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ABSTRACT ing considerably numerical advantages. The algorithningta
the ability to select significant regressors, and local laiga-
The paper proposes to combine an orthogonal least squaresion further enforces sparsity. The end result is a simpl an
(OLS) model selection with local regularisation for effitie  efficient algorithm for constructing sparse models thategen
sparse kernel data modelling. By assigning each orthogonal glise well.
weight in the regression model with an individual regularis
tion parameter, the ability for the OLS model selection to-pr
duce a very parsimonious model with excellent generatinati

performance is greatly enhanced. Consider the kernel regression model of the form:

Il. THE GENERAL KERNEL REGRESSION MODEL

nm

| INTRODUCTION y(k) = (k) +e(k) = _0:gi(k) +e(k), 1<k<N, (1)
i=1

A basic principle in practical data modelling is the parsi- \yherey(k) is the targete(k) is the error betweep(k) and
monious principle. The OLS algorithm [1],[2] is an efficient  the model outpugi(k), 6; are the model weightsy; (k) are the
learning procedure for constructing sparse regressioretsod  regressors;, is the total number of candidate regressors, and

A key feature of the OLS algorithm is its ability to selectg-si  x the number of training samples. By defining
nificant regressors. The parsimonious principle alone kewe

is not entirely immune to overfitting. If data are highly ngis y = [y(1)---y(N)]7, 2)
small models constructed may still fit into noise. A useful

technique for overcoming overfitting is regularisation, [8]. ®=[p,--d,,] 3)
By combining the parsimonious principle with a regularisa-

tion method, a regularised OLS algorithm has been developed b; = [6i(1) - 4i(N)]", (4)
[5]. As this algorithm employs a same regularisation param- =100 0,,]" (5)
eter for every weights in the model, it will be referred to as M

the uniformly regularised OLS (UROLS) algorithm. From the e=e(l)---e(N)]7T, (6)

Bayesian viewpoint, a regularisation parameter is egeiab
the ratio of the related hyperparameter to the noise pasmet
[6]- y=®0+e. @)
An effective Bayesian learning method is the evidence pro- N

cedure which iteratively optimises model parameters and as L€t an orthogonal decomposition of the matixbe
sociated hyperparameters [6]. For kernel regression rapdel
this leads to the relevance vector machine (RVM) method [7]. ¢ =WA (®)
A key feature of the RVM is the introduction of an individual

. Co . where
hyperparameter for each weight, which is responsible fer th 1
sparsity properties of the RVM method. This paper proposes _ )
a regularised OLS algorithm by combining the OLS selection A— 0 1 K : )
and the idea of associating each model weight with an indi- : .
vidual regularisation parameter. The algorithm will beledl 0 T ”Mil’”M
the locally regularised OLS (LROLS). As regularisationris i
troduced in the orthogonal weight space, the Hessian matrix and
needed for updating regularisation parameters is diaggival W = [wy Wy, (10)

the regression model (1) can be written in the matrix form

a2 - A1 npr
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Fig. 1. Noisy training datg (dots) and underlying functiofi(z) (curve) for
the simple scalar function modelling problem.

with columns satisfyingv! w; = 0, if i # j. The regression
model (7) can alternatively be expressed as

y=Wg+e (12)

where the orthogonal weight vectgr= [g; - - - gn,,]T satisfy
the triangular system

AO=g. (12)

Knowing A andg, 8 can readily be solved from (12).

IIl. THE LOCALLY REGULARISED OLS ALGORITHM

According to the Bayesian learning principle [6], the fallo
ing error criterion can be adopted:

Tg(g,h,B) = Be"e + Y hig; = pe"e+g"Hg (13)

i=1

where 3 is the noise parameteh = [h; ---h,,,]T is the
hyperparameter vector, arld = diag{h1, -, hn,, }. Let
Ai = h;/B. An equivalent error criterion to (13) is:

nar
Jr(g,\) =ele + Z Nig? =ele+glAg

i=1

(14)

whereX = [\ - -+ \,,,]T is the regularisation parameter vec-
tor, andA = diag{\y, - - -, An,, }. It can readily be shown that
the criterion (14) can be expressed as

nm
ele+ gTAg =yTy— Z (wZTwi + )\i) gf (15)
i=1
Normalising (15) byy "y yields
nyg
(e"e+g"Ag) /yTy =1-3 (wlwi+X)gi/y"y.
=1
Z (16)

