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Abstract: A construction algorithm for multioutput radial basis function (RBF) network 
modelling is introduced by combining a locally regularised orthogonal least squares (LROLS) 
model selection with a D-optimality experimental design. The proposed algorithm aims to 
achieve maximised model robustness and sparsity via two effective and complementary 
approaches. The LROLS method alone is capable of producing a very parsimonious RBF network 
model with excellent generalisation performance. The D-optimality design criterion enhances the 
model efficiency and robustness. A further advantage of the combined approach is that the user 
only needs to specify a weighting for the D-optimality cost in the combined RBF model selecting 
criterion and the entire model constmction procedure becomes automatic. The value of this 
weighting does not influence the model selection procedure critically and it can he chosen with 
ease from a wide range of values. 

1 Introduction 

The radial basis function (RBF) network has widely been 
studied [I-71. For single-nutput nonlinear data modelling 
or regression, the orthogonal least squares (OLS) algorithm 
[4, 81 provides an effective means to construct parsimo- 
nious RBF networks with good generalisation perfor- 
mance. The parsimonious principle alone, however, is not 
entirely immune to over-fitting. If data are highly noisy, 
small models constructed may still fit into noise. 
A useful technique for overcoming over-fitting is regular- 
isation [9-I 21. From the Bayesian leaming viewpoint, 
regularisation is equivalent to adopting a hyperparameter 
approach [13,  141, and rccent work [15, 161 has combined 
the OLS algorithm with an individually regularised 
approach to derive an efficient single-output locally 
regularised OLS (LROLS) algorithm. Optimal experimen- 
tal designs [I71 have been used to construct smooth model 
response surfaces based on the setting of the experimental 
variables under well controlled experimental conditions. In 
optimal design, model adequacy is evaluated by design 
criteria that are statistical measures of goodness of experi- 
mental designs by virtue of design efficiency and 
experimental effort. For regression models, quantitatively, 
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model adequacy is measured as a function of the eigen- 
values of the design matrix. The D-optimality design 
criterion [I71 is most effective in optimising the parameter 
efficiency and model robustness via the maximisation of 
the determinant of the design matrix. The traditional 
nonlincar model structurr determination based on optimal 
experimental designs is inherently inefficient and compu- 
tationally prohibitive. Recently, effective model cnnstruc- 
tion algorithms has been proposed for single-output 
nonlinear modelling based on the computationally efficient 
OLS and LROLS algorithms, coupled with the D-opti- 
mality experimental design [18, 191. 

For the construction of multioutput RBF networks, one 
approach is to fit multiple single-output models as, for 
example, in the work [20], and an alternative is to construct 
a single multioutput RBF network model as, for example, in 
the work [21]. The latter approach has an advantage: a 
selected RBF term must be significant in explaining all the 
outputs, and this can result in a smaller number of regres- 
sors than the former approach to achieve the same model- 
ling accuracy. Recent work [22] has combined the local 
regularisation approach with the multioutput OLS regrer- 
sion. This paper proposes to combine the multioutput 
LROLS algorithm [22] with the D-optimality experimental 
design. Computational efficiency of the resulting algorithm 
is ensured by the orthogonal forward selection procedure. 
The local regularisation enforces model sparsity and avoids 
over-fitting while the D-optimality design optimises model 
efficiency and parameter robustness. The coupling effects 
of these two approaches in the combined algorithm further 
enhance each other. The end result is an efficient yet simple 
algorithm for constructing sparse multioutput RBF models 
that generalise well, especially under highly noisy learning 
conditions. Moreover, the model construction process 
becomes fully automatic, and there is only one user 
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specified quantity which has no critical influence on the 
model selection procedure. 

