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Abstract: The conventional decision feedback equaliser (DFE) that employs a linear combination
of channel observations and past decisions is considered. The design of this class of DFE is to
construct a hyperplane that separates the different signal classes. It is well known that the popular
minimum mean square error (MMSE) design is generally not the optimal minimum bit error rate
(MBER) solution. A strategy is proposed for designing the DFE based on support vector machines
(SVMs). The SVM design achieves asymptotically the MBER solution and is superior in
performance to the usual MMSE solution. Unlike the exact MBER solution, this SVM solution

can be computed very efficiently.

1 Introduction

The equalisation technique plays an ever-increasing role in
combating distortion and interference in modern commu-
nication links [1, 2] and high-density data storage systems
[3, 4]. The conventional DFE, in particular, is widely used
as it provides an excellent balance between performance
and complexity. The conventional DFE [1] is based on a
linear filtering of the channel observations and the past
decisions. Research has also investigated other DFE struc-
tures that employs nonlinear combinations of the channel
observations and the past decisions [5—10]. These noncon-
ventional DFEs provide better performance at a cost of
increasing complexity. In this study we revisit the conven-
tional DFE from the viewpoint of the powerful statistical
learning theory [11].

Without confusion, we use the term DFE to refer to the
conventional linear-combiner DFE. From the viewpoint of
classification, a DFE forms a hyperplane in the observation
space. This geometrical interpretation provides insights to
various DFE designs. The most popular design strategy is
the MMSE design. The MMSE DFE has an attractive
advantage in that it leads to a simple adaptive implementa-
tion in terms of the least mean square (LMS) algorithm
with very low complexity. However, the MMSE solution is
not the MBER solution, the bit error rate (BER) being the
ultimate performance criterion of equalisation. It has been
shown that, in the asymptotic case of large signal to noise
ratio (SNR), the hyperplane of the MMSE DFE is
orthogonal to the last axis of a translated observation
space [12], which clearly illustrates why the MMSE solu-
tion does not achieve the full performance potential of the
DFE structure.
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A better design in terms of performance is to choose the
equaliser coefficients to minimise BER directly [12—15].
Although the performance of the resulting MBER DFE is
superior to the MMSE solution, adaptive implementation
of the MBER solution [12] is computationally much more
complex than the simple LMS algorithm. Furthermore,
unlike the mean square error surface, which is quadratic
and has a unique minimum, the BER surface can be highly
irregular and a gradient algorithm cannot generally guar-
antee to converge to a global minimum.

A relevant development to the MBER DFE is the
approximate MBER design for linear equalisers without
decision feedback [16, 17]. This approximate MBER
solution was derived for the special case of equalisable
channels. Equalisability refers to the linear separability of
different channel state classes. It is well known that the
linear separability cannot always be guaranteed when a
linear equaliser is used [18]. This approximate MBER
design does have a simple adaptive implementation similar
in the form to the LMS algorithm [16, 17]. Unfortunately,
this adaptive algorithm requires an extremely long training
period owing to the nature of minimising BER.

SVMs are powerful approach for solving various classi-
fication and regression problems [11, 19-21]. The formu-
lation of SVMs embodies the structural risk minimisation
(SRM) principle [11]. SRM minimises an upper bound on
the expected risk, as opposed to the traditional empirical
risk minimisation that minimises the error on the training
data. This difference equips SVMs with a greater ability to
generalise. The SVM approach results in a simple quad-
ratic optimisation problem. For classification problems,
generalisation ability is optimised by maximising the
margin, and the solution is obtained as a set of sparse
support vectors (SVs), which lie on the margin boundary
and summarise the information required to separate the
data.

In this study we apply SVMs to design the DFE. As the
decision feedback always guarantees the linear separability
[12], the design of an optimal hyperplane to separate
different signal classes using SVMs becomes a simple
matter, and the SVM solution is obtained by maximising
the margin, which is defined as the minimum distance from
the signal states to the separating hyperplane. The SVM
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design leads to a well-conditioned quadratic programming
defined by a few channel states (SVs) that lie on the
margin. The SVM solution does not depend on the noise
variance and is asymptotically the MBER solution. Unlike
the MBER solution, however, the SVM design is guaran-
teed to be unique and can be computed very efficiently.
Simulation results also indicate that the performance of the
SVM DFE is virtually indistinguishable from the MBER
DFE.

