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Abstract

In this paper, the effect of roundoff noise in a digital cofigr is analyzed for a digital feedback
control system. An analytical expression for the roundafise gain, defined as the ratio between
the variances of the output error and the rounding errorptained. The problem of identifying
the minimum roundoff noise realizations can be solved uamexisting procedure. Noting that the
optimal realizations are fully parametrized, based on gmpmwhial operator approach a new sparse
controller realization is derived. This realization is agealization of the direct forms in the classical
shift operator and the prevailing delta operator. It pregids more degrees of freedom to reduce the
roundoff noise. The problem of finding optimal polynomiakoators can be solved with exhaustive
search, and a design example is given. It is shown that wihptioposed sparse realization the
optimal polynomial operators can outperform the shift- detfa-operators.

Keywords: finite word length, digital feedback control systems, roifii noise, polynomial operators,

optimal realizations, sparse realizations.

1 Introduction

In most of the discrete-time control systems, the designgitaticontroller has to be implemented with
digital device such as a digital control processor. Due tofthite word length (FWL) effects, the
actually implemented controller is different from the dgmd one. Therefore, the actual performance of
the system may be very different from the desired one. Gneeaking, there are two types of FWL
errors in the digital controller. The first one is perturbatof controller parameters implemented with
FWL and the second one is the rounding errors that occur ihragtic operations. Typically, effects

of these two types of errors are investigated separatelg. effiects of the first type of FWL errors are
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classically studied with a transfer function sensitivitgasure [1],[2]. More recently, the effects of the
parameter errors have been investigated with some syafibistness related measures, such as the one
based on the complex stability radius [3],[4] and those thasepole sensitivity [5]-[11]. The second type

of FWL errors is usually measured with the so-called rouhdoise gain. The effects of roundoff noise
have been well studied in digital signal processing, paldity in digital filter implementation. However,

it was not until the late 1980s that the problem of optimaitdigcontroller realizations minimizing the
roundoff noise gain was addressed. For example, a roundis main was derived for a control system
with state-estimate feedback controller and the corredipgnoptimal realization problem was solved

in [1], while the roundoff error effect on the LQG performamnwas investigated in [7] and the optimal
solution was obtained by Liat al [8]. The problem of finding the optimum roundoff noise strurets of

digital controllers in sampled-data system was investigié [9].

Recently, the delta operator based realizations have kedred in [12]-[14]. It was shown that
under certain mild conditions the realizations in the defparator yield a better performance against
the FWL effects than those realizations in the shift operaltoshould be pointed out that the optimal
realizations obtained so far are fully parametrized andftban a practical point of view it is desired to
implement the controller in such a realization that not griblds a very good performance against the
FWL effects but also possesses as many trivial parametelz implemented as possible. The problem
of finding sparse controller realizations was considereddmeral researchers. In [15], the “optimal”
sparse controller realization was computed with loop ogefidis realization is obviously not optimal
in the sense that it does not minimize the roundoff noiseérctbsed-loop system. The sparse controller
structures that maximize the stability robustness of cdeep were investigated in [5],[16]. It should
be pointed out that in these approaches complicated nuahatgorithms were utilized and the positions

of trivial parameters are not predicted.

The use of delta operator, defined &as= ZT;l with T the sampling period, was first promoted
by Peterka [17] and Middleton and Goodwin [18] in estimatamd control applications. Two ma-
jor advantages are claimed for the use of this operator: @elieally interesting unified formation of
continuous-time and discrete-time filtering and contrelaty, and a range of practically interesting nu-
merical advantages connected with FWL effects. Later anntlmerical properties of the delta operator,
whereT; is replaced by a positive factdx, were investigated in [2] from a pure algebraic point of vyiew
where it was found that one can make the transfer functiorlita @perator have better numerical prop-
erties in the case where the poles of the transfer functierclaser toz: = +1 thanz = 0. This means

that the delta operator based realizations may not yieldtt@rbgerformance if some of poles of the

!By trivial parameterswve mean those that ageand=1, which can be digitally implemented exactly and cause nading
errors. Other parameters are, therefore, referred tmadrivial parameters



transfer function are far away from= +1. In [2], the concept of polynomial operators was proposed.
One of the main objectives in this paper is based on this garioaderive a sparse controller realization

and analyze its performance in terms of roundoff noise faserdte-time feedback control system.

