Least bit error rate adaptive nonlinear equalisers

for binary signalling

S. Chen, B. Mulgrew and L. Hanzo

Abstract: The paper considers the problem of constructing adaptive minimum bit error rate
(MBER) neural network equalisers for binary signalling. Motivated from a kernel density
estimation of the bit error rate (BER) as a smooth function of training data, a stochastic gradient
algorithm called the least bit error rate (LBER) is developed for adaptive nonlinear equalisers. This
LBER algerithm is applied to adaptive training of a radial basis function (RBF) equaliser in a
channel intersymbol interference (ISI) plus co-channel interference setting. A simulation study
shows that the proposed algorithm has good convergence speed, and a small-size RBF equaliser
trained by the LBER can closely approximate the performance of the optimal Bayesian equaliser.
The results alse demonstrate that the standard adapiive algerithm, the least mean square (LMS),
performs poorly for neural network equalisers because the minimum mean square error (MMSE)

is clearly suboptimal in the equalisation setting.

1 Introduction

Equalisation techniques play a crucial role in combating
distortion and interference in modermn communication
systems. The topic of equalisation is well researched and a
variety of solutions are available [1-7]. Recently, neural
networks have been used as adaptive nonlinear equalisers
[8-17]. Typically, adjusting an equaliser’s parameters in a
sample-by-sample fashion is required in practical applica-
tions to meet real-time computational constraints, and
adaptive training of neural network equalisers i1s usually
carried out using some slochastic gradient algorithm that
tries to minimise the mean square error (MSE). This kind of
stochastic gradient adaptive algorithm is classically referred
to as the least mean square (LMS). It is a well-known fact
that adaptive training of neural network equalisers often
encounters difficulties. Since the MSE surface is highly
complex in the nonlinear equalisation setting, such difficul-
ties are typically attributed to ‘local minima’. However, the
problem is actually more fundamental than this. Surely it is
a strange situation that, on the one hand, the performance
of an equaliser 1s determined by its bit error rate (BER)
while, on the other hand, a different MSE criterion is used
at the learning stage.

For linear equalisers, there is a partial relationship
between the MSE and BER. A small MSE is usually
associated with a small BER. However, even in the linear
case, the minimum mean square error (MMSE) solution in
general is not the minimum bit error rate (MBER) solution,
and it is well known that the BER gap between the linear
MMSE solution and linear MBER solution can be large in
certain situations [18-27). Since the BER is the true
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performance indicator for equalisation, recent research has
derived some adaptive linear MBER equalisers [20, 24-26)].
In the linear case, the properties of the MSE and BER
criteria are also better known. The MSE surface is, of
course, quadratic with a unique global minimum in the
equaliser weight space. The BER surface is much more
complicated and the global minimum solutions form a half
line, one end of which approaches infinity and the other end
approuaches the origin. The origin of the linear equaliser
weight space is the singular point {discontinuity) of the BER
surface (see, for example, [28]).

For nonimear equalisers, both the MSE and BER
surfaces are highly complex and possess local minima.
Furthermore, unlike the Iinear case, a small MSE may not
correspond to a small BER. Consider, for cxample, the
maximum a posteriori probability or Bayesian symbol-
decision equaliser [7], which is optimal in terms of BER.
The MMSE criterion in this case is inappropriate. This is
simply because, multiplying the Bayesian equaliser by a
positive constant, it remains as the optimal Bayesian
equaliser while the resulting MSE value can become very
large. It is worth noting that in theory, adaptive MBER
training can be achieved by adjusting the equaliser’s
parameters only when an error occurs. Since the BER is
typically very small in communication systems, such a
strategy would require an extremely long training sequence
and is therefore impractical. Because practical adaptive
algorithms based on the MBER criterion are unavailable to
date for nonlinear equalisers, adaptive training of a neural
network equaliser is typically carried out using the LMS
algorithm, which may sometimes lead to poor BER
performance.