2 Decision feedback equaliser structure

Consider the channel that is modelled as a finite impulse
response filter with an additive noise source. Specifically,
the received signal at sample £ is

n,—1

r(k) = #(k) + e(k) = > as(k — i) + e(k) (1)

i=0

where 7(k) denotes the noiseless channel observation, n, is
the channel length and a; are the channel tap weights,
{e(k)} is a Gaussian white noise sequence having zero
mean and variance o2, and the symbol sequence {s(k)} is
independently identically distributed and is uncorrelated
with e(k). The SNR of the system is defined as

n,—1
SNR = (Z a%) a?/a2, 2)
i=0
2

where o7 is the symbol variance. In this study, for the
purpose of easy geometrical visualisation, we assume that
s(k) is binary taking value from the set {£1}. For multi-
level signalling schemes, such as M-PAM, the current
results are still valid [15].

The structure of a generic DFE is depicted in Fig. 1. The
equalisation process defined in Fig. 1 uses the information
present in the channel observation vector

r(k) = [r(k) - - r(k —m + 1] 3)
and the past detected symbol vector
Sk) =Btk —d = 1)---§(k —d — )]’ “4)

to produce an estimate s(k — d) of s(k — d), where the
integers d, m and n are the decision delay, the feedforward
and feedback orders, respectively. In particular, for the
class of DFEs considered in this study, the decision is made
by quantising the filter output

Fr(k), $,(k)) = w'r(k) + b7 8, (k) (%)
where
w=[wg-- 'Wmfl]T
" (6)
b=1[by---b,]
2 U
rik) r(k-‘l)‘( r(k-m+1)—|
f 5(k-d)

filtering decision device

‘ ~
S{k-d-n) Jj(k—d-ﬂj(k-d-'])
I PR -1 =

z z

Fig. 1 Schematic of generic decision feedback equaliser
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are the coefficients of the feedforward and feedback filters,
respectively. Without the loss of generality, we choose
d=n,—1, m=n, and n=n, — 1, as this choice of the
DFE structure parameters is sufficient to guarantee the
linear separability [12].

To better understand how the DFE works, a space
translation [12] can be made to ‘remove’ the feedback
term from eqn. 5. The observation vector (eqn. 3) can be
arranged as

r(k) = Fs(k) + e(k) @)

where e(k)=[e(k)---e(k — m+ D)7, sk)= [sz- (kysT (1"
with

sp(k) = [s(k) - s(k — &))"
syk) =[stk—d —1)---s(k —d —n)]"
and the m x (d+ 1 4+ n) matrix F has the form
F=[F, F,] ©)

with the m x (d 4 1) matrix F; and m x n matrix F, defined
by

®)

ap ap - 4y
0 ao K .
F, = (10)
.. . a
O O ao
and
r 0 0 0
a, _ 0
F2 = ana_z anﬂ_l O (11)
0
L 4 oy Ay g

respectively. Under the assumption of correct decision
feedback, that is, §,(k) =s,(k),

r(k) = Fsp(k) + F,8,(k) + e(k) (12)

Thus the decision feedback translates the original space
r(k) into a new space ¥ (k)

r (k) £ r(k) — Fy8,(k) (13)

and it can be shown that the linear filter (eqn. 5) is reduced
to

S (k) = w'r (k) (14)
in the translated space [12]. Previous work [12, 14] has
pointed out that the elements of ¥ (k) can be computed
recursively according to

k=) =z""Wk—-i+1)—a, Sk—d—1),

n,—t

i=m—1,...,2,1 (15)
(k) = r(k)

where z~! is interpreted as the unit delay operator, and the

DFE structure of Fig. 1 is equivalent to the equalisation
structure of Fig. 2.

