Sparse multioutput radial basis function network
construction using combined locally regularised
orthogonal least square and D-optimality

experimental design

S. Chen, X. Hong and C.J. Harris

Abstract: A construction algorithm for multioutput radial basis function (RBF) network
modelling is introduced by combining a locally regularised orthogonal least squares (LROLS)
model selection with a D-optimality experimental design. The proposed algorithm aims to
achieve maximised model robustness and sparsity via two effective and complementary
approaches. The LROLS method alone is capable of producing a very parsimonious RBF network
model with excellent generalisation performance, The D-optimality design criterion enhances the
model efficiency and robustness. A further advantage of the combined approach is that the user
only needs to specify a weighting for the D-optimality cost in the combined RBF model selecting
criterion and the entire model construction procedure becomes automatic. The value of this
weighting does not influence the model selection procedure critically and it can be chosen with

ease from a wide range of values.

1 Introduction

The radial basis function (RBF) network has widely been
studied [1-7]. For single-output nenlinear data modelling
or regression, the orthogonal least squares (OLS) algorithm
[4, 8] provides an effective mecans to construct parsimo-
nicus RBF networks with good generalisation perfor-
mance. The parsimonious principle alone, however, is not
entirely immune to over-fitting. If data are highly noisy,
small models constructed may still fit into noise.
A useful technique for overcoming over-fitting is regular-
isation [9-12]. From the Bayesian learning viewpoint,
regularisation is equivalent to adopting a hyperparameter
approach [13, 14], and recent work [15, 16] has combined
the OLS algorithm with an individually regularised
approach to derive an efficient single-output locally
regularised OLS (LROLS) algorithm. Optimal experimen-
tal designs {17] have been used to construct smooth model
response surfaces based on the setting of the experimental
variables under well controlled experimental conditions. In
optimal design, model adequacy is evaluated by design
criteria that are statistical measures of goodness of experi-
mental designs by virtue of design efficiency and
experimental effort. For regression models, quantitatively,

© IEE, 2003

IEE Proceedings online no. 20030253

DOI: 10.1049/ip-cta:20030253

Paper first received 21st August and in revised form 14th November 2002

S. Chen and C.J. Harris arc with the Department of Electronics
and Computer Science, University of Southampton, Southampton
S0O17 1BJ, UK

X. Hong is with the Department of Cybernetics, University of Reading,
Reading RG6 6AY, UK

JEE Proc.-Contral Theory Appl., Vol 150, No. 2, March 2043

model adequacy is measured as a function of the eigen-
values of the design matrix. The D-opiimality design
criterion [173 is most effective in optimising the parameter
efficiency and model robustness via the maximisation of
the determinant of the design matrix. The traditional
nonlinear model structure determination based on optimal
experimental designs is inherently inefficient and compu-
tationally prohibitive. Recently, effective model construc-
tion algorithms has been proposed for single-output
nonlinear modeliing based on the computationally efficient
OLS and LROLS algorithms, coupled with the D-opti-
mality experimental design {18, 19].

For the construction of multioutput RBF networks, one
approach is to fit multiple single-output models as, for
example, in the work [20], and an alternative is to construct
a single multioutput RBF network model as, for example, in
the work [21]. The latter approach has an advantage: a
selected RBF term must be significant in explaining all the
outputs, and this can result in a smaller number of regres-
sors than the former approach to achieve the same model-
ling accuracy. Recent work [22] has combined the local
regularisation approach with the multioutput OLS regres-
sion. This paper proposes to combine the multioutput
LROLS algorithm [22] with the D-optimality experimental
design. Computational efficiency of the resulting algorithm
is ensured by the orthogonal forward selection procedure.
The local regularisation enforces model sparsity and avoids
over-fitting while the D-optimality design optimises model
efficiency and parameter robustness. The coupling effects
of these two approaches in the combined algorithm further
enhance each other. The end result is an efficient yet simple
algorithm for constructing sparse multioutput RBF models
that generalise well, especially under highly noisy learning
conditions. Moreover, the model construction process
becomes fully automatic, and there is only one user
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specified quantity which has no critical influence on the
maodel selection procedure.