This paper describes the development of a stochastic
gradient adaptive MBER algorithm for nonlinear equalisers
with binary signalling. We adopt an approach similar to the
one used in developing an adaptive MBER linear equaliser
(25, 26], namely that of using a kernel density or Parzen
window estimate to approximate the BER from training
data and deriving a stochastic gradient adaptive algorithm.
The resulting algorithm is called the LBER because of its
links to the MBER criterion, in a manner analogous to the
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LMS algorithm for the MMSE criterion. This LBER algo-
rithm is tested with an equalisation application in the
presence of channel intersymbol interfarence (ISI), additive
white Gaussian noise and co-channel interference, where a
radial basis function (RBF) network 15 trained as an
adaptive equaliser. Simulation results obtained show that
the LBER algorithm achieves consistent performance and
has a reasonable convergence speed. A small-size RBF
network trained by the LBER algorithm can closely appro-
ximate the optimal Bayesian performance. The simulation
study also confirms that a neural network equaliser trained
by the LMS algorithm, although converging well in the
MSE, can sometimes produce a poor BER performance.

2 Equalisation problem

[t 15 assumed that the channel is modelled as a finite impulse
response filter with an additive noise source [29]. For
notational simplification, it is further assumed that there
exists only one relatively strong co-channel interference.
Thus, the received signal at sample & is given by

r(k) =Flk) + n(k) = Fo(k) + 71 {k) + n(k)
- m—t

ng—1
=Y aobolk—i)+ > abi(k—i)+nlk) (1)
i=0 i=0

where s(k) is a white Gaussian noise with variance
Ej (k)] = a%; F(k), Fo(k) and ¥ (k) are the noise-free
received signal, desired signal and interfering signal,
respectively; ap, 0<i<ny—1, are the channel taps and
a1; 0<i<ny—1, are the co<hannel taps; the desired
and interfering data by(k) and 5,(k) are binary, taking
value from the set {+1}, and they are uncorrelated. Let
E[B}(K)] = &} and E[b] (k)] = 3. The signal to interference
ratio of the system is defined by

np—1
a a
SIR — 0 Z:—O —== 0. (2)
Z”I al
01 im0
the signal to noise ratio is defined by
o2 ol 2
SNR = Z {3)
Vl
and the signal to mterference plus noise ratio is defined by
no—1
ap
SINR = T Z:—On (;I (4)
7+ ot il 4l

The equaliser considered in this study has a sample-decision
finite-memory structure, and it uses the information
contained in the received signal vector

r(k) = [rk)r(k = 1) r(k —m+ 1) (5)
to produce an estimate of by(k—d), where m is the equaliser
order or memory length and 4 the decision delay [7].
Specifically, the equaliser is defined by

bo(k — d) =sgn(y(k)) with
ylk) =f(r(k);w) (6)

where f(-;-) denotes the equaliser map, and w consists of
all the (adjustable) parameters of the equaliser. Such an
equaliser has finite ‘states’, since

bo(k) = [bo(k)bo(k — 1) - bolk —ng —m +2)}"  (7)
has Np = 27tm=1 combinations, denoted as by i 1 <j< Ny,
and

bi(k) =i ()bi(k— 1) bk —m —m+2)]" (8)
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has Ny = 27t -1 combinations, denoted as b, 1</< N,
From the system model (1), the received signal vector can be
written as

r(k) = F(k) + (k) = Ro(k) + R (k) + (k) (9)

It is obvious that 7(k}, Fy(k) and 7, (k) all have finite states,
that 1s,

Fo(k) € B2 {roy, | < j < N} (10)

Fk)e g Er, 1 <I<N} (11)

and
F(k) € B2 4ro;+r1s, (12)
1 <j<Ngand1 <1 <N}
Notice that the set # contains N, = N, x N, states, that is,
Fk)e #&{r, 1 <i< N} (13)
Denote the dth element of by; as h( ). Since b = {£l1},

the sets %, and # can each be dmded nto two subsets %(i)

and #%)| depending on the value of b( Thus b(d. is the

‘class’ label for ro; € &g or vy, +#1; € 9? For notatlonal
convenience, define

b = by forl <i<N,

1
w1thj~1+\‘NlJ (14)

where | - | denotes the floor function, i.e. | x | is the largest

integer less than or equal to x. It can be seen that b,(-d) serves
as the class label for v; € Z.