By considering the alternative but equivalent DFE
structure of Fig. 2, the geometric insight of the equalisation
process becomes evident: the DFE design is basically to
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Fig. 2 Schematic of translated decision feedback equaliser

choose the weight vector w of the hyperplane {r:w’r=0}.
For the DFE, a hyperplane can always be constructed to
separate the two different classes of signal states, as shown
in the following lemma. Let the N, =2¢*' sequences of
sf(k) be Srjs 1 SjENf. The set of the noiseless channel
states in the translated space is defined by

R =Fis; 1 <j<N) (16)

This set can be partitioned into two subsets conditioned on
stk—dy==%1

R* £ (r; € Rls(k — d) = 1} (17)

Lemma 1: R and R~ are linearly separable.

Proof: Choose the weight vector of a hyperplane w’r=0

to be:
117
w= |:0---0 —:|
ay

For any r* € Rt and r~ € R~, we have w/r* =1> 0 and

wir—=—1<0.

2.1 MMSE decision feedback equaliser

From the discussion so far, it is clear that different DFE
designs correspond to different constructions of hyper-
planes to separate the two classes of signal states R*.
The best known design is the MMSE DFE. The MMSE
solution obtained by minimising E[(w”¥ (k) — s(k — d))*],
where E[-] denotes the expectation operation, is given by

2 -1 T
Wymse = 01 [anuflanufz RN (18)

where the matrix I" is symmetric with elements y;, =7, ;

(n,—1)—1
g = ( Z ai“iﬂlj))ffer ol5(1—j), 0<j<l<m—1

i=0
19)
and 0(q) is the discrete Dirac delta function defined by
5(q)={1’ =0 (20)
0, g#0

The nonoptimal nature of the MMSE solution is best
illustrated by the asymptotic case of SNR — oo, given
in the following lemma (see [12] for a proof).
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Lemma 2

1

T
oim_ Waivse = |:0 0---0 ao:| 21

In the limit case of SNR — oo, the MMSE hyperplane is
always orthogonal to the last axis of the #'(k)-space, which
cannot be optimal in general. A simple example taken from
[12] clearly illustrates this observation. Consider the two-
tap channel defined by

Channel 1 : a =[ay a,]" =[0.5 1.0]" (22)

and the DFE given by d=1, m=2 and n=1. The set of
the four channel states R in the translated observation
space is shown in Fig. 3, where the asymptotic hyperplane
of the MMSE solution for large SNR is also depicted.
Common sense would suggest that the “optimal” separat-
ing hyperplane for this example should have a slope of
—1(wg/w; =1), which in fact is the asymptotic MBER
solution for large SNR. When the noise is added the
hyperplane of the MMSE solution (eqn. 18) will rotate
and is no longer orthogonal to the last axis of the translated
observation space. Consider the channel 1 of eqn. 22 again.
Given SNR =15 dB, the MMSE hyperplane has a slope of
—0.27, which is clearly nonoptimal. In fact, the numerical
solution of the MBER DFE in this case gives a slope of
—1.02.

2.2 MBER decision feedback equaliser

It can be shown that the BER of the DFE of eqn. 14, taking
into account the symmetry of RT and R~ and the
equiprobability of states, is given by (e.g. [12])

2 T
P =3 ZR: Q<I|IZIIZ|6> (23)
where
] 2
o) = J Eexp(— %)dx (24)
2
1 .
~ O
R S N

-1
Slk-1)= -1

-2 1 L ""1
-2 -1 0 1 2
r'(k)

Fig. 3 Two asymptotic decision hyperplanes corresponding to large SNR

for channel a=1[0.5 1.0]"

