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Abstract

In this paper, the effect of roundoff noise in a digital controller is analyzed for a digital feedback
control system. An analytical expression for the roundoff noise gain, defined as the ratio between
the variances of the output error and the rounding error, is obtained. The problem of identifying
the minimum roundoff noise realizations can be solved usingan existing procedure. Noting that the
optimal realizations are fully parametrized, based on a polynomial operator approach a new sparse
controller realization is derived. This realization is a generalization of the direct forms in the classical
shift operator and the prevailing delta operator. It provides us more degrees of freedom to reduce the
roundoff noise. The problem of finding optimal polynomial operators can be solved with exhaustive
search, and a design example is given. It is shown that with the proposed sparse realization the
optimal polynomial operators can outperform the shift- anddelta-operators.

Keywords: finite word length, digital feedback control systems, roundoff noise, polynomial operators,

optimal realizations, sparse realizations.

1 Introduction

In most of the discrete-time control systems, the designed digital controller has to be implemented with

digital device such as a digital control processor. Due to the finite word length (FWL) effects, the

actually implemented controller is different from the designed one. Therefore, the actual performance of

the system may be very different from the desired one. Generally speaking, there are two types of FWL

errors in the digital controller. The first one is perturbation of controller parameters implemented with

FWL and the second one is the rounding errors that occur in arithmetic operations. Typically, effects

of these two types of errors are investigated separately. The effects of the first type of FWL errors are�Contact author: Tel./Fax: +44 (0)23 8059 6660/4508; E-mail: sqc@ecs.soton.ac.uk
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classically studied with a transfer function sensitivity measure [1],[2]. More recently, the effects of the

parameter errors have been investigated with some stability robustness related measures, such as the one

based on the complex stability radius [3],[4] and those based on pole sensitivity [5]-[11]. The second type

of FWL errors is usually measured with the so-called roundoff noise gain. The effects of roundoff noise

have been well studied in digital signal processing, particularly in digital filter implementation. However,

it was not until the late 1980s that the problem of optimal digital controller realizations minimizing the

roundoff noise gain was addressed. For example, a roundoff noise gain was derived for a control system

with state-estimate feedback controller and the corresponding optimal realization problem was solved

in [1], while the roundoff error effect on the LQG performance was investigated in [7] and the optimal

solution was obtained by Liuet al [8]. The problem of finding the optimum roundoff noise structures of

digital controllers in sampled-data system was investigated in [9].

Recently, the delta operator based realizations have been studied in [12]-[14]. It was shown that

under certain mild conditions the realizations in the deltaoperator yield a better performance against

the FWL effects than those realizations in the shift operator. It should be pointed out that the optimal

realizations obtained so far are fully parametrized and that from a practical point of view it is desired to

implement the controller in such a realization that not onlyyields a very good performance against the

FWL effects but also possesses as many trivial parameters1 to be implemented as possible. The problem

of finding sparse controller realizations was considered byseveral researchers. In [15], the “optimal”

sparse controller realization was computed with loop opened. This realization is obviously not optimal

in the sense that it does not minimize the roundoff noise in the closed-loop system. The sparse controller

structures that maximize the stability robustness of closed-loop were investigated in [5],[16]. It should

be pointed out that in these approaches complicated numerical algorithms were utilized and the positions

of trivial parameters are not predicted.

The use of delta operator, defined asÆ = z�1Ts with Ts the sampling period, was first promoted

by Peterka [17] and Middleton and Goodwin [18] in estimationand control applications. Two ma-

jor advantages are claimed for the use of this operator: a theoretically interesting unified formation of

continuous-time and discrete-time filtering and control theory, and a range of practically interesting nu-

merical advantages connected with FWL effects. Later on, the numerical properties of the delta operator,

whereTs is replaced by a positive factor�, were investigated in [2] from a pure algebraic point of view,

where it was found that one can make the transfer function in delta operator have better numerical prop-

erties in the case where the poles of the transfer function are closer toz = +1 thanz = 0. This means

that the delta operator based realizations may not yield a better performance if some of poles of the

1By trivial parameterswe mean those that are0 and�1, which can be digitally implemented exactly and cause no rounding
errors. Other parameters are, therefore, referred to asnon-trivial parameters.
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transfer function are far away fromz = +1. In [2], the concept of polynomial operators was proposed.