As in the case of the OLS algorithm [1], the regularised error
reduction ratio due tev; is defined by

[rerd; = (W wi+ i) g7 /y"y. (17)
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Fig. 2. Model mapping (curve) produced by the OLS algoritlomtiie simple
scalar function modelling problem. Dots indicate noisynireg datay and
circles the RBF centers.

Based on this ratio, significant regressors is selected ia@ m
ner exactly as in the case of the OLS algorithm [1]. The selec-
tion is terminated at the,-th stage when

Ns

1= [rer, < ¢

=1

(18)

is satisfied, wher® < ¢ < 1 is a chosen tolerance. This
produces a sparse model containing (< ns) significant
regressors. Notice that, in the selection procedure;ifw;

is too small, this term will not be selected. Thus, any ill-
conditioning can automatically be avoided.

The Bayesian evidence procedure [6] can readily be used to
optimise the regularisation parameters. Applying thisleace
procedure leads to the updating formulas:

Aold T .
AW =2 1<i< , 19
i N —yold g2 StsnM (19)
where .
W, W;
= —— 20
and
num
Y= (21)
i=1

Usually a few iterations are sufficient to find an optimal

IV. TWO EXAMPLES
Example 1. Consider modelling the scalar function

f(z) =sin(27z), 0 <z <1, (22)

by a Gaussian radial basis function (RBF) model. The Gaus-
sian kernel function used had a variance of 0.04. One hundrec
training data were generated froyn= f(z) + ¢, where the
inputz was uniformly distributed if0, 1) and the noise was
Gaussian with zero mean and variance 0.16. The noisy train-
ing pointsy and the underlying functiorf(z) are plotted in

Fig. 1. As each training datawas considered as a candidate
RBF center, there weney, = 100 regressors in the model (1).
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Fig. 4. Model mapping (curve) produced by the LROLS alganitfor the
simple scalar function modelling problem. Dots indicatésgdraining
datay and circles the RBF centers.

Fig. 3. Model mapping (curve) produced by the UROLS algaritfor the
simple scalar function modelling problem. Dots indicatéspdraining
datay and circles the RBF centers.

The training data were very noisy, and this learning problem listed in Table Ill. The selection stopped at the 14-th stage
was very ill-conditioned. as there was no more candidate which would not cause an

) ) o ) ill-conditioning or singular problem. The modelling acaay
The selection process of the OLS algorithm is listed in Ta- 1 _ s~irerd, however remained unchanged after the 6-th stage.
ble 1. Notice that the normalised MSE continuously decrdase |, regularisation parameters related with the 7-th tohl3-t
as more terms were added. The procedure stopped at the 165 ms were all very large, and the associated model weights
th stage, when it detected that adding one more term would \yere effectively zero. This clearly indicated a 6-term miode
cause the problem to be singular. This produced a 15-t€rm e model map produced by this 6-term model is depicted in
model. The model weights had very large value, a typical Sign g 4 \where it can be seen that the generalisation perforena

of overfitting. The MSE over the training set was smaller than ¢ ihis 6-term model was similar to that of the 12-term model
the noise variance, indicating that the model was fittedtiméo produced by the UROLS algorithm.
noise. Overfitting can also be seen clearly by the model map
given in Fig. 2. Example 2. This example constructed a model representing
. . the relationship between the fuel rack position (input) drel
The UROLS selection procedure, after the singlead con-  gpgine speed (output) for a Leyland TL11 turbocharged, di-
verged, is listed in Table Il. The selection stopped at théfl4 ot injection diesel engine operated at low engine speed. |
stage, as there was no more candidate which would not caus§g nown that at low engine speed, the relationship between
an ill-conditioning or smgular problem. The modelling aec the input and output is nonlinear [8]. Detailed system dpscr
racy 1 — > [rerd; remained unchanged after the 11-th stage. {jon and experimental setup can be found in [8]. The data set
The weight of the 13-th regressor was effectively zerodati  ,ntained 410 samples. The first 210 data points were used ir