If the channel and co-channel are known, applying the
maximum a posteriori probability principle leads to the
following optimal Bavesian equaliser [30]:

ya(k) =fp(r(k); w)

2 2

mi2
i o (2ma?)" NNy

B

|r(k) — o, — ri]|?
X eXp (— 20‘%
@ 2
_ b; ek} — ril}
S () o

where equiprobable states in %, and 2, have been
assumed, and r; € # as is defined in (13). It should be
pointed out that, multiplying yg(k) by a positive constant, it
remains the optimal Bayesian solution even though the
resulting equaliser has a different MSE value. It is also clear
that this Bayesian solution has very high computational
complexity. An often-used equaliser is the linear one:

(k) = fulr(k); w) = we(k) {16)
The most popular solution for the linear equaliser is the

MMSE solution, which can readily be implemented
adaptively using the LMS algorithm.

3 Derivation of the LBER algorithm

Consider the generic equaliser (6) where the equaliser map f
is realised, for example, by a neural network. Classically,

such a I’lOI’lllI’lCdI’ equaliser is tralned by adjusting w so that
the MSE, E [{(bo(k—d)—y(k)) ] is minimised. Typically, this
is 1mplemented adaptively using the LMS algorithm, which
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has a very simple form:

y(k) = fr(k); wlk—1))
w(k) = w(k — 1) + p(bo(k — d) (17)
y(k)) af r(kz':’(k—l)'

where i is an adaptive gain. However, minimizing the MSE
does not necessarily produce a small BER. A main objective
of this study is to derive an adaptive algorithm for the
nonlinear equaliser (6) based on the MBER criterion.

3.1 Approximate bit error rate expression
The error probabitity of the equaliser (6) is
Pe(w) = Prob{sgn(bo(k — d))y(k) <0}  (18)
Define the signed decision variable
(k) = sgn(bo(k — d)) y(k) (19)

and denote the probability density function (p.d.f.} of y(k)
as py(2). Then

{
Pe(w) = f_ (1) dy; {20)

00

By linearising the equaliser around F(k), the noise-free
received signal vector, it can be approximated as

y{k) = (F(k) + nlk); w)

o
~ s+ 2L gy o

or

ylk) 7 fr(R);w) +e(k) = p(k) +elk)  (22)

where e(k) i1s Gaussian with zero mean and variance

. :EH@_@] o 2L W)J

_o Y raf (e w]T Of (ri w)
7FZ[ ar ] ar (23)

Fop=l

with #; € #. Basically, the equaliser is approximated as an
additive Gaussian noise model, with the ‘clean’ signal 3(k)
taking values from the finite set

YK e{y=rlrw), 1<isN}  (24)
The p.d.f. of y(k) can thus be approximated by
1

Py(yx) o N:\/TTI;J
N () 2
(3 —sgn(b")n)
X eXpt ———————————
; ( 2p? (25)

and the error probability of the equaliser is approximately

O(gi(w)) (26)

where

Olx) = —\/12—; / exp (— ;) dy (27)
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and

(d d

en(6 )i _ sen() £ (ris w)
P f

In general the linearisation (21) is valid only for small a(k}
(in some statistical sens¢). The level of approximation
involved in (21), however, becomes insignificant in compar-
ison with any stochastic (one-sample) approximation
needed in deriving adaptive training.

gilw) = (28)

3.2 Approximate minimum bit error rate
solution

If the channel and co-channel are known, an approximate
MBER solution for the equaliser (6) can be obtained by
minimising the approximate BER expression (26). The
gradient of Pg{w) is approximately;

o & dgi(w)
VPF’(W)N_—TZ%( Zp-) £

&= N@Z ( )sgn(b"'J)if(a":vJ

(29)

In the last approximation of (29), we have dropped the term
containing dp/dw. That is, p is assumed to be independent
of w. In general, p depends on the value of w, unless the
algorithm has already converged to the (near) optimal
solution wyppr and p has been fixed to its optimal value.
Theoretical justification for this approximation still needs
to be investigated, but it could be argued on the ground
that this approximation is less significant than the approxi-
mation involved in deriving a stochastic one-sample
adaptation.