2 Optimal roundoff noiserealizations

Throughout the paper, a bold type symbol denotes a vectotatnixwwith appropriate dimension. The
discrete-time feedback control system considered in #gepis depicted in Figure 1. It is well known
that the digital controllec’;(z) can be implemented with its state-space equations:
Xp+1 = Axg + Bug
yr = Cxy, + duy, } @)
wherewu, andy, are the output of the digital plar®;(z) and controllerC,(z), respectively, while
i is the input signal of the closed-loop system’d € RP*P B € RP*!, C € R'™P andd € R.

R = (A, B, C,d) is called a realization of’;(z), which satisfies
Cy(z) =d+ C(zI — A)"'B. (2)

DenoteSc, as the set of all realizatior(\, B, C, d). It should be pointed out th&, is an infinite set.
In fact, if Ry = (Ao, Bg, Co,d) € Sc,, Sc, = {(A,B, C,d)} is characterized with

A=T"'A,T, B=T 'B;, C=C,T, (3)

whereT € RP*P is any non-singular matrix. Usually, such @his called a similarity transformation.
Once an initial realizatiolR, is given, different controller realizations correspondlifferent similarity

transformationdr.

2.1 Dynamic scaling scheme

It is well know that signal scaling is crucial in digital ingghentation. When two’s complement and less-
than-double precision fixed-point arithmetic are used,mation nodes are allowed to overflow except
before multiplier (see for example [19]). Under the assuompthat the input;, and the output:;, of the

closed-loop system are properly pre-scaled, the only Egmbich may have overflow are the elements

of the controller state vector;,, which have to be scaled.

Note thatuy = Py(z)[rr + yk]. Assuming thatP,(z) is strictly proper and has a realization
(A,,B,,C,), one has

Vit1 = A,V + B rg + vk } 4)

up = C,vy,



whereA , € R9%4, B, € R9*!, andC, € R'*4. Denote

xh(k) = (v «f). (5)
It follows from (1) and (4) that
Xci(k +1) = Agxa(k) + Byrg (6)
where
A= (AZ o B;") B, = (%) . @)

There exist different scaling schemes for preventing Wéemfrom overflow. One of the popularly
used schemes is tlig-scaling, which means that each element of the controlbge stectorx, should

have a unit variance when the inptitis a white noise with a unit variance. This can be achieved if

whereK is given by
= Ak T (AT\F
K=Y ALB,BT (A]), (9)
k=0
satisfying
K =A,KA! +B,B’. (10)

In the sequel, all the realizations under discussion annaesgl,-scaled.

2.2 Roundoff noise analysis

Another practical issue in digital implementation is roingd Assume that a fixed-point implementation
is considered, where the coefficients in the realizationim@emented withB, bits. If the micro-
controller's accumulator haB,. + B; bits, any intermediate signal has to be rounded midits before
multiplied with a non-trivial coefficient. LeP = P; + P, whereP; is a trivial matrix andP ; contains

no trivial elements excepts, forP = A, B, C. Then a more practical digital controller modél is

Xp 1 = Aixg + ApQlxg] + Biug + BrQlug] } 1)
vi = Cixj + CQIx;] + dQlug]
whereQ[z] is the quantizer that rounds the numbeo B; bits.
Denote
A * * A * *
ex(k) = Qlxt] — x5, eu(k) = Qui] —uy, (12)

2Here, itis assumed that the ideal controller realizationtmaimplemented exactly witB, bits.
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as the quantization errors. Traditionally, these quatitineerrors are modeled as statistically indepen-

dent white sequences (see, e.g., [20],[21]) and
T
() (s | v s

where E[-] denotes the ensemble average operdtdhe transposed operatay; (k) the discrete Dirac

delta functiono? = 2725 /12 andI is the identity matrix of proper dimension. It follows frorh)(and

(11) that

ez(k+1) = Aey(k) + Bey(k) + Afey(k) + Brey(k) } (14)
ey(k) = Ceg(k) + dey (k) + Creg(k) + dey (k)
where
eu(k) = up —ug, ex(k) =xi —xp, ey(k) =y — Yk (15)
Noting e, (k) = P;(z)e,(k), one can show that
eu(k) = Ccl(zI - Acl)ichl (:zg:g > é Hu(z) ( :zg:g > (16)

whereA . is given in (7) and
_ [ B,Cy dB, r [ CT
Bcl - ( Af Bf > ) Ccl - 0 . (17)