One of the main objectives in this paper is based on this concept to derive a sparse controller realization

and analyze its performance in terms of roundoff noise for a discrete-time feedback control system.

2 Optimal roundoff noise realizations

Throughout the paper, a bold type symbol denotes a vector or matrix with appropriate dimension. The

discrete-time feedback control system considered in this paper is depicted in Figure 1. It is well known

that the digital controllerCd(z) can be implemented with its state-space equations:xk+1 = Axk +Bukyk = Cxk + duk )
(1)

whereuk and yk are the output of the digital plantPd(z) and controllerCd(z), respectively, whilerk is the input signal of the closed-loop system.A 2 Rp�p;B 2 Rp�1;C 2 R1�p and d 2 R.R 4= (A;B;C; d) is called a realization ofCd(z), which satisfiesCd(z) = d+C(zI�A)�1B: (2)

DenoteSCd as the set of all realizations(A;B;C; d). It should be pointed out thatSCd is an infinite set.

In fact, ifR0 = (A0;B0;C0; d) 2 SCd , SCd = f(A;B;C; d)g is characterized withA = T�1A0T; B = T�1B0; C = C0T; (3)

whereT 2 Rp�p is any non-singular matrix. Usually, such anT is called a similarity transformation.

Once an initial realizationR0 is given, different controller realizations correspond todifferent similarity

transformationsT.

2.1 Dynamic scaling scheme

It is well know that signal scaling is crucial in digital implementation. When two’s complement and less-

than-double precision fixed-point arithmetic are used, summation nodes are allowed to overflow except

before multiplier (see for example [19]). Under the assumption that the inputrk and the outputuk of the

closed-loop system are properly pre-scaled, the only signals which may have overflow are the elements

of the controller state vectorxk, which have to be scaled.

Note thatuk = Pd(z)[rk + yk℄. Assuming thatPd(z) is strictly proper and has a realization(Az;Bz ;Cz), one has vk+1 = Azvk +Bz [rk + yk℄uk = Czvk )
(4)
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whereAz 2 Rq�q;Bz 2 Rq�1, andCz 2 R1�q. DenotexTl(k) 4= �vTk xTk � : (5)

It follows from (1) and (4) that xl(k + 1) = Alxl(k) +Brrk (6)

where Al =  Az + dBzCz BzCBCz A ! ; Br =  Bz0 ! : (7)

There exist different scaling schemes for preventing variables from overflow. One of the popularly

used schemes is thel2-scaling, which means that each element of the controller state vectorxk should

have a unit variance when the inputrk is a white noise with a unit variance. This can be achieved if�K(j; j) = 1; j = q + 1; q + 2; � � � ; q + p (8)

where �K is given by �K = +1Xk=0AklBrBTr �ATl�k ; (9)

satisfying �K = Al �KATl +BrBTr : (10)

In the sequel, all the realizations under discussion are assumedl2-scaled.

2.2 Roundoff noise analysis

Another practical issue in digital implementation is rounding. Assume that a fixed-point implementation

is considered, where the coefficients in the realization areimplemented withB bits. If the micro-

controller’s accumulator hasB +Bs bits, any intermediate signal has to be rounded intoBs bits before

multiplied with a non-trivial coefficient. LetP = Pi +Pf , wherePi is a trivial matrix andPf contains

no trivial elements except0s, forP = A;B;C. Then a more practical digital controller model is2x�k+1 = Aix�k +AfQ[x�k℄ +Biu�k +BfQ[u�k℄y�k = Cix�k +CfQ[x�k℄ + dQ[u�k℄ )
(11)

whereQ[x℄ is the quantizer that rounds the numberx toBs bits.