ing a 12-term model. The model map produced by this 12-term 1, qe|ling and the last 200 points in model validation. A RBF
model is depicted in Fig. 3, where it is clearly seen thatover ,14e| of the form:

fitting did not occur.
The LROLS selection procedure, aftethad converged, is y(k) = frer(y(k —1),u(k —1),u(k —2))  (23)
TABLE Il

UROLSSELECTION FOR THE SIMPLE SCALAR FUNCTION MODELLING
AFTER A HAS CONVERGED

TABLE |
OLSSELECTION FOR THE SIMPLE SCALAR FUNCTION MODELLING

stagel 1 —> er]; weight6;

1 0.6461718264  2.60935e+06 stagel 1 -— Z[rerr}l weight6;

2 0.2840641827  -2.28370e+06 1 0.6490143575  1.62388e+00
3 0.2416057207  -1.29831e+08 2 0.2908595802  -2.28935e+00
4 0.2260673781  -2.21722e+09 3 0.2508542689  -8.48791e-01
5 0.2189319619 3.63027e+08 4 0.2361130705 8.22056e-01
6 0.2179112365 1.66438e+09 5 0.2322792890  1.03731e+00
7 0.2169210404  -3.19282e+09 6 0.2312755537  -3.73154e-01
8 0.2156145110 1.70011e+09 7 0.2312749762 3.01529e-02
9 0.2135190658  4.06932e+09 8 0.2312737869  -1.51268e-02
10 0.2113153903  -1.94658e+09 9 0.2312736479  -5.40054e-03
11 0.2108713704  -2.72236e+08 10 0.2312736475 3.76698e-04
12 0.2095033180 -4.28658e+07 11 0.2312736474 9.55162e-05
13 0.2093349973  5.60372e+06 12 0.2312736474  -1.27653e-05
14 0.2091282455  -1.59224e+06 13 0.2312736474  -2.25256e-07
15 0.2068241235  3.83400e+05 stop due to no term selected at 14 stage

stop due to no term selected at 16 stage
MSE over noisy training set: 0.147430

MSE over noisy training set: 0.156678
regularization parameter. 3.09037e-01




was used to model the data. As each data végtér1) u(k—

1) u(k —2)]T was considered as a candidate RBF center, there
werenys = 210 regressors in the regression model (1). The
variance of the RBF kernel function was chosen to be 1.69.

The OLS algorithm selected a 60-term model, the UROLS
constructed a 46-term model, and the LROLS algorithm con-
structed a 34-term model. The mean square error values over
the training and testing sets for these three models are give
Table IV. The constructed RBF model was used to generate [3]
the one-step predictiofi(k) of the system output according ]
to (23). The iterative model outpgt;(k) was also produced
using

(5]
gd(k) = fRBF(gd(k_ 1),u(k— 1),u(k—2)). (24)
6
The one-step model prediction and iterative model output fo el
the 34-term model selected by the LROLS algorithm are shown (7]
in Fig. 5, in comparison with the system output.
(8]

V. CONCLUSIONS

A locally regularised OLS algorithm has been presented.
The proposed algorithm combines both the advantages of OLS
model selection, which has ability to select only those i§ign
icant regressors to explain training data, and local regaa
tion, which enforces sparsity of models. As regularisatfon
introduced in the orthogonal weight space, computatiogal r
quirements of the iterative model selection procedure arg v
simple and straightforward. A further advantage of thioalg
rithm is that when to terminate the model selection procedur
can be made easily based only on the training data, thus-avoid
ing the costly cross-validation using a separate testita $kt.
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Fig. 5. System outpuj(k) (solid) superimposed on (a) model one-step pre-

diction §(k) (dashed) and (b) model iterative outgt(k) (dashed). The
model was selected by the LROLS.