Since the quantization errogg(k) ande, (k) are statistically independent white sequences (see (13)),
it follows thate, (k) ande, (k) are wide-sense stationary sequences. Dengig 2 Eley(k)ey(k—1)] as
the autocorrelation function ef, (k) andT",(z) the corresponding spectral density function. According

to the well known results in [22], one has
Ly(2) = Hu(z)Hg(z_l)Ug (18)
and

I ; 1 /7 . .
Bl = 5 [ Tue)do = | o [T HI(e ) H, () do] of

tr [BZ;WBd] o2 (19)

wheretr[-] denotes the trace operator aWd is the observability gramian of the realization Hf, (=)

(see (16)) defined by:

AN k
W =Y (Al) chcaal, (20)
k=0
which satisfies
W =ALWA, +ClC,. (21)
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The roundoff noise gain, denoted @sis defined as

2
¢ & Elea(®)] 22)
g,
0
and therefore
G=tr [BZ}WBd] . (23)

For a givenly-scaled controller realization, one can compute the cpomding roundoff noise gain.
Different controller realizations yield differert¥ values. The interesting problem is to identify those
realizations that give the minimui®. This problem is very difficult due to the decompositibn =
P; + P, for P = A,B, C. Inthe remainder of this section, we will consider the cabereP; = 0
for P = A, B, C, which corresponds to the classical shift operator pararzations and makes the

optimization problem tractable.

2.3 Realization dependence and optimal realizations

Let (Acla Bcla Ccl) and (AO B,

clr el

CY) be two realizations o, (z) defined by (7), (16) and (17), cor-
responding to the two digital controller realizatioRs 2 (A,B,C,d) andRyg 2 (A, By, Cy, d) that

are related with (3), respectively. It can be shown that

—1 \
10 10
—1
10 T 0
Bcl:(0T> Bgl(“), (24)
10
Ccl Ccl (0 T>
It then turns out that
T O
Hu(z>=H2<z>(0 I), (25)

whereH! () is independent oT', and hence
To\ T 0
AT A70
W_<OI>W<OI> (26)

whereW? is similar toW defined in (21) but corresponds to the controller realizeRg.

Clearly,
T
_ T 0 T — T 0
B,WB, = ( o I) (BY) w032l< 0 1)' 27)
Let
T A [ Wy WY
B)) W'B) = ) L2 28
( cl) cl ng QO ( )



have the same partition as
T 0
(T9). -

G = tr[TTWT] + tr[Qy] (30)

It is easy to see that

whereW, andQ are independent df'.

Similarly, one has

-1 -T
_ (10) oo(T0
K_(OT> K (0T> (31)
Let
- A K Ky
<t (X ) -
and
>0 A K’ K,

have the same partition as

10
(12) o

The optimal realizations of the digital controller are th@usions to the following minimization

Clearly, K = T'K°T~ 7.

problem:
At © (39)
(T-IKOT=T)(j,/)=1, Vj

In [9], a solution to the above problem was given. It has beemd that the optimal realizations are
generally fully parametrized with non-trivial parametersis is a disadvantage since it will increase the
implementation complexity and slow down the processinguni-a practical point of view, it is desired
to implement the digital controller with such a realizatithat not only has a very robust performance
against the FWL effects but also possesses as few non-fsaiameters as possible. In the next section,
based on the concept of the polynomial approach we will degivnew controller structure which has

very nice numerical properties and a very sparse form.

3 Derivation of a new sparse controller structure

The digital controllerC,(z) is usually given by its transfer function

b b2+ b2+ by A N(2)
2P taP it tap 1 t+a,  D(2)

Ca(2) (36)
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Define

j:172a"'7p7 (37)

wherev;, Vj, takes values from the trivial parameter get1,0,1}, and{A; > 0}, as to be seen
later, are determined fdp-scaling. The denominator and numerator(df(z) given by (36) can be

re-parametrized with

p p
D(z)=K Hpj—i-mej—i—---—i-ap_lpp—i—ap , (38)
J=1 Jj=2
p p
N(z) =K /BOHpj+/BlHpj+"'+/6p—1pp+/8p ) (39)
7j=1 7j=2

wherekC = [T_, A;. ThereforeCy(z) can be re-parametrized wiflv,,, 5, } in the polynomials{p;},
j=127 J

calledpolynomial operators

_ -1 _ _
:,30+,BIP11+"‘+,6p71H§:1,0j1+:6p ?:193-1

Ca(z) — — . (40)
Denoting
1 b() 1 /BO
ap b a1 b1
v, £ BV N I T V2| | (41)
ap by Qp Bp
one has
V,=KMV,
(42)
V, = KMVg
or
V,=K"M1V,
(43)
Vg = K-'M~1'v,

whereM e R®+Dx(»+1) js a lower triangular matrix whoseth column is determined by the coeffi-

cients of the polynomialT”_,, p; form =1,2,--- ,pandM(p +1,p + 1) = 1.