Circles denote two subsets of states R~ and R*
—— SVM

---- MMSE

~~~~~ margin
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The MBER DFE is obtained by minimising P,(w)

WMBER = aIg mn%n Py(w) (25)

Notice that the elements of w are linearly dependent. The
optimisation in eqn. 25 should ideally be subject to some
constraint on w, e.g. |[w| =1.

Obviously, wyppr is optimal for the linear-combiner
DFE structure discussed here. Unlike the MMSE solution,
there is no closed-form expression for wyppr and the
solution must be sought via some gradient-based iterative
procedure. In general, the BER surface Pz(w) can be
highly irregular and may have local minima. An adaptive
implementation of the MBER DFE is described in [12] but
its computational complexity per sample is much higher
than the LMS algorithm. An adaptive implementation of
the approximate MBER linear equaliser [16, 17] has a
complexity per sample similar to the LMS algorithm but it
requires a very long training sequence.

2.3 SVM decision feedback equaliser

SVMs are a powerful learning approach to data modelling
[11, 19-21]. Notice that SVM are very general and
classification problems with nonlinear separable or over-
lapping classes can successfully been solved using SVM.
For our DFE problem. as Rt and R~ are always linearly
separable, only the basic part of SVM is required. For
completeness, SVM for the linearly separable classification
case are described in the Appendix. The minimum distance
frgm the nearest point in R to a separating hyperplane
wr=0

T
Iwlr,| _wiryl

p(w) = min (206)

in
rert wll rer™ |wll

is called the margin. The SVM design finds the hyperplane
that maximises this margin. As there is some redundancy
in w/'r=0, it is appropriate to consider a canonical hyper-
plane [11] where w is constrained by

T
1 =1 27
min [w'r| (27)
Define the integer set
I 2 {ilr, € R) (28)
and the class indicator
v ==1, vr,e R* (29)

The maximisation of the margin (eqn. 26) with the
constraint (eqn. 27) using the classical lagrangian theory
[22, 23] gives rise to the optimal separating hyperplane

Wsym = Zgiyiri (30)
iely
where
-_ - 1 T
g=argmins} Y ey =) g (31)
iely jelp iely
g >0, Viel, (32)

The optimisation problem of eqn. 31 with eqn. 32 is a
standard quadratic programming, whose solution g can
readily be computed efficiently [22, 23]. Notice that g;
are the Lagrange multipliers of the primal problem. From
the Kuhn—Tucker conditions [22, 23]

gi(yinTVMri -1)=0 (33)

and only those points r;, which satisfy ywl,\ =1, will
have nonzero Lagrange multipliers. These points are termed
support vectors. All the SVs lie on the margin and the

216

number of SVs can be very small. Let Rgy be the set of
SVs. The hyperplane wgy), is determined by Rgy only.
Thus, the identical solution is obtained by substituting R
with Rgy in eqns. 30 to 32 with massive saving in
computational efforts. However, SVs are unknown a priori.
Consider how to select a smaller subset Rg,, of R,
which contains all the SVs. We first point out that, as we
restrict ourselves to the linear structure of eqn. 14; the
decision boundary is a hyperplane. If we allow a nonlinear
structure, however, the decision boundary will become a
hypersurface. The true optimal solution for the equaliser
structure of Fig. 1 without restricting to linear filtering is
the nonlinear bayesian solution [7, 24]. Asymptotically, the
bayesian hypersurface consists of a set of hyperplanes [25].
Each of these hyperplanes is defined by a pair of the
dominant states in R* and R, respectively, and the line
connecting this pair is perpendicular to the hyperplane with
the midpoint of the line at the hyperplane. The following
algorithm can be used to select these pairs of the states
which define the set of the asymptotic hyperplanes.

Subset selection algorithm

FOR r} e R*
FOR r; € R™
x=+r)/2
dy = [l — x|l
IF (|rf — x| > dy, Vrf € R*,1# i) AND
(lry —xll > dy, Vi € R, 1#))
Rewp < (1. 17)
END IF
NEXT r;
NEXT rt

As Rg,, can be a much smaller subset of R, using it to
substitute R in the quadratic programming of eqns. 30 to
32 will result in considerable saving in computation.
Obviously, this is allowed, as all the SVs are included in
Ry, and we have

Proposition 1: Rgy C Ry, -

We comment that wgy), does not depend on the noise
variance ¢2 and it is the asymptotic MBER solution, that is,
Wgym — Wumser @S SNR — oo. In general, wgyy will not
be identical to wyppr but the difference is practically
negligible for useful SNR conditions. Consider channel 1
of eqn. 22. The hyperplane of the SVM solution is depicted
in Fig. 3. This is identical to the asymptotic MBER
solution for large SNR. When the SNR is reduced to
15dB, wgy) remains unchanged with a slope of —1 but
wyper 18 changed, from a slope of —1 to —1.02. Such a