2 Multioutput radial basis function netwoipk 

Consider the general discrete-time nonlinear system repre- 
sented by the nonlinear model [231 

y ( k )  = f(y(k - I ) ,  . . . , ~ ( k  - n v ) ,  ~ ( k  ~ I ) ,  . . . , u(k - n,,)) 

+ e(k)  = f(x(k)) + e @ )  (1) 

(2) 

(3) 

where 

u(k)  = [ U , ( @ .  . . u,,(k)]' E R", 

y(k) = Ll~l(k)".y,n(k)l~ E R"" 
and 

are the system input and output vector variables with 
dimensions nj and no, respectively, nu, and H , , ,  are positive 
integers representing the lags in u(k) and y(k) ,  respectively, 

e(k)  = [e1&) ' ' ' e&lI' E R",, (4) 

is the system white noise vector with covariance 
Cov [e(k)] = o ~ I , , , ~  and I,,,, being the n ,  x n,, identity matrix, 

x ( k ) = [ y ' ( k -  ~ ) . . . y ' ( k - n , ) u ' ( k -  ~ ) . . . u ' ( k - n , , ) l '  

( 5 )  
denotes the system "input" vector; and f(o) is the unknown 
n,-dimensional system mapping. The system model ( I )  is 
to be identified from an N-sample observation data set 
{ x ( k ) ,  y ( k ) ] t =  using some suitable functional which can 
approximate f(o) with arbitrary accuracy. One class: of such 
functionals is the RBF network model of  the form 

M 

yi(k) = k ( k )  + e,@) = Oj, j4 j ( s (k) )  + q ( k ) ,  1 5 k 5 N 

(6) 

]=I 

for 1 5 i 5 n,, where e;(k) is the error between yi(k) and the 
ith model output j , ( k ) ,  Hj,i are the RBF weights, the RBF 
kernels or regressors 

dj(X(k))  = @(l/x(k) - cjll; p;) (7) 
c; are the RBF centers and pi the positive width parameters. 
Typically, each training data x(k) is considercd as a 
candidate RBF centre, and the total number of candidate 
regressors in this case is M = N .  Typical choices of nonli- 
nearity d(o) are 

4(v) = 9 log(v), thin-plate-spline 

$(vi p )  = (9 + p2)"*, multiquadric (8) 
I 

p )  = ~ , inverse multiquadric 4-7 
The multioutput RBF network model (6) can be written in 
a more concise form as 

y j = Q O j + e i ,  l 5 i 5 n 0  (9) 
by defining 

for I 5 i 5 n o ,  and 

@ ' = [ @ I  4* " '  4 M 1  (11) 

with 

4, = [ @ j ( x ( ~ ) ) d , ( ~ ( 2 ) ) . ~ ~ ~ ~ ( ~ ( N ) ) l I ' .  I Si 5 M (12) 

Further, define 

Y = [ Y 1  Y2 ' ' .  Y , , , ~ l l ,  @ = [ e ,  e2 " '  e",,], 
E = [ e l  e2 . . .  e"" 1 (13) 

Y = Q O + E  (14) 

The RBF network model (6) is given in the matrix form as 

Let an orthogonal decomposition of the rcgression 
Y 

matrix @ he 

where 

A =  

Q = W A  (15) 

I 

. .  . .  

0 " '  0 

and 

W = [ w l  w* . . .  WM 1 (17) 

which satisfies wJw,=O, i f j # / .  The RBF model (14) can 
alternatively he expressed as 

Y = W G + E  (18) 

where the orthogonal weight matrix 

G = [ g i  g2 . . .  &,,I (19) 

with 
I' gi  = [a.; g2.i . . .  g,~ , i l  , 1 5 i 5 U, (20) 

A @ = C  (21) 

and G satisfies the triangular system 

Knowing A and G, 0 can readily be solved from (21). 

3 Multioutput LROLS algorithm with 
D-optimality design 

Before discussing this combined multioutput model 
construction algorithm, its two components, the LROLS 
algorithm and the D-optimality experimental design, are 
briefly discussed. 