Denote �x(k) 4= Q[x�k℄� x�k; �u(k) 4= Q[u�k℄� u�k (12)

2Here, it is assumed that the ideal controller realization can be implemented exactly withB bits.
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as the quantization errors. Traditionally, these quantization errors are modeled as statistically indepen-

dent white sequences (see, e.g., [20],[21]) andE 24 �x(k +m)�u(k +m) ! �x(m)�u(m) !T35 = �20Æd(k)I; (13)

whereE[�℄ denotes the ensemble average operator,T the transposed operator,Æd(k) the discrete Dirac

delta function,�20 = 2�2Bs=12 andI is the identity matrix of proper dimension. It follows from (1) and

(11) that ex(k + 1) = Aex(k) +Beu(k) +Af�x(k) +Bf�u(k)ey(k) = Cex(k) + deu(k) +Cf�x(k) + d�u(k) )
(14)

where eu(k) = u�k � uk; ex(k) = x�k � xk; ey(k) = y�k � yk: (15)

Noting eu(k) = Pd(z)ey(k), one can show thateu(k) = Cl(zI�Al)�1Bl  �x(k)�u(k) ! 4= Hu(z) �x(k)�u(k) ! (16)

whereAl is given in (7) andBl =  BzCf dBzAf Bf ! ; CTl =  CTz0 ! : (17)

Since the quantization errors�x(k) and�u(k) are statistically independent white sequences (see (13)),

it follows thatey(k) andeu(k) are wide-sense stationary sequences. Denoteu(l) 4= E[eu(k)eu(k�l)℄ as

the autocorrelation function ofeu(k) and�u(z) the corresponding spectral density function. According

to the well known results in [22], one has�u(z) =Hu(z)HTu (z�1)�20 (18)

and E[e2u(k)℄ = 12� Z ��� �u(ej!)d! = tr � 12� Z ���HTu (e�j!)Hu(ej!)d!� �204= tr hBTl �WBli�20 (19)

wheretr[�℄ denotes the trace operator and�W is the observability gramian of the realization ofHu(z)
(see (16)) defined by: �W = +1Xk=0�ATl�kCTlClAkl; (20)

which satisfies �W = ATl �WAl +CTlCl: (21)
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The roundoff noise gain, denoted asG, is defined asG 4= E[e2u(k)℄�20 (22)

and therefore G = tr hBTl �WBli : (23)

For a givenl2-scaled controller realization, one can compute the corresponding roundoff noise gain.

Different controller realizations yield differentG values. The interesting problem is to identify those

realizations that give the minimumG. This problem is very difficult due to the decompositionP =Pi + Pf for P = A;B;C. In the remainder of this section, we will consider the case wherePi = 0
for P = A;B;C, which corresponds to the classical shift operator parameterizations and makes the

optimization problem tractable.

2.3 Realization dependence and optimal realizations

Let (Al;Bl;Cl) and(A0l;B0l;C0l) be two realizations ofHu(z) defined by (7), (16) and (17), cor-

responding to the two digital controller realizationsR 4= (A;B;C; d) andR0 4= (A0;B0;C0; d) that

are related with (3), respectively. It can be shown thatAl =  I 00 T !�1A0l  I 00 T ! ;Bl =  I 00 T !�1B0l  T 00 I ! ;Cl = C0l  I 00 T ! :
9>>>>>>>>>>>=>>>>>>>>>>>; (24)

It then turns out that Hu(z) = H0u(z) T 00 I ! ; (25)

whereH0u(z) is independent ofT, and hence�W =  T 00 I !T �W0  T 00 I ! (26)

where �W0 is similar to �W defined in (21) but corresponds to the controller realizationR0.
Clearly, BTl �WBl =  T 00 I !T �B0l�T �W0B0l  T 00 I ! : (27)

Let �B0l�T �W0B0l 4=  W0 W012W021 Q0 !
(28)
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have the same partition as  T 00 I ! : (29)

It is easy to see that G = tr[TTW0T℄ + tr[Q0℄ (30)

whereW0 andQ0 are independent ofT.

Similarly, one has �K =  I 00 T !�1 �K0 I 00 T !�T (31)

Let �K 4=  K K12K21 K !
(32)

and �K0 4=  K0 K012K021 K0 ! (33)

have the same partition as  I 00 T ! : (34)

Clearly,K = T�1K0T�T .