The following iterative gradient algorithm can be used to
arrive at an approximate MBER solution. Given an initial
w(0), at the /th iteration, the algorithm computes:

yi(l) = flris w(i - 1)) 1 <fSNr

VPe(w(l ))—‘N an

xexp| — %{E—é)) sgn(bl(-d ) df(r,-;

w(l — 1)) (30)

W
w(l)=w({l— 1) - pVE:(w(l})
Although the ‘variance’ p* could iteratively be calculated by

2y O[OS (rw(t = DT
p (I)_ﬁxz;{ o ]
L Ofrw( — 1) (31)

ar

for numencal and convergence considerations, it is preferred
to fix p* to an appropriately chosen constant. Thus, o s
considered as an algorithm parameter that requires tuning.
Notice that if the equaliser (6) is linear, all the appro-
xtmations done so far can be made exactly, and the variance
of e(k) is p? = a2ww. In this case, we atrive at the exact
MBER solution for the linear equaliser (16) [25, 26].

3.3 Block-data gradient algorithm

In practice, the set # is unknown. The key to developing an
effective adaptive algorithm is the p.d.f. p)(y,) of the signed
deciston variable y (k). Kernel density or Parzen window
estimation is known to produce reliable p.d.f. estimates with
short data records and in particular is extremely natural in
dealing with Gaussian mixtures [31, 32]. Given a block of K
training samples {r{k), by(k—d)}, a kernel density estimate of
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the p.d.f. is
el
O2) K\/_ mp
~ sen(by(k — d))y(k))
x Z exp ( 2,
(32)
From the estimated error probability
0
Pe(w) = / Pr(ve) dy (33)
o ‘

VP:(w) can be calculated:

K\/ﬁm‘i (1’23)

) df( a(:"v): "') (34}

VPE(W) = -

x sgu(bo(k — d)

Thus a block adaptive gradient algorithm can be derived.
At the lth iteration, the algorithm computes:

wi(k) = frlk); w[—l)) 1<k<K

VPr_( w{l)) = — 27[’0‘2

X exp ( ¥y lgk))sgn(bu(k d)) Qf(—()%—_ljl
W(I) =W (l - 1) — HVP[:(WU))

(35)

3.4 Stochastic gradient algorithm

Our real aim is to develop a stochastic gradient adaptive
algorithm with sample-by-sample updating, in a similar
manner to the LMS (17). The LMS algorithm is derived
from its related ensemble gradient algorithm by replacing
the ensemble average of the gradient with a single-data-
point estimate of the gradient. Adopting a similar strategy,
at sample %, a single-data-point estimate of the p.d.f. is

P =
« exp (_ s — sn(outh d))y(k))z)
o

(36)

Using the instantaneous or stochastic gradient,

Pelhiw) = — —ecxp( — 2K
= x/i‘r?pexp( ) ()
x sgn(bolk — d))d_f('gﬁ;)—”’)

a stochastic gradient algorithm is given by
() = F(R); wlk — 1)
i | — i — (k)
wik) = w(k —1) + mﬁexp( Sy ) (38)
% sgn(bo(k — o)) 2Lilimti=1)

assuming that an appropriate p has been chosen. The
influence of p on algorithm performance will be investigated
in a simulation study. Following similar reasoning to the
LMS for the MMSE criterion, the algorithm (38) is called
the LBER algorithm,
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4  Simulation study

To test the LBER algorithm for adaptive training of neural

network equatisers, the RBF network equaliser of the form
Yrar (k) = frar(r(k);w)

e Ir(h) - e
‘le(‘——") (39)

is used. The equaliser parameter vector w thus contains all
the RBF weights ;, widths &; and centres ¢;. The dimension
of w is therefore n,x (m+2). The derivatives of the
equaliser output with respect to the equaliser’s parameters
in this case are given by