3.1 LROLS algorithm 
The multioutput LROLS algorithm is based on the follow- 
ing regularised error criterion [22]: 

JR(G, A )  = trace (ETE + G'AG) = C ( e l e ,  + gfAg,) 
n,, 

,=I  

I40 

where A =  [I.I j.* ... >+,Ir is the regularisation parameter 
vector, and the diagonal matrix A = diag{il ,iZ,...,iM}. 
The original multioutput OLS algorithm [21] can be 
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viewed as a special case with i y=O,  Vi. After some 
simplification, the criterion (22) can be expressed as [22] 

trace (ErE + GrhC)  = trace (YrY - G'(WTW + A)C) 
(23) 

or 

(24) 
Normalising (23) by trace (YTY) yields 

trace (E'E + G'hC) ,*I g;i)(w5vj + j3) 

trace (Y'Y) = ~ ,=I  trace (YrY) 

(25)  
Define the regularised error reduction ratio due to the 
regressor w/ as 

Based on this ratio, significant regressors can be selected in 
a forward-regression procedure [22]. At the Ith stage, a 
regressor is chosen as the Ith term of the subset model if it 
produces the largest [rerr], among the remaining M - I + 1 
candidates, and the selection is terminated at the M,th 
stage when 

&I. 
I - E: [ red ,  < 5 (27) 

/=I  

is satisfied, where 0 < 5 < I is a chosen tolerance. This 
prodnccs a sparse model containing A&( < < M )  significant 
regressors. The detailed algorithm selection procedure can 
he found in [22]. Notice that, in the selection procedure, if 
w:wl is too small (near zero), this term will not be selected. 
Thus, any ill-conditioning or singular situations can auto- 
matically be avoided. The Bayesian evidence procedure 
[ I 3 1  can readily he extended to the multioutput case and 
thus used to "optimise" the regularisation parameters. This 
leads to the updating formulas for the regularisation 
parameters 1221 

wherc 

and 
M 

Y=cYj 
j= I 

Usually a few iterations (typically I O  to 30) are sufficient 
to find an optimal A. 

It is worth emphasising that, for this multioutput LROLS 
algorithm, the choice of 5 is less critical than the original 
OLS algorithm. This is because multiple regularisers 
enforce sparsity. If, for example, 5 is chosen too small, 
those unnecessarily selected terms will have a very large i,, 
associated with each of them, effectively forcing their 
wcights to zero [15, 161. Nevertheless, an appropriate 
value for 5 is desired. Alternatively, the Akaike informa- 
tion criterion (AIC) 124, 251 can be adopted to terminate 
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the subset model selection process. The AIC can be viewed 
as a model structure regularisation by conditioning the 
model size using a penalty term to penalise large sized 
models. However, the use of AIC or other information 
based criteria in forward regression only affects the stop- 
ping point of the model selection, hut does not penalises 
the regressor that may cause poor model performance (e.g. 
too large variance of parameter estimate or ill-posedness 
of the regression matrix), if it is selected. Or simply the 
penalty term in AIC does not determine which regressor 
should he selected. Optimal experimental design criteria 
offer better solutions as they are directly linked to model 
efficiency and parameter robustness. 

3.2 D-optimality experimental design 
In experimental design, the data covariance matrix QT@ is 
called the desigc matrix. The least squares (LS) estimate of 
0 is given by 0 = (@'@)-''DrY. Assume that (14) repre- 
sents the true data generating process and QT@ is nonsin- 
gular. Then the estimate 0 is unbiased and the covariance 
matrix of the estimate is determined by the design matrix 

E [ 6 ]  = 0, [ Cov[6] c( (@r@)-l 

It is well known that models based on the LS estimate tend 
to be unsatisfactory for an ill-conditioned regression or 
design matrix. The condition number of the design matrix 
is given by 

with K ; ,  1s i s M ,  being the eigenvalues of @'a. Too 
large a condition number will result in unstable LS 
parameter estimate while a small condition number 
improves model robustness. The D-optimality design 
criterion maximises the detcrminant of the design matrix 
for the Constructed model. Specifically, let 'DM, be a 
column subset of @ representing a constructed M,-term 
subset model. According to the D-optimality criterion, the 
selected subset model is the one that maximises 
det(@L,@,u). This helps to prevent the selection of an 
oversized ill-posed model and the problem of high 
parameter estimate variances. Thus, the D-optimality 
design is aimed to optimise model efficiency and parameter 
robustness. 