The optimal realizations of the digital controller are the solutions to the following minimization

problem: minR2SCd(T�1K0T�T )(j;j)=1; 8j G (35)

In [9], a solution to the above problem was given. It has been found that the optimal realizations are

generally fully parametrized with non-trivial parameters. This is a disadvantage since it will increase the

implementation complexity and slow down the processing. From a practical point of view, it is desired

to implement the digital controller with such a realizationthat not only has a very robust performance

against the FWL effects but also possesses as few non-trivial parameters as possible. In the next section,

based on the concept of the polynomial approach we will derive a new controller structure which has

very nice numerical properties and a very sparse form.

3 Derivation of a new sparse controller structure

The digital controllerCd(z) is usually given by its transfer functionCd(z) = b0zp + b1zp�1 + � � �+ bp�1z + bpzp + a1zp�1 + � � � + ap�1 + ap 4= N(z)D(z) : (36)
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Define �j 4= z � j�j ; j = 1; 2; � � � ; p; (37)

wherej , 8j, takes values from the trivial parameter setf�1; 0; 1g, andf�j > 0g, as to be seen

later, are determined forl2-scaling. The denominator and numerator ofCd(z) given by (36) can be

re-parametrized with D(z) = K 24 pYj=1 �j + �1 pYj=2 �j + � � �+ �p�1�p + �p35 ; (38)N(z) = K 24�0 pYj=1 �j + �1 pYj=2 �j + � � �+ �p�1�p + �p35 ; (39)

whereK = Qpj=1�j. Therefore,Cd(z) can be re-parametrized withf�m; �mg in the polynomialsf�jg,
calledpolynomial operators:Cd(z) = �0 + �1��11 + � � �+ �p�1Qp�1j=1 ��1j + �pQpj=1 ��1j1 + �1��11 + � � �+ �p�1Qp�1j=1 ��1j + �pQpj=1 ��1j : (40)

Denoting Va 4= 0BBBB� 1a1
...ap 1CCCCA ; Vb 4= 0BBBB� b0b1

...bp 1CCCCA ; V� 4= 0BBBB� 1�1
...�p 1CCCCA ; V� 4= 0BBBB� �0�1

...�p 1CCCCA ; (41)

one has Va = KMV�Vb = KMV� ) (42)

or V� = K�1M�1VaV� = K�1M�1Vb ) (43)

whereM 2 R(p+1)�(p+1) is a lower triangular matrix whosemth column is determined by the coeffi-

cients of the polynomial
Qpj=m �j for m = 1; 2; � � � ; p andM(p+ 1; p+ 1) = 1.

The corresponding input and output relationship to (40) is thenyk = ��1��11 yk � � � � � �p�1 p�1Yj=1 ��1j yk � �p pYj=1 ��1j yk+�0uk + �1��11 uk + � � �+ �p�1 p�1Yj=1 ��1j uk + �p pYj=1��1j uk: (44)

It is easy to see that the output can be computed with the following equations (also see Figure 2)yk = �0uk +w1;k;wj;k = ��1j [�juk � �jyk + wj+1;k℄;wp;k = ��1p [�puk � �pyk℄: 9>>>=>>>; (45)
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3.1 Equivalent state-space realization

From the definition (37), one can implement��1j with the realization depicted in Figure 3, where the

“input” to the operator��1j is �juk � �jyk +wj+1;k for j = p; p� 1; � � � ; 1 with wp+1;k = 0 (see (45)).