2 Multioutput radial basis function network

Consider the general discrete-time nonlinear system repre-
sented by the nonlinear model [23]

¥ =fylk— 1), ... ytk—n) ulk — 1), ... u(k — )
+ e(k) = F(x(k)) -+ e(k) (H
where
u(k) = fu, () - u, (K)]" € R™ (2
and
¥(k) =y (k) -y, (BT € R 3)

are the system input and output vector variables with
dimensions n; and »n,,, respectively, n,,, and n,, arc positive
integers representing the lags in u(k) and y(k), respectively,

e(k) = [e(k) e, (O] € R™ (4)

is the system white noise vector with covariance
Cov [e(k)]= ail,," and I, being the n, x n, identity matrix,
(k) ={y"(k = 1)y Gk — m"thk = 1) w'(k — )|

(5)
denotes the system “input” vector; and f(e) is the unknown
n,-dimensional system mapping. The system model (1) is
to be identified from an N-sample observation data set
{x(k), v(k)}¥=, using some suitable functional which can

approximate f(e) with arbitrary accuracy. One class of such
functionals is the RBF network model of the form

M
yilk) = k) + e,(k) = Z} 0, x(k)) + k), 1=k=N
=

(6)

for 1 <i<n,, where ¢{k) is the error between y,(k) and the
ith model output j(k), 8;; arc the RBF weights, the RBF
kernels or regressors

¢,(x(k)) = d(x(k) — ¢11; p;) Q]

¢; are the RBF centers and p; the positive width parameters.
Typically, each training data x(k) is considered as a
candidate RBF centre, and the total number of candidate
regressors in this case is M =N. Typical choices of nonli-
nearity ¢(e) are

P(v) =+ log(v),
dlvi p) =exp ~37)
P p) = (F + 1),
Plv; p) = NCEvTh

The multioutput RBF network model (6) can be written in
a more concise form as

thin-plate-spline
gaussian
®)

multiquadric

inverse multiquadric

y,=®8 +e, 1<i<n, )
by defining
A1) (1) 0
Yi= yi(:z) &= Ei(ZZ) S Q?J (10)
yi(N) &(N) Onts.
140

for 1 <i<wn,, and

P={p, &, - Pyl (11)
with
¢, = [, x@D) G xN, 1=j=M (12)
Further, define
Y=[V, ¥» - ¥, ©O=[6 0 - 8,]
E=[e e - e,] (13)

The RBF network model (6) is given in the matrix form as
Y=DO+E (14)

Let an orthogonal decomposition of the regression
matrix @ be

® = WA (15)
where
Loay, .- a1 m
A= |0 T (16)
o dym
0 0 1
and
W=lw w, o wyl (17

which satisfies wfw,:O, if j# 1. The RBF mode! (14) can
alternatively be expressed as

Y=WG+E (18)
where the orthogonal weight matrix
G=[g g - gl (19)
with
g =21 & gl 1=i<n, (20)
and G satisfies the triangular system

AO =G 21
Knowing A and G, ® can readily be solved from (21).

3 Multioutput LROLS algorithm with
D-optimality design

Before discussing this combined multioutput model
construction algorithm, its two components, the LROLS
algorithm and the D-optimality experimental design, are
briefly discussed.

3.1 LROLS algorithm

The multioutput LROLS algorithm is based on the foliow-
ing regularised error criterion [22]:

Jo(G, ) = trace (E'E + GTAG) = S (ele; + g7 Ag)

R, M n,
= Zl ele, + Z; (X; gj‘-’j,») 2 (22
= j: —

where A={} iy - iy]" is the regularisation parameter
vector, and the diagonal matrix A =diag{l,7o,.Ap}-
The original multioutput OLS algorithm [21] can be
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viewed as a special case with 4,=0, V¥j. After some
simplification, the criterion (22) can be expressed as [22]

trace (E'E + GTAG) = trace (Y'Y — GT(W'W 4+ A)G)
(23)

or

trace (E'E + GTAG) = iy?y, Z(Zgﬂ)(w w;+4;)

Jj=1
(29)
Normalising (23) by trace (YY)} yields

trace (E'E + G'AG) _ # (Zfl!&'z.i)(w_fr W+ )
trace (Y7Y) A trace (YY)

(25}

Define the regularised error reduction ratio due to the
regressor wy as

(i gh)wiw, + )
trace (YTY)

Based on this ratio, significant regressors can be selected in
a forward-regression procedure [22]. At the /th stage, a
regressor is chosen as the /th term of the subset model if it
produces the largest [rerr}; among the remaining M — I+ 1
candidates, and the selection is terminated at the A th
stage when

[rerr), =

(26)

M,
1= rerr], < & (27)
=
is satisfied, where 0 <& <1 i1s a chosen tolerance. This
produces a sparse model containing M.( < M) significant
regressors. The detailed algorithm selection procedure can
be found in [22]. Notice that, in the selection procedure, if
wiw; is too small (near zero), this term will not be selected.
Thus, any ill-conditioning or singular situations can auto-
matically be avoided. The Bayesian evidence procedure
[13] can readily be extended to the multioutput case and
thus used to “optimise” the regularisation parameters. This
leads to the updating formulas for the regularisation
parameters [22]

old n, LT
qnew ¥ fo] €; € l<j<M (28)

i N — ynld Ziilg},i ’
where ’
_ w}rwj .
Y= ——)-j T WJTWJ‘ (29)
and
M
y= ,; ¥ (30)

Usually a few iterations (typlcally 10 to 30) are sufficient
to find an optimal A.