Ofrar _ ( |I'()ACJH>

9

Bssr 5, exP(ﬁ LUE c,-\r) [r(h )&? o .
Q% = 2a;exp (— ”r(k)aj ".fIV) r(k)ai— ¢

lSjE”c

For companson purposes, both the LMS and LBER
algorithms are used to train the RBF equahqer (39), with the
adaptive gain g given in the form g = k™, where Mo 18
an appropriately chosen constant. For the LBER algo-
rithm, the value of p* also needs to be determined.

In all simutations, the first #./2 data points that belong to
the class + | and the first n,/2 data points that belong to the
class — I are used as initial centres. The initial weights are set
10 =1/ i (2m02)""?] accordingly. All the widths are initially
set to 8o Two kinds of BER are used in the simulation
investigation, the true BER that is computed using Monte
Carlo simulation with a sufficiently long test sequence and
the estimated BER calculated using the approximate BER
expression (26) with g;(w) = sgn(b,(»d)) vi/p. The value of p
is s0 chosen that the estimated BER agrees with the true
one. This p should not be confused with the algorithm
parameter p used in the LBER. The estimated BER is used
to illustrate the learning rate of an adaptive algorithm, since
computing the truc BER of the adaptive RBF equaliser at
each sample & would be computationally too demanding.

Exumple 1. The transfer functions of the channel dnd co-
channel were respectively Ap(z)=0.5+1.0z"" and

Ay2) = A(1.04+0.5271). The value of 7 was set to give an
SIR = {2 dB. The equaliser order was choscn to be =2
and the decision delay d = 1. The sets 2, and %, each had
eight points, and the sct # had 64 states. Fig. 1 shows the
sets &g and A, together with the decision boundaries of the
linear MMSE and optimal Bayesian equalisers given
SNR=20dB (SINR=11.36dB). Given this noise and
interference condition, RBF equalisers with four and six
centres were trained by the LMS and LBER algorithms,
respectively. At each sample &, the estimated BER was
calculated for an equaliser with w(k), and this resulted in the
learning rates plotted in Fig. 2 for the corresponding
adaptive equalisers, where the results were averaged over
100 runs. The LBER algorithm had p? =200? and
o= 0.15 for the four-centre RBF equaliser, and p? = 262
and po=0.1 for the six-centre RBF equaliser; while the
LMS algorithm had 1, =0.5 for the four-centre RBF and
to=0.4 for the six-centre RBF. For LMS training, the
MSE for an equaliser with w(k} was also calculated using a
block of 100 test samples, and this produced the learning

1EE Proc-Commmn., Vol 150, No. 1, February 2003
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Fig. 1 Sets of .%‘(()H (®) 3?((]7] (O ) and & {*} together with the
two decision bondaries (dotted: linear MMSE: solid: optimal) for
example |

SIR =12dB: SNR=20dB (SINR = 11.36dB)

estimated bit error rate

6-LBER

[¢] 200 400 600 800 1000
sample &k

Fig. 2  Convergence rates in terms of the estimated BER, averaged
over 100 runs, for example |

SIR=12dB and SNR=20dB

4-LMS: the 4-centre RBF trained by the LMS with 34, =0.5;
6-LMS: the 6-centre RBF trained by the LMS with g =0.4;
4-LBER: the 4-centre RBF trained by the LBER with i, =0.15 and
Pt =200,

6-LBER: the 6-centre RBF trained by the LBER with j4,=0.1 and
p? = 2a?

rates in terms of the MSE given in Fig. 3, where again the
results were averaged over 100 runs.