The corresponding input and output relationship to (40hént

p—1 P
yk = —oupy gk — - — o1 [L o e —ap [ 0j 'k
i j=1
L U
+Bouk + Bipy uk + -+ + Bt [[ o un + By [ £5 s (44)
i j=1

It is easy to see that the output can be computed with theAfitpequations (also see Figure 2)
Yk = Bouk + wik,
Wi = Pj_l[ﬂjuk — QY + Witk (45)

Wk = Py [Bptir — pYi]-



3.1 Equivalent state-spacerealization

From the definition (37), one can implemep]T1 with the realization depicted in Figure 3, where the
“input” to the operatorp;1 is Bjur — ajyr +wjp1, forj =p,p—1,---, L with wyyq , = 0 (see (45)).
We choos€z; ;. } indicated in Figure 3 as the state variables and dexptas the state vector. Noting
Tjk+1 = ViTjk + Bjue — @Yk + Wik,
Wik = DjTiks (46)
Yk = Pouk + A1,

it can be shown that (45) is equivalent to the following stgtace realization

Xk :Axk-l-f;uk
+ = (47)
Y = ka —i—duk
where
7y 0 0--- 0 0 —Aja; Ay O 0 0
0 720 0 0 —Alozg 0 Ago 0
A . + SA+A;, (48
O o0 o0 --- fyp_l 0 —AlOtp_l 0 0 -0 Ap
O 0O0--- 0 Yp —Alozp 0 0 -0 0
B:V5(2:p+1)—ﬁova(2:p—|—1), CZ(AIO"'O)a (49)

with V(2 : p + 1) representing the vector formed with 2nd(jo+ 1)th elements of the vectdv , for
z = a, 3. Clearly, the controller realizatiopA, B, C, d) is very sparse with,; diagonal and possesses

only 3p + 1 non-trivial parameters.

It can be verified easily that the realizatioh, B, C, d) can be transformed with a diagonal similarity
transformation, denoted &B,., into a realizationf A, B, C°, d), which has exactly the same form as
(A, B, C,d) given in (48) and (49) except that the parameters, 3} correspond ta\; = 1, V7, that
isA’=T,'AT,., B’ =T,'B, C° = CT,,, or

A=T,A'T; B=T1,B° C=C'T,, (50)
where

j
Ty = diag(di,dz, -+ dp—1,dp), dj = [[ A, Vi (51)
m=1

As mentioned before, the controller realization (47) stdaéi,-scaled and this can be achieved by

choosing{A;} properly. In fact, with (7), (24) and (10) it can be shown that

T
N I 0\ (I O
K‘(o TSC>KO<0 TSC> ’ (52)



whereK andK, are the controllability gramians, corresponding to thetxaler realizationg A, B, C, d)
and (A%, B, C°,d), respectively. Clearly, thé, scaling is achieved i?K°(j,j) = 1 for j =
g+1,9g+2,---,q+ p, which leads to

KO(]?])
Ko(j —1,7—1)

A1=\/f<o(q+1,q+1), Aj—q=J v i=a+2,q+3,.q+p.  (53)

3.2 Optimal polynomial operators

As mentioned beforey; takes value from the finite sét,:
S’Y é {_17 07 1} (54)

For given{v,} andA; = 1, Vj, one can compute the correspondiftg;, 5} with (43), and hence the
realization(A°, B, C°, d) andK, can be computed with (48)-(49) and (10), respectively. [Flsealing
matrix T, can be obtained with (53) and hence thescaled realizatioiA, B, C, d) can be computed
steadily, with which the correspondind’ can be evaluated with (21). Therefore, the roundoff noise ga

G can be calculated with (23), wheRs, is given by (17) withA ; by (48) andB; = B,C; = C.
Different sets of{; } yield different values of roundoff noise gain. The inteiggiproblem is to find

the optimal sets ofy; }, which are the solutions to

min G. (55)
’Y]‘es"h v.]