1t is worth emphasising that, for this multioutput LROLS
algorithm, the choice of ¢ is less critical than the original
OLS algorithm. This is because multiple regularisers
enforce sparsity. If, for example, £ is chosen too small,
those unnecessarily selected terms will have a very large 4,
associated with each of them, effectively forcing their
wcights to zero [15, 16]. Nevertheless, an appropriate
value for ¢ is desired. Alternatively, the Akaike informa-
tion criterion {AIC) [24, 25] can be adopted to terminate
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the subset model selection process. The AIC can be viewed
as a model structure regularisation by conditioning the
model size using a penalty term to penalise large sized
models. However, the use of AIC or other information
based criteria in forward regression only affects the stop-
ping point of the model selection, but does not penalises
the regressor that may cause poor model performance (e.g.
too large variance of parameter estimate or ill-posedness
of the regression matrix), if it is selected. Or simply the
penalty term in AIC does not determine which regressor
should be selected. Optimal experimental design criteria
offer better solutions as they are directly linked to model
efficiency and parameter robustness,

3.2 D-optimality experimental design

In experimental design, the data covariance matrix ®7® is
called the design matrix. The least squares (LS) estimate of
@ is given by ® =(®"®)"'®’Y. Assume that (14) repre-
sents the true data generatmg process and ®7P is nonsin-
gular. Then the estimate @ is unbiased and the covariance
matrix of the estimate is determined by the design matrix

E[0] = 0,
{ Cov[®] x (&' &)™ 3D

It is well known that models based on the LS estimate tend
to be unsatisfactory for an ill-conditioned regression or
design matrix. The condition number of the design matrix
is given by

1 <i<M}

l <i< M)

_ max{x,,
- min{x;,

(2

with &;, 1 <i<M, being the eigenvalues of &P, Too
large a condition number will result in unstable LS
parameter estimate while a small condition number
improves model robustness. The D-optimality design
criterion maximises the determinant of the design matrix
for the constructed model. Specifically, let ®,; be a
column subset of @ representing a constructed M -term
subset model. According to the D-optimality criterion, the
selected subset model is the one that maximises
det(@L}DM‘). This helps to prevent the selection of an
oversized ill-posed model and the problem of high
parameter estimate variances. Thus, the D-optimality
design is aimed to optimise model efficiency and parameter
robustness.

The optimal experimental designs ‘however’ do not
provide means of parameter estimates and have to rely
on the LS or regularised LS methods for model parameter
estimate. [t is straightforward to venfy that max1mlsmg
det(d)M(DM} is identical to maximising det(WMWM)
or, equwalently, minimising —log det(WMWM) [18]
Note that

det(®'®) = f[l K; = det(AT) det(W' W) det(A)
= det(W'W) = ﬁ wiw, (33)
and A
— log(det(W™W)) = ¥ — log(w] w;) (34)

By utilising the additive property of (34) the D-optimality
design criterion can be incorporated naturally and effi-
ciently with the orthogonal forward regression procedure.
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3.3 Combined LROLS and

D-optimality algorithm

The combined LROLS and D-optimality algorithin can be
viewed as based on the combined criterion of

M
Je(G A, By =Jp(G. A) + B3 —log(w/w) (35}
J=
where f§ is a fixed small positive weighting for the
D-optimality cost. [n this combined algorithm the updating
of the model weights and regularisation parameters is
exactly as in the LROLS algorithm, but the selection is
according to the combined regularised error reduction ratio
defined as

(7 gL ] wy + 4)) + Blog(w]w))
fererr], = T
trace {Y'Y)

(36)

and the selection is terminated with an M -term model when
[cremr]), <0 for M, +1<iI<M (37)

The iterative RBF model selection procedure can now be
sumnmarised.

[nitialisation: Set 4;, | <j <M, to the same small positive
value (e.g. 0.001) and choose a fixed B. Set iteration
index /=1.