It was found that the estimated BERs of an RBF
equaliser with LMS training varied greatly for different
runs. For the four-centre RBF with LMS training, on
average, the estimated BER was hardly reduced, even
though there was around 7 dB reduction in the MSE, as can
be seen in Figs. 2 and 3. For the six-centre RBF with the
LMS training, in some runs the BERs were close to that
obtained by the LBER training and for other runs the
BERs were very poor, resulting in, on average, a BER
larger than that of the linear MMSE equaliser. In contrast,
examining the MSE learning rate in Fig. 3 closely shows
that the corresponding MSE reductions were consistent in
different runs. This is not surprising, since the LMS is

1EE Proc.-Conm, Vol 130, No: |, February 2003
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mean square error

0 200 400 600 800 1000
sample k

Fig. 3 Concergence rares in terms of the MSE. averaged over 100
runs, for example |

SIR=12dB and SNR =20dB

4-LMS: the 4-centre RBF trained by the LMS with po=10.5;
6-LMS: the 6-centre RBF trained by the LMS with py=04

3 T T T T
by (k= 1) =1
2 k- .
s
H
1 — —
H
. @}
T H
« O . .
~ [ 3
H
1 -
:
C
3
2 b _
by (k—1)=—1
-3 1 i
-3 2 -1 o 1 2 3

R}

Fig. 4  Comparison of nwe decision boundaiies { thin solid: aduptive
RBF equaliser, thick solid: optimal) for example 1

SIR=12dB and SNR=20dB

The adaptive RBF cqualiscr has four centres and is trained by the
LBER algorithm. The stars indicate the final cenire positions

designed to minimise the MSE not the BER, In compur-
ison, in terms of BER performance, LBER training was
found to produce consistent results in different runs, and
the six-centre RBF equaliser with LBER training converged
comnsistently very close to the optimal performance of the 64-
stale Bayesian equaliser.

Typical decision boundaries of the four-centre and six-
centre RBF equalisers trained by the LBER algorithm are
compared with the optimal Bayesian boundary in Figs. 4
and 5, respectively. The (truc) BERSs of the four-centre RBF
equaliser trained by the LBER together with those of the
linear MMSE and optimal Bayesian equalisers are depicted
in Fig. 6 as functions of SINRs. The BERs of the six-centre
RBF equaliser trained by the LBER are not shown here, as
they are almost indistinguishable from the optimal perfor-
mance. Fig. 7 depicts the same BERs of the three equalisers
as functions of SNRs. The influence of the algorithm
parameter p° on the performance of the LBER algorithm
was also investigated. Fig. 8§ shows the BERs of the four-
centre RBF equaliser trained by the LBER algorithm with a
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Fig.5 Comparison of two decision boundaries (thin solid: adaptive
RBF equaliser, thick solid: optimal} for example !

SIR=12B and SNR=20dB

The adaptive RBF equaliser has six centres and is tramned by the
LBER algorithm. The stars indicate the final centre positions

0 —
——=——— linear MMSE
——e—— 4-LBER
—oe—— optimal
-1
-2 F
)
S
g
<
E 3}
<
=3
kel
_4 -
5 . . : . ;
3 5 7 9 11 13

SINR, dB

Fig. 6 Performance comparison of three equalisers in terms of

BER agamst SINR for example 1

SIR=12dB

The adaptive RBF equaliser has four centres and is trained by the
LBER algorithm

range of p* in a given noise and interference condition,

where it can be seen that the algorithm performance is not
- 2

overly sensitive {0 p~ over a large range of values.

Example 2. The channel transfer function was
Ao(z)=0.3482+0.8704z 1 +0.3482z72, and the co-channel
transfer function was 4,(z)= 2 (¢.6+0.8z7") with the value
of 4 chosen to give an SIR = 20dB. The equaliser order was
set to m =4 and decision delay d= 1. For this example, the

34

—=—— Jinear MMSE
——a—— 4-LBER
—e-—— optimal
-1}
-2 F
@
]
&
&
E a3t
k=4
(=)
2
4 -
-5 )
¢ 40

signal to noise ratio, dB

Fig. 7 Performance comparison of three equalisers in terms of
BER against SNR for example |

SIR=12dB

The adaptive RBF equaliser has four centres and is trained by the
LBER algorithm

------ linear MMSE
e 4-1BER
» optimal

logg (BER)
b

0 10 100 1000
pe a2

Fig. 8 Influence of p° on the performeance of the LBER dalgorithin
Jor example 1 with SIR=12dB and SNR=20dB