The optimal experimental designs 'however' do not 
provide means of parameter estimates and have to rely 
on the LS or regularised LS methods for model parameter 
estimate. It is straightforward to verify that  maximising 
det(@L,@,,,,) is identical to maximising det(WL,WM) 
or, equivalently, minimising -log det(WL8W,w.) [IS]. 
Note that 

M 

,=I  
det(@'@) = n K~ = det(A')det(WrW)det(A) 

Y 

,=I  
= det(WrW) = n w:wi (33) 

and 

,U 

;= I 
- log(det(W'W)) = -log(wfwJ (34) 

By utilising the additive property of (34) the D-optimality 
design criterion can be incorporated naturally and effi- 
ciently with the orthogonal forward regression procedure. 
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3.3 Combined LROLS and 
D-optimality algorithm 
The combined LROLS and D-optimality algorithm can he 
viewed as based on the combined criterion of 

M 
J,-(C, A ,  p) = JR(G. A) +/I 2 - log(wTw,) (35) 

where /I is a fixed small positive weighting for the 
D-optimality cost. In this combined algorithm the updating 
of the model weights and regularisation parameters is 
exactly as in the LROLS algorithm, hut the selection is 
according to the combined rcgulerised error reduction ratio 
defined as 

j= I 

and the selection is tenninated with an M,-term model when 

[cren], 5 0 for Ms + 1 5 I5 M (37) 

The iterative RBF model selection procedure can now be 
summarised. 

fnitiulisafion: Set i./, I 5 j 5 M, to the same small positive 
value (e.g. 0.001) and choose a fixed /I. Set iteration 
index I =  1. 

Step I :  Given the current A, select a subset model with M, 
terms using the forward regression based on [crcrr],. 
Step 2: Update A using (28)-(30) with M=M1. If A 
remains sufficiently unchanged in two successive il:erations 
or a preset maximum iteration number is reached stop; 
otherwise set / = I +  I and go to step I .  

The introduction of the D-optimality cost into the algo- 
rithm further enhances the efficicncy and robustne,js of the 
selected subset model and as a consequence the combined 
algorithm can often produce sparser models with equally 
good generalisation properties, compared with the LROLS 
algorithm. Note that the modcl selection procedure is 
simplified and it is no longer necessary to specify the 
tolerance 5, as the algorithm automatically tei-minates 
when condition (37) is reached. Unlike the combined 
OLS and D-optimality algorithm [18], the value ofweight- 
ing f l  does not critically influence the performance of this 
combined LROLS and D-optimality algorithm and /? can 
be chosen with case from a large range of  values. This will 
be demonstrated in the following modelling examples. I t  
should also be emphasised that the computational 
complexity of this algorithm is not significantly more 
than that of the OLS algorithm. This is simply because 
after the first iteration, which has a complexity of the 
OLS algorithm, the model set contains only MI( <<M) 
terms, and the complexity of the subsequent .iteration 
decreases dramatically. After a few iterations, typically 
the model set will converge to a constant size of very 
small M,v. A few more iterations will ensure the conver- 
gence of A. Thus, this combined LROLS and D-optimality 
design algorithm offers an efficient proccdure to construct 
sparse multioutput RBF models with excellent genera- 
lisation performance without the need to apply costly 
cross-validation. 

4 Nonlinear system modelling examples 

Three examples illustrate the effectiveness of thi: multi- 
output LROLS algorithm with the D-optimality design and 
to compare it with the combined OLS algorithm and 
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D-optimality design. The RBF network model used in 
the simulation employed the thin-plate-spline nonlinearity. 