Step 1: Given the current A, select a subset model with M,
terms using the forward regression based on [crerr];.

Step 2: Update A using (28)-(30) with M=M, If A
remains sufficiently unchanged in two successive iterations
of a preset maximum iteration number is reached, stop;
otherwise set f=/+1 and go to step 1.

The introduction of the D-optimality cost into the algo-
rithm further enhances the efficiency and rebustness of the
selected subset model and as a consequence the combined
algorithm can often produce sparser models with equally
good generalisation properties, compared with the LROLS
algorithm. Note that the model selection procedure is
simplified and it is no longer necessary to specify the
tolerance £, as the algorithm automatically terminates
when condition (37) is reached. Unlike the combined
OLS and D-optimality algorithm [18], the value of weight-
ing f does not critically influence the performance of this
combined LROLS and D-optimality algorithm and § can
be chosen with case from a large range of values. This will
be demonstrated in the following modelling examples. It
should also be emphasised that the computational
complexity of this algorithm is not significantly more
than that of the OLS algorithm. This is simply because
after the first iteration, which has a complexity of the
OLS algorithm, the model set contains only M (<& M)
terms, and the complexity of the subsequent iteration
decreases dramatically. After a few iterations, typically
the model set will converge to a constant size of very
small M,. A few more iterations will ensure the conver-
gence of A. Thus, this combined LROLS and D-optimality
design algorithm offers an efficient proccdure to construct
sparse multioutput RBF models with excellent genera-
lisation performance without the need to apply costly
cross-validation.

4 Nonlinear system modelling examples

Three examples illustrate the effectiveness of the multi-
output LROLS algorithm with the D-optimality design and
to compare it with the combined OLS algorithm and
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D-optimality design. The RBF network model used in
the simulation employed the thin-plate-spline nonlinearity.

4.1 Simulated two-output time series process

The data set contained 1000 noisy observations which were
generated using the model

y1(k) = 0.1 sin(ayy(k — 1)

+ (0.8 — 0.5 exp(—pi(k — Ik — 1)

— (0.3 + 0.9 exp(—yi(k — DNk — 2) + ¢, (k)
¥a(k) = 0.6v5(k — 1) + 0.2p5(k — 1y, (k —2)

+ 1.2 tanh( ¥, (k — 2)) + ¢, (k)
(38)

given the initial conditions y;(0)=y,(—1)=p,(0)=
y2(—=1)=0, where the =zero-mean gaussian noise
e(k) = [ (k)ea(k)]” had a covariance 0.041>. The first 500
data samples were used for training and the other 500
samples for validating the obtained mode!. The underlying
dynamics of the simulated time series was governed by

Vi (k) = 0.1 sin(ry g (k — 1))

+ (0.8 0.5exp(—yiy(k — Wk ~ 1)

— (0.3 +09exp(—yi(k — Dya(k—2) (B9
Yaky = 0.6k — 1) + 02050k — Vytk —2)

+ 1.2 tanh( y,, (k — 2))

Given the initial conditions y(0)=ys(—1)=rn(0)=
vp(—1Y=0.1, the response of this noise-free time series
is depicted in Fig. 1. A two-output RBF network was used
to model this time series, with the input vector to the RBF
network given by

x(k) = [yy(k — Dk = 2pa(k = Dy, (k=217 (40)

As each training input was used as a candidate RBF center,
the number of candidate regressors in the RBF model (6)
was M =500

For the multi-output modelling, the covariance of
the modelling error E, Cow(E)=E'E, is a nyx#g
matrix. Typical scalar measures of modelling accuracy
include trace(Cov(E)} and det{Cov(E)). Since det(Cov(E))
is well-known to be a better measure of modelling accu-
racy, we will adopt the following scalar measure:

s,, = log(det(Cov(E))) 41

in our modelling comparison. Table 1 compares the values
of s,, over the training and testing sets for the RBF models
constructed by the combined LROLS and D-optimality
algorithm with those of the combined OLS and D-
optimality algorithm, given a wide range of § values. For
this example the true system noise e(k) had a
Sm=—06.43775. It can be seen that using the D-optimality
alone without regularisation the constructed models can
still fit into the noise unless the weighting § is set to some
appropriate value. Combining regularisation with D-optim-
ality design, the results obtained are consistent over a wide
range of f§ values and, effectively, the value of § has no
serious influence on the model construction process. The
generalisation capability of an identified model can best
be tested by examining the iterative mode! output. If the