The adaptive RBF equaliser has four centres and the algorithm has a
fixed g

channel state set %y had 64 points and the co-channel state
set % had 32 points. Thus, the number of states in # was
2048, and it was computationally too demanding to
implement the optimal Bayesian equaliser. Given
SNR =18dB (SINR =1588dB), RBF equalisers with 16
and 32 centres were trained by the LMS and LBER
algorithms, respectively. The learning rates in terms of the
estimated BER are plotted in Fig. 9 for the respective
adaptive equalisers, where the results were averaged over
100 runs. The LBER algorithm had p? = 1062 and g5 =0.3
for the 16-centre RBF equaliser, and p? = 842 and gy = 0.3
for the 32-centre RBF equaliser; while the LMS algorithm
had gy=0.3 for both the 16-centre and 32-centre RBF
equalisers. For the LMS training, the MSE convergence

IEE Proc.-Commun., Vol 150, No. I, February 2003
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Fig. 9 Contergence rates in terms of the estimated BER, averaged
over 100 runs, for example 2

SIR =20dB and SNR=[8dB

16-LMS: the 16-centre RBF trained by the LMS with gy =10.3;
32-LMS: the 32-centre RBF trained by the LMS with p,=0.3;
16-LBER: the 16-centre RBF trained by the LBER with gy =10.3 and
o’ = 1002

32-LBER: the 32-centre RBF trained by the LBER with py=0.3;
o = 8o,

e 16-LMS

‘\‘! 32-LMS

g 4
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01 R . . - )
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Fig. 10 Comvergence rates in terms of the MSE, averaged over
100 runs, for example 2

SIR =20dB and SNR =18dB

16-LMS: the 16-centre RBF trained by the LMS with pp=0.3;
32-LMS: the 32-centre RBF trained by the LMS with p=0.3

performance, averaged over 100 runs, are also given in
Fig. 10.

For the 16-centre RBF equaliser with the LMS training,
the estimated BER on average was extremely poor, even
though the corresponding MSE reduction was reasonably
large. For the 32-centre RBF equaliser with the LMS
training, the estimated BER on average was no better than
the performance of the linear MMSE equaliser. Again, it
was found that the estimated BERs varied greatly for
different runs. In some runs, the 32-centre RBF equaliser
with the LMS training were as good as the LBER training,
but for other runs the results were very poor. The LBER
algorithm was seen to produce consistent results. The BERs
of the linear MMSE equaliser as functions of SINR and
SNR are compared with those of the adaptive LBER 16-
centre and 32-centre RBF equalisers in Figs. [1 and 12,
respectively.
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Fig. 11 Performance comparison of three equulisers in terms of
BER against SINR for example 2

SIR=20dB

Adaptive RBF equalisers have 16 and 32 centres, respectively, and are
trained by the LBER algorithin
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Fig. 12  Performance comparison of three equalisers in terms of
BER against SNR for example 2

SIR=20dB

Adaptive RBF equalisers have t6 and 32 centres, and are trained by
the LBER algorithm

5 Conclusions

A novel adaptive stochastic gradient algorithm called the
LBER has been developed for nonlinear equalisers. This
algorithm has a sirnilar simplicity to the LMS but is directly
linked to the MBER criterion, the real goal of equalisation.
This LBER algorithm has been applied to train an adaptive
RBF equaliser in the presence of channel ISE, co-channel
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interference and additive Gaussian noise. Simulation results
have shown that the LBER algorithm achieves consistent
performance and has a good convergence speed. In
particular, a small adaptive RBF equaliser trained by the
LBER can closely approximate the optimal Bavesian
performance. The results also confirm that an adaptive
nonlinear equaliser trained by the LMS algorithm may
produce a poor BER performance, even though it
converges consistently in the MSE. Further research is
warranted to investigate theoretical convergence analvsis of
the LBER algorithm.
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