4.7 Simulated two-output time series process 
The data set contained 1000 noisy observations which were 
generated using the model 

v , ( k )  = 0.1 sin(Tv2(k - I ) )  

+ (0.8 - 0.5 exp(-?;(k - I ) ) )y , (k  - 1) 

- (0.3 + 0.9exp(-&k - l)))yl(k - 2) + c , ( k )  

.v2(k) = 0.6y2(k - I )  + 0.2y2(k - I)y2(k - 2) 

+ 1.2tanh(yi(k-2))+cz(k) 

( 3 8 )  

given the initial conditions yI(0)=yl(-1)=y2(O)= 
y+I) = 0 ,  where the zero-mean gaussian noise 
~ ( k ) =  [cl(k)c2(k)lr had a covariance 0.0412. The first 500 
data samples were used for training and the other 500 
samples for validating the obtained model. The underlying 
dynamics of the simulated time series was govemed by 

y d l ( k )  = 0.1 sin(nyd2(k - I ) )  

+(0.8 - 0.5exp(-y:,(k - 1)))ydl(k - I) 

-(0.3+0.9exp(-y:,(k- l)))ydl(k-2) (39) 

y d k )  = O . ~ Y &  - 1) + 0.2yd2(k - 1)yd2(k - 2) 

+ 1.2 tanh(y,,(k - 2)) 

Given the initial conditions ,vdl(0) =ydl(-l)  =ycn(0)= 
yd2(-l)=0.1, the response of this noise-free time series 
is depicted in Fig. 1. A two-output RBF network was uscd 
to model this time series, with the input vector to the RBF 
network given by 

x ( k )  [.YI(~ - I ) Y I ( ~  - 2)>~2(k - l)y2(k - 211' (40) 

As each training input was used as a candidate RBF center, 
the number of candidate regressors in the RBF model (6) 
was M= 500. 

For the multi-output modelling, the covariance of 
the modelling error E, Cov(E)=ErE,  is a no x n o  
matrix. Typical scalar measures of modelling accuracy 
include trace(Cov(E)) and det(Cov(E)). Since det(Cov(E)) 
is well-known to be a better measure of modelling accu- 
racy, we will adopt the following scalar measure: 

s , ~  = log(det(Cov(E))) (41) 

in our modelling comparison. Table 1 compares the values 
ofs, over the training and testing sets for the RBF models 
constructed by the combined LROLS and D-optimality 
algorithm with those of the combined OLS and D- 
optimality algorithm, given a wide range of p values. For 
this example the true system noise ~ ( k )  had a 
xn, = -6.43775. I t  can be seen that using the D-optimality 
alone without regularisation the constructed models can 
still fit into the noise unless the weighting /I is set to some 
appropriate value. Combining regularisation with D-optim- 
ality design, the results obtained are consistent over a wide 
range of p values a n 4  effectively, the value of p has no 
serious influence on the model construction process. The 
generalisation capability of an identified model can best 
be tested by examining the iterative model output. If the 
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-1.5 -1.0 -0.5 0 0.5 1.0 1.5 

Vdz(k-1) 
b 

Fig. 1 
observations 
Initial conditions yc,l(0)=yd,(-l) =y,n(O) =y,n(-I) = 0.1 
a Phase plot of noise free time series y , , (k)  
h Phase plot of noise free time series yd2(k) 

%-dimennsional represenration of noise-fiee rime series 

iterative model output can closely realise the behaviour 
shown in Fig. I ,  the identified model truly captures the 
underlying dynamics ofthe system and does not simply fits 
the noise containing in the training data. Given the same 
initial conditions, the 49-term RBF model identified by the 
combined LROLS and D-optimality algorithm with /{ = 1 .O 
mcrc used to iteratively generate the network outputs jd ; (k) ,  
i=  I ,  2, with the input 

The iterative model outputs so generated are plotted in 
Fig. 2. The constructed RBF model appeared to  capture the 
underlying dynamics of the system well. 