IEE Proc.-Cantrol Theory Appl., Vol 150, No. 2, March 2003
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Fig. 1 TAvo-dimensional representation of noise-free time series
observations

Initial conditions yn(0}=vu(—1)=3p0)=yp(—1)=0.1

a Phase plot of noise free time series y,(k)

b Phase plot of noise free time series y (k)

iterative model output can closely realise the behaviour
shown in Fig. 1, the identified model truly captures the
underlying dynamics of the system and does not simply fits
the noise containing in the training data. Given the same
initial conditions, the 49-term RBF model identified by the
combined LROLS and D-optimality algorithm with §=1.0
were used to iteratively generate the network outputs ¥ {k),
i=1, 2, with the input

xy(k) = [P (h — Dk = 2000k — Dtk — 2)]T (42)

The iterative model outputs so genecrated are plotted in
Fig. 2. The constructed RBF model appeared to capture the
underlying dynamics of the system well.
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Fig. 2 Two-dimensional representation of iterative model outputs
Initigl conditions p.(0) =Pq{—1)=Fi(0) =P 1) =01

49-term RBF model was constructed by combined LROLS and
D-optimaiity algorithm with § =1.0 from very noisy data.

a Phase plot of iterative model output (k)

b Phase plot of iterative model output y;(k)

4.2 Simulated single-input two-output
nonlinear system

The data were generated using the model

k) = 0.5y, (k — 1) + utk — 1) 4 0.4 tanh{u(k — 2))
+ 0.1sin{my, (k — 2y (k — 1) + (k)
Yalk) = 03,0k — 1) + 0.1y (k — 2y (k — 1)
+ 04 exp(—it (k — Dy (k —2) + (k)
(43)

where the system input #(k) was uniformly distributed in
(=0.5, 0.5), and the system noises e(k) = [¢,(k) e2(£)]" were
gaussian with zero means and covariance 0.041,. The data
set contained F000 samples, with the first 500 data points

Table 1: Comparison of modelling accuracy for simulated two-output nenlinear time-series modelling example. Cov{E):
one-step prediction error covariance

D-optimality weighting §

Training set log(det{iCov(E)))

Testing set log(det{Cov{E)))

Number of terms

LROLS + D-opt OLS +D-opt LROLS +D-opt QLS + D-opt LROLS + D-opt OLS + D-opt
0.001 —6.78104 —18.1385 —6.07734 —5.3000 102 470
0.01 -6.68156 -10.1001 —-6.08521 -5.39079 62 302
Q.1 —6.55440 —6.8714% —6.09854 —5.95289 50 72
1.0 —6.43524 —6.51637 —6.03528 —6.04794 49 49
10.0 —6.38538 —6.43935 —-6.12874 —6.10428 44 44
1EE Proc.-Control Theory Appl, Vol 150, No. 2, March 2003 143



Table 2: Comparison of modelling accuracy for simulated single-input two-output nonlinear system example. Cov(E):

one-step prediction error covariance

D-optimality weighting f§ Training set log{det{Cov{E}}}

Testing set log{det{Cov(E))

Number of terms

LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt LROLS + D-opt OLS +D-opt
0.01 —6.59701 —10.8873 ~6.10548 —5.41334 4 320
0.1 —6.56962 —6.84887 —6.07789 ~5.95589 38 61
1.0 —6.49324 —6.56252 —6.13198 —6.08903 35 38
10.0 —6.50340 —6.55698 —56.11586 —6.06297 35 35

Table 3: Comparison of modelling accuracy for simulated single-input two-output nonlinear system
example. Cov(E): model iterative error covariance over entire 1000- sample data set

D-optimality weighting § Log{det(Cov(E))}

Number of terms

LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt
0.01 —5.65089 —5.37460 44 320
0.1 —5.66776 -5.65160 38 61
1.0 —5.65614 -5.71936 35 36
10.0 -5.72100 —5.70334 35 35

used for training and the last 500 data samples for model
validation. A two-output RBF network with the input
x(k) = [yt — Dy (6 — Dyale — Dpa(k — 2uk — 1)

(ke — 217 (44)
was employed to fit the noisy training data. The goodness

of a fitted model was also evaluated by computing the
iterative model outputs with the input

X (k) = [k — 1)V, (k — 20 n{k — 1patk — 2)
w(k — Du(k — )7 (45

Fig. 3 One-step prediction jitk) superposed on system output y(k)
over first 200 samples of test set for simulated single-input two-
output nonlinear system