We choosefxj;kg indicated in Figure 3 as the state variables and denotexk as the state vector. Notingxj;k+1 = jxj;k + �juk � �jyk + wj+1;k;wj;k = �jxj;k;yk = �0uk +�1x1;k; 9>>=>>; (46)

it can be shown that (45) is equivalent to the following state-space realizationxk+1 = ~Axk + ~Bukyk = ~Cxk + duk 9=; (47)

where ~A = 0BBBBBB� 1 0 0 � � � 0 00 2 0 � � � 0 0
...0 0 0 � � � p�1 00 0 0 � � � 0 p

1CCCCCCA+0BBBBBB� ��1�1 �2 0 � � � 0 0��1�2 0 �3 � � � 0 0
...��1�p�1 0 0 � � � 0 �p��1�p 0 0 � � � 0 0

1CCCCCCA 4= ~Ai + ~Af ; (48)~B = V�(2 : p+ 1)� �0V�(2 : p+ 1); ~C = � �1 0 � � � 0 � ; (49)

with Vx(2 : p+ 1) representing the vector formed with 2nd to(p+ 1)th elements of the vectorVx forx = �; �. Clearly, the controller realization( ~A; ~B; ~C; d) is very sparse with~Ai diagonal and possesses

only 3p+ 1 non-trivial parameters.

It can be verified easily that the realization( ~A; ~B; ~C; d) can be transformed with a diagonal similarity

transformation, denoted asTs, into a realization( ~A0; ~B0; ~C0; d), which has exactly the same form as( ~A; ~B; ~C; d) given in (48) and (49) except that the parametersf�j ; �jg correspond to�j = 1; 8j, that

is ~A0 = T�1s ~ATs, ~B0 = T�1s ~B, ~C0 = ~CTs, or~A = Ts ~A0T�1s ; ~B = Ts ~B0; ~C = ~C0T�1s ; (50)

where Ts = diag(d1; d2; � � � ; dp�1; dp); dj = jYm=1��1m ; 8j: (51)

As mentioned before, the controller realization (47) should bel2-scaled and this can be achieved by

choosingf�jg properly. In fact, with (7), (24) and (10) it can be shown that~K =  I 00 Ts ! ~K0 I 00 Ts !T ; (52)
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where~K and ~K0 are the controllability gramians, corresponding to the controller realizations( ~A; ~B; ~C; d)
and ( ~A0; ~B0; ~C0; d), respectively. Clearly, thel2 scaling is achieved ifd2j ~K0(j; j) = 1 for j =q + 1; q + 2; � � � ; q + p, which leads to�1 = q ~K0(q + 1; q + 1); �j�q =vuut ~K0(j; j)~K0(j � 1; j � 1) ; j = q + 2; q + 3; � � � ; q + p: (53)

3.2 Optimal polynomial operators

As mentioned before,j takes value from the finite setS :S 4= f�1; 0; 1g: (54)

For givenfjg and�j = 1; 8j, one can compute the correspondingf�j ; �jg with (43), and hence the

realization( ~A0; ~B0; ~C0; d) and ~K0 can be computed with (48)-(49) and (10), respectively. Thel2 scaling

matrixTs can be obtained with (53) and hence thel2-scaled realization( ~A; ~B; ~C; d) can be computed

steadily, with which the corresponding~W can be evaluated with (21). Therefore, the roundoff noise gainG can be calculated with (23), whereBl is given by (17) withAf by (48) andBf = ~B;Cf = ~C.

Different sets offjg yield different values of roundoff noise gain. The interesting problem is to find

the optimal sets offjg, which are the solutions tominj2S ; 8jG: (55)

ThoughG is a highly nonlinear function offjg, the problem can be solved easily since the spacefj : j 2 Sg is finite.

4 A design example

We now present a design example to illustrate the design procedure. The digital plantPd(z) and con-

troller Cd(z) are presented with the following canonical forms, denoted asRz andR, respectively.Rz
is given by: Az = 0BBBBB� 3:3555 1 0 0 0�4:9154 0 1 0 04:0734 0 0 1 0�1:8227 0 0 0 10:3093 0 0 0 0

1CCCCCA ; Bz = 0BBBBB� �0:1183�0:72490:6878�0:6510�0:0425
1CCCCCA ;Cz = � 1 0 0 0 0 �
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R is given by:

A = 0BBBBBBB� 2:1016 1 0 0 0 0�2:2306 0 1 0 0 01:4467 0 0 1 0 0�0:4901 0 0 0 1 00:1954 0 0 0 0 1�0:0231 0 0 0 0 0
1CCCCCCCA ; B = 0BBBBBBB� 0:1971�0:74011:1527�1:00410:4857�0:0912

1CCCCCCCA ;C = � 1 0 0 0 0 0 � ; d = 0:0460:
With R as the initial digital controller realization and the plantRz, we compute the corresponding�K0 and �W0, based on whichK0 andW0 can be obtained. Using the same procedure as given in

[9], an optimal realization in the shift operator, denoted asRoptz , can be found by solving (35). The

corresponding minimum roundoff noise gain is6:0351 � 106.