Fig. 2 Twu-din,ensionul represenfation of iterative model outputs 
Initial conditions jd,(0) =j,,,(- I )  =jdi (0)  =TE(-I) = 0.1 
49-tcrm RBF model was constructed by combined LROLS and 
D-optimalily algorithm with f l  =1.0 from very noisy data. 
a Phase plot of iterative model output j< , , (k )  
b Phase plot of iterative model output j a ( k )  

4.2 Simulated single-input two-outpuf 
nonlinear system 
The data were generated using the model 

y l ( k )  = 0.5j>,(k - 1) + u(k - 1) + 0.4tanh(u(k - 2)) 
+ 0.1 sin(nyl(k ~ 2))y2(k - I )  + t l (k)  

+ 0.4exp(-u2(k - l))yl(k ~ 2) + r2(k)  

y*(k)  = 0.3y,(k - I) + O.ly,(k - 2)yl(k ~ I) 

(43) 

where the system input ~ ( k )  was uniformly distributed in 
(-0.5, 0.5), and the system noises ~ ( k )  = [ c , ( k )  c2(k)]'were 
gaussian with zero means and covariance 0.0412. The data 
set contained 1000 samples, with the first 500 data points 

Table 1: Comparison of modelling accuracy for simulated two-output nonlinear time-series modelling example. CovIE): 
one-step prediction error covariance 

D-optimality weighting 0 Training set log(det(Cov(E))) Testing set log(det1CovlE))) Number of terms 
LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt 

0.001 
0.01 
0.1 
1.0 
10.0 

-6.78104 - 18.1385 -6.07734 -5.3000 102 470 
-6.68156 -10.1001 -6.08521 -5.39079 62 302 
-6.55440 -6.87149 -6.09854 -5.95289 50 72 
-6.43524 -6.51637 -6.03528 -6.04794 49 49 
-6.38538 -6.43935 -6.12874 -6.10428 44 44 



Table 2: Comparison of modelling accuracy for simulated single-input two-output nonlinear system example. Cov(El: 
one-step prediction error covariance 

D-optimality weighting p Training set log(det(Cov~lEll1 Testing set log(det(Cov(ElI1 Number of terms 
LROLS + D-opt OLS t D-opt LROLS + D-Opt OLS + D-opt LROLS + D-opt OLS + D-opt 

0.01 -6.59701 -10.13873 -6.10548 -5.41334 44 320 
0.1 -6.56962 -6.84887 -6.07789 -5.95589 38 61 
1.0 -6.49324 -6.!56252 -6.13198 -6.08903 35 36 
10.0 -6.50340 -6.!55698 -6.1 1586 -6.06297 35 35 

Table 3: Comparison of modelling accuracy for simulated single-input two-output nonlinear system 
example. Cov(Edl: model iterative error covariance over entire 1000- sample data set 

D-opfimality weighling /) Log(detlCov(EdllJ Number of terms 
OLS + D-opt LROLS + D-opt OLS + D-opt LROLS+ D-opt 

0.01 
0.1 
1 .o 
10.0 

-5.65089 -5.37460 44 
-5.66776 -5.65160 38 
-5.65614 -5.71936 35 
-5.72100 -5.70334 35 

320 
61 
36 
35 

used for training and the last 500 data samples fix model 
validation. A two-output RBF network with the input 

x ( k )  = [yt(k - l)y,(k - 2)y,(k - I)l',(k - 2jrr(k ~- 1) 

u(k - 2)17 (44) 

was employed to fit the noisy training data. The goodness 
of a fitted model was also evaluated by computing the 
iterative model outputs with the input 

v. ikl - 1.51 

For this example, the true system noise again had 
s,~ ,  = -6.43775. The modelling accuracies over both the 
training and testing sets are compared in Table 2 for the 
two algorithms, the combined LROLS and D-optimality 
and the combined OLS and D-optiniality, with a range of f l  
values. Again it is seen that, for the combined LROLS and 
D-optimality algorithm, the model construction process is 
insensitive to the value of /?. The modelling accuracies in 
terms of log(det(Cov(Ed))) for the two algorithms are 
compared in Table 3, where Cov(E,,j denotes the cova- 
riance of the iterative model error. The one-step predictions 
$(kj of the 35-term RBF model produced by the combined 

1 .o 

0.5 - 
Q o  
i 

-0.5 

-1 .o 

1 .o 

0.5 

- 
s o  
i 

4 . 5  

-1.0 

-1.5-' 

