considered as a candidate RBF center, there
werenM = 210 regressors in the regression model (1). The
variance of the RBF kernel function was chosen to be 1.69.

The OLS algorithm selected a 60-term model, the UROLS
constructed a 46-term model, and the LROLS algorithm con-
structed a 34-term model. The mean square error values over
the training and testing sets for these three models are given in
Table IV. The constructed RBF model was used to generate
the one-step prediction̂y(k) of the system output according
to (23). The iterative model output̂yd(k) was also produced
usingŷd(k) = fRBF (ŷd(k � 1); u(k � 1); u(k � 2)): (24)

The one-step model prediction and iterative model output for
the 34-term model selected by the LROLS algorithm are shown
in Fig. 5, in comparison with the system output.

V. CONCLUSIONS

A locally regularised OLS algorithm has been presented.
The proposed algorithm combines both the advantages of OLS
model selection, which has ability to select only those signif-
icant regressors to explain training data, and local regularisa-
tion, which enforces sparsity of models. As regularisationis
introduced in the orthogonal weight space, computational re-
quirements of the iterative model selection procedure are very
simple and straightforward. A further advantage of this algo-
rithm is that when to terminate the model selection procedure
can be made easily based only on the training data, thus avoid-
ing the costly cross-validation using a separate testing data set.
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Fig. 5. System outputy(k) (solid) superimposed on (a) model one-step pre-
diction ŷ(k) (dashed) and (b) model iterative outputŷd(k) (dashed). The
model was selected by the LROLS.