With R, one can obtain the controller transfer function coefficientsVa andVb. For a given set offjg, one can compute theV� andV� for �j = 1, 8j, using (43), and hence the corresponding con-

troller realization( ~A0; ~B0; ~C0). The corresponding controllability and observability gramians defined

by (10) and (21), denoted as~K0 and ~W0, respectively, can then be computed with the MATLAB com-

manddgram:m. With ~K0, the coupling coefficientsf�jg can be obtained with (53). With the obtainedf�jg, one can compute the correspondingV� andV� using (43) hence the corresponding controller

realization( ~A; ~B; ~C) as well as the observability gramian~W. The roundoff noise gainG is computed

with (23) with �W replaced by~W andBl given by (17), whereAf = ~Af as defined in (48),Bf = ~B
andCf = ~C as defined in (49). The problem of finding optimal polynomial operators (55) can be solved

with an exhaustive research (a total of36 = 729 combinations). Table 1 shows the roundoff noise gains

for four different sets of polynomial operators, in which(1 1 0 0 1 1) is known to yield the optimal

polynomial operators.

Comment 4.1: The combination(0 0 0 0 0 0) for flg corresponds to the (diagonally)l2-scaled

version of the canonical controller realizationR in the shift operator. The corresponding roundoff noise

gain is much higher than that of the optimal realizationRoptz in the shift operator. While the combination(1 1 1 1 1 1) for flg is the (diagonally)l2-scaled version of the canonical controller realization in

the delta operator. The corresponding roundoff noise gain is much smaller than that of the optimal fully

parametrized realization in the shift operator. For the controller realization corresponding to the operator

polynomial operators(1 1 0 0 1 1), it yields a roundoff noise which is just half of that produced by

the delta-operator based realization mentioned above. In fact, it is also simpler than this delta-operator

based realization for implementation in which two additions can be saved.
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5 Conclusions

In this paper, the effect of rounding errors that occur in thecontroller of a digital feedback control system

has been investigated. Our contribution is three-fold. Firstly, we have proposed a new implementation

model of a state-space controller realization, where each coefficient matrix of the realization is separated

into a trivial part, which only contains elements fromf�1; 0; 1g and hence causes no rounding error,

and a non-trivial part. Secondly, based on this proposed model, we have analyzed output deviation

of the closed-loop system due to the roundoff noise in the digital controller. An analytical expression

for the roundoff noise gain has been obtained. The problem ofidentifying the optimal realizations (in

the shift operator) has also been solved. Our third contribution, which is the most interesting one, is

to have derived a new sparse controller realization based ona polynomial operator approach, which

is a generalization of the direct forms in the classical shift operator and the prevailing delta operator.

The problem of finding optimal polynomial operators has beeninvestigated. It is shown that, with the

proposed sparse realization, the optimal polynomial operators can outperform not only the shift- and

delta-operators but also the fully parametrized optimal controller realizations (in shift operator).
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Table 1: Four different sets of polynomial operators with corresponding roundoff noise gains1 2 3 4 5 6 G
-1 -1 -1 -1 -1 -1 5:4318 � 1016
0 0 0 0 0 0 5:9417 � 1013
1 1 0 0 1 1 5:1128 � 104
1 1 1 1 1 1 1:2759 � 105

C (z)
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P (z)

d

Σ d
k uk
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Figure 1: Block-diagram of a discrete-time feedback control system. HerePd(z) denotes the discrete-
time plant model,Cd(z) the digital controller,uk is the digital controller input,yk the digital controller
output andrk the input signal of the closed-loop system.
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Figure 2: The structure of input-output realization in polynomial operator.
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Figure 3: A realization of operator��1j .

15