Though G is a highly nonlinear function of;}, the problem can be solved easily since the space

{7+ v €8,} isfinite.
4 A design example

We now present a design example to illustrate the desigredwoe. The digital planP;(z) and con-

troller Cy(z) are presented with the following canonical forms, denot&R aandR., respectivelyR.,

is given by:
3.3555 1 000 —0.1183
—49154 01 00 —0.7249
A, = 40734 0010 |, B, = 0.6878 |,
—1.8227 0 0 0 1 —0.6510
0.3093 0 0 0 0 —0.0425
C.=(10000)
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R. is given by:

2.1016 1 0 0 0 0 0.1971
~2.2306 0 1 0 0 0 —0.7401
A 14467 00100 | o _ | 11527
¢ —0.4901 00010 |> ¢~ | —1.0041 |’
0.1954 0 0 0 0 1 0.4857
~0.0231 000 0 0 ~0.0912
C, = (1 0000 0), d = 0.0460

With R, as the initial digital controller realization and the pldRt, we compute the corresponding
K, and W, based on whiciK, and W, can be obtained. Using the same procedure as given in
[9], an optimal realization in the shift operator, denotedRg”?, can be found by solving (35). The

corresponding minimum roundoff noise gair6i®351 x 10,

With R.., one can obtain the controller transfer function coeffitié¥i, andV,. For a given set of
{v;}, one can compute th¥, andVg for A; = 1, Vj, using (43), and hence the corresponding con-
troller realization(AO, B, CO). The corresponding controllability and observability mgians defined
by (10) and (21), denoted &6° and W?, respectively, can then be computed with the MATLAB com-
manddgram.m. With K, the coupling coefficient$A; } can be obtained with (53). With the obtained
{A;}, one can compute the correspondi¥g and Vg using (43) hence the corresponding controller
realization(A, B, C) as well as the observability grami&¥. The roundoff noise gais is computed
with (23) with W replaced byW andB,; given by (17), whereA ; = A, as defined in (48)B; = B
andC;y = C as defined in (49). The problem of finding optimal polynomipétors (55) can be solved
with an exhaustive research (a total36f= 729 combinations). Table 1 shows the roundoff noise gains
for four different sets of polynomial operators, in which 1 0 0 1 1) is known to yield the optimal

polynomial operators.

Comment 4.1: The combination0 0 0 0 0 0) for {,} corresponds to the (diagonalliy-scaled
version of the canonical controller realizatiB; in the shift operator. The corresponding roundoff noise
gain is much higher than that of the optimal realizafl##’ in the shift operator. While the combination
(1 11111)for{y}isthe (diagonally),-scaled version of the canonical controller realization in
the delta operator. The corresponding roundoff noise gamuch smaller than that of the optimal fully
parametrized realization in the shift operator. For thetrdler realization corresponding to the operator
polynomial operator$l 1 0 0 1 1), it yields a roundoff noise which is just half of that prodddey
the delta-operator based realization mentioned aboveach i is also simpler than this delta-operator

based realization for implementation in which two addi§@an be saved.
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5 Conclusions

In this paper, the effect of rounding errors that occur indbetroller of a digital feedback control system
has been investigated. Our contribution is three-foldsthirwe have proposed a hew implementation
model of a state-space controller realization, where eaefficient matrix of the realization is separated
into a trivial part, which only contains elements from-1,0,1} and hence causes no rounding error,
and a non-trivial part. Secondly, based on this proposedeimade have analyzed output deviation
of the closed-loop system due to the roundoff noise in th@adigontroller. An analytical expression

for the roundoff noise gain has been obtained. The probleidenttifying the optimal realizations (in

the shift operator) has also been solved. Our third corttdbuwhich is the most interesting one, is
to have derived a new sparse controller realization based polynomial operator approach, which
is a generalization of the direct forms in the classicaltshiferator and the prevailing delta operator.
The problem of finding optimal polynomial operators has bieeastigated. It is shown that, with the

proposed sparse realization, the optimal polynomial dpesacan outperform not only the shift- and

delta-operators but also the fully parametrized optimatier realizations (in shift operator).
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Table 1: Four different sets of polynomial operators witlresponding roundoff noise gains

Yl Y2 3| Va | Y5 | Ve G
Al 1|21 -1 -1 54318 x 1016

olo|lo|o] 0] 0] 59417 x 1013
1l12lo0lo|l 1] 1] 51128 x%x10*
1012 12]2]1] 1.279x10°

Mk
-O— @ -
G(2) <

Figure 1: Block-diagram of a discrete-time feedback cdrgystem. HereP;(z) denotes the discrete-
time plant model(;(z) the digital controlleru is the digital controller inputy, the digital controller
output and-;, the input signal of the closed-loop system.
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Figure 2: The structure of input-output realization in padynial operator.

Figure 3: A realization of operatgr; '.
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