35-term RBF model was identified by combined LROLS and
D-optimality algorithm with f=10.0
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For this example, the true system noise again had
§,=—06.43775. The modeiling accuracies over both the
training and testing sets are compared in Table 2 for the
two algorithms, the combined LROLS and D-optimality
and the combined OLS and D-optimality, with a range of f§
values. Again it is seen that, for the combined LROLS and
D-optimality algorithm, the model construction process is
insensitive to the value of f. The modelling accuracies in
terms of log(det(Cov(E,))) for the twe algorithms are
compared in Table 3, where Cow(E,) denotes the cova-
riance of the iterative model error. The one-step predictions
¥(k) of the 35-term RBF model produced by the combined

Fig. 4 Model iterative output yu(k} superposed on system, outpiit
V(&) over first 200 samples of test set for simulated single-input
two-output nonlinear example

35-term RBF model was identified by combined LROLS and
D-optimality algorithm with f=10.0

IEE Proc.-Control Theory Appl. Vol. 130, No. 2, March 2003



Table 4; Comparison of modelling accuracy for turbo-alternator modelling example. Cov(E): one-step prediction error

covariance, and Cov(E_); model iterative error covariance

D-optimality weighting f Training set log{det{CoviE})}

Training set log{det{Cov{E )

Number of terms

LROLS 4 D-opt OLS + D-opt LROLS +-D-opt OLS +D-opt LROLS + D-opt OLS + D-opt
0.00001 —18.4925 -28.2112 —-13.3163 —27.6729 54 96
0.0001 —16.5032 —20.8628 —13.7963 —18.0451 49 78
0.001 —16.2006 —15.7269 -13.4131 —13.4300 34 40

LROLS and D-optimality algorithm with f=10.0 are
illustrated in Fig. 3, and the iterative model outputs ¥k}
generated by the same RBF model are shown in Fig. 4.

4.3 Two-input two-output data set coilected
from turbo-alternator (appendix A11.3 in [26])

The data set contained 100 samples. The system inputs
were the in-phase current deviation u,(%) and the out-of-
phase current deviation u,{(k), and the system outputs were
the voltage deviation y,{k) and the frequency deviation
v32(k). The two-output RBF network with the input vector

x(k)y = [y (k — Dy (k — 2y, (k — 3)ya(k — Dyy(k = 2)
Vol = 3w (b — Dy (k — 2up(k — 1)
uy(k = 2)1" (46)

was used to fit this data set. As the data set was too short to
be divided into a training set and a testing set, the model
validation in this case could only be performed by eva-
luating the iterative model outputs Jg(k), i=1, 2, with
the input

xy(k) = [tk — Ty (b = 20050k — 3k — 1)
Pl = 200k — 3wy (k = Dy (k= 2)
itk = Duph — 21" (47)

=17
-1.8
-1.9
-2.0
-2.1
-2.2
-2.3
-2.4

210

=25}
28 L |

S.3r-
— ¥ik) ~

¥atk)

Fig. 5 One-step prediction pik) superposed on system output p(k)
Jor turbo-alrernator modelling example

34-term RBF model was identified by combined LROLS and
D-optimality algorithm with £ =0.001
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over the training set of 100 samples. Table 4 compares the
training accuracies of the two algorithms, the combined
LROLS and D-optimality and the combined OLS and
D-optimality, given three values of f. Although there
were no statistics over a testing data set to confirm
the generalisation capability of a resulting model, it can
be seen from Table 4 that the combined LROLS and
D-optimality algorithm performed more consistently with
different f§ values. Note that with §=0.001, the two
algorithms had similar training accuracies, suggesting
that the corresponding models should have similarly
good generalisation ¢apability. Figs. 5 and 6 depicted the
model one-step predictions and the iterative model outputs,
respectively, over the training data for the 34-term
RBF model constructed by the combined LROLS and
D-optimality algorithm with §=0.001.

5 Conclusions

A locally regularised OLS algorithm with the D-optimality
design has been proposed for constructing sparse
multioutput RBF network models. The efficiency of the
subset model selection procedure is ensured as usual with
the orthogonal forward regression. By combining the two
effective and complementary approaches for sparse and
robust modelling, namely the local regularisation and
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D-optimality experimental design, the end result is an
effective construction algorithm that is capable of produ-
cing sparse multioutput RBF network models with excel-
lent generalisation performance. It has been shawn that the
performance of the algorithm is insensitive to the
D-optimality cost weighting, and the medel construction
process is fully automated. The complexity of this
combined model construction procedure is only slightly
more than that of the efficient OLS algorithm.
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