0.5 

- 
6 0  2 

-0.5 

U -1 .o 
i 

500 550 600 650 700 

k 

Fig. 3 One-step prediction j (k )  superposed on sysrem outputy(k) 
owrJksr 200 sample,< of test set for .simirlored single-i,rpur IWO- 
output nonlineor .s,wem 
35-term RBF modcl was identified by cvmbined LROLS and 
D-oprimality algorithm with f i =  10.0 
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-1.5 l .ot  

""I 
500 550 600 650 700 

k 

Fig. 4 Model iremtive ourpurjd(k) superposed on system,oirtprit 
ifi) over first 200 samp1e.y of tesr set for siniulated single-inpnt 

35-term RBF model was identificd by combined LROLS and 
D-optimality algorithm with f i =  10.0 

rwo-ourput nonlinear example 
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Table 4 Comparison of modelling accuracy for turbo-alternator modelling example. CovlEl: one-step prediction error 
covariance, and Cov(Ed]; model iterative error covariance 

D-optimality weighting 0 Training set log(det(CoviE)ll Training set log(detiCovlE,l)l Number of terms 
LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt 

0.00001 -18.4925 -28.2112 -13.3163 -27.6729 64 96 
0.0001 -16.5032 -20.8628 -13.7963 -18.0451 49 78 
0.001 -15.2006 -15.7269 -13.4131 -13.4300 34 40 

LROLS and D-optiniality algorithm with f i =  10.0 are 
illustrated in Fig. 3, and the iterative model outputs j.,Xk) 
generated by the same RBF model are shown in Fig. 4. 

4.3 Two-input two-output data set collected 
from turbo-alternator (appendix A 11.3 in [261) 
The data set contained 100 samples. The system inputs 
were the in-phase current deviation ul(k) and the out-of- 
phase current deviation u2(k). and thc system outputs were 
the voltage deviation y l ( k )  and the frequency deviation 
y2(k) .  The two-output REF network with thc input vector 

x ( k )  = [ Y , @  - IlYl(k - 2)Yl@ - 3 ) M  - I)Y*(k - 2)  
n ( k  - 3)U,(k - l ) l l l (k  - 2)n2(k - 1) 

U L k  - 31' (46) 

was used to fit this data set. As the data set was too short to 
be divided into a training set and a testing set, the model 
validation in this case could only be performed by eva- 
luating the iterative model outputs J'd;(k), i =  I ,  2, with 
the input 

x'f(k) = [,;,;I@ - l),:,,l(k - 2),CdI(k - 3 5 d , ( k  - 1) 
.Cd2(k - 2)jd*(k - 3)u,(k - l )rr , (k  - 2) 

u2(k - I)u2(k - 2)]' (47) 
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over the training set of 100 samples. Table 4 compares the 
training accuracies of the two algorithms, thc combined 
LROLS and D-optimality and the combined OLS and 
D-optimality, given three values of p. Although there 
were no statistics over a testing data set to confirm 
the generalisation capability of a resulting model, i t  can 
be seen from Table 4 that the combined LROLS and 
D-optimality algorithm performed more consistently with 
different [j values. Note that with [J=O.OOl,  the two 
algorithms had similar training accuracies, suggesting 
that the corresponding models should have similarly 
good generalisation capability. Figs. 5 and 6 depicted the 
model one-step predictions and the iterative model outputs, 
respectively, over the training data for the 34-term 
RBF model constructed by the combined LROLS and 
D-optimality algorithm with / I = O . O O I .  

5 Conclusions 

A locally regularised OLS algorithm with the D-optimality 
design has been proposed for constructing sparse 
multioutput RBF network models. The efficiency of the 
subset model selection procedure is ensured as usual with 
the orthogonal forward regression. By combining the two 
effective and complementary approaches for sparse and 
robust modelling, namely the local regularisation and 
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D-optimality experimental design, the end restilt is an 
effective construction algorithm that is capable nf produ- 
cing sparse multioutput RBF network models with excel- 
lent generalisation performance. It has been shown that the 
performance of the algorithm is insensitive to the 
D-optimality cost weighting, and the model construction 
process is fully automated. The complexity of this 
combined model construction procedure is only slightly 
more than that of the efficient OLS algorithm. 
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