small difference will hardly cause any difference in BER
performance between the SVM DFE and the MBER DFE.

2.4 Numerical examples

Three examples were used to compare the SVM and
MMSE solutions of the DFE. All the BERs were evaluated
with detected symbols being fed back. For all the three
examples, the BERs of the MBER DFE were practically
indistinguishable from those of the SVM DFE. Therefore
the BER curves of the MBER DFE are not included. The
first example was the two-tap channel given in eqn. 22. The
full set of states R contains four points, and the subset
selection algorithm selected a Ry, of two states, which are
the two SVs. Fig. 4 compares the BERs of the SVM DFE
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Fig. 4 Performance comparison for channel a=1[0.5 1.0]" with detected
symbols being fed back

—X- SVM
-O- MMSE

with those of the MMSE DFE for a range of SNR condi-

tions. For this example, the SVM DFE has a SNR gain of

about 2 dB over the MMSE solution at the BER of 10 %,
The second example was a four-tap channel given by

channel 2:a =1[0.350.80 1.00 0.80]" (34)

The structure of the DFE was accordingly chosen to be
d=3, m=4 and n = 3. The full set of states R has sixteen
points. The subset selection produced a subset Rg,, of
eight states, four of them being the SVs. The BERs of the
MMSE and SVM DFEs with detected symbols being fed
back are plotted in Fig. 5, where it can be seen that the
performance of the SVM DFE is significantly better than
that of the MMSE DFE. At the BER of 1074, the SVM
DFE has a SNR gain of about 2dB over the MMSE
solution.
The third example was a five-tap channel defined by

channel 3 :a =1[0.227 0.466 0.688 0.466 0.227]" (35)

The structural parameters of the DFE were set to d=4,
m=5 and n=4. The full set R contains 32 states. The
subset Rg,, used in computing the SVM solution has 18

1_
107

1072}

bit error rate
-—
S
w
T

1075F

10-6 L I 1 ) L 1 1

10 12 14 16 18 20 22 24
signal to noise ratio,dB

Fig. 5 Performance comparison for channel a=1[0.35 0.80 1.00 0.80]"

with detected symbols being fed back

—X- SVM

-O- MMSE
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Fig. 6 Performance comparison for channel a=[0.227 0.466 0.688

0.466 0.227]" with detected symbols being fed back

—X- SVM
-O- MMSE

points, eight of them being the SVs. The BERs of the SVM
and MMSE DFEs with detected symbols being fed back
are depicted in Fig. 6. Again, the SVM solution is superior
in performance over the MMSE solution.

2.5 Adaptive implementation

An indirect adaptation scheme is suitable for adaptive
implementation of the SVM DFE. The scheme first esti-
mates a channel model & using for example the LMS
algorithm and then computes the weight vector wgyy of
the SVM DFE based on the channel estimate d. This
indirect approach, as opposed to a direct adaptation of
the equaliser weight vector using the LMS algorithm, has
an advantage of shorter training period. This is because the
correlation matrix of the LMS channel estimator has an
eigenvalue spread of one, while the correlation matrix of
the LMS algorithm for updating the equaliser weight
vector can have a large eigenvalue spread [26]. The LMS
channel estimator typically requires training samples ten
times of the channel length.

Implementing the SVM DFE in data storage systems is
particularly simple, as in many commercial disc drives, the
equalisers are trained at the factory floor and then ‘frozen’
before shipping. Thus training can be done off-line in one
go. For time-varying communication links, it is possible to
implement the SVM-DFE in a block-by-block adaptation.
For example, in many communication systems, transmis-
sion is organised in frames. Each frame contains a training
portion, which can be used in channel estimation. The
estimated channel is then used to design the SVM DFE to
detect data in the frame. The adaptive SVM DFE is
computationally more complex than the adaptive MMSE
DFE, due to the need of solving a quadratic programming.
The increase in computation, however, can partly be
justified by an improved performance.

3 Conclusions

The linear-combiner DFE partitions the signal space with a
hyperplane. This geometric visualisation provides insights
into various DFE designs. The best-known DFE design is
the MMSE DFE with its computational simplicity. At the
other end, the sophisticated MBER DFE offers the optimal
performance for the linear-combiner DFE structure, at the
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cost of solving a complex nonlinear optimisation problem.
We have proposed a new DFE design based on SVM. The
SVM DFE, being the asymptotic MBER solution, is super-
ior in performance to the MMSE DFE. The SVM approach
results in a simple quadratic programming, and the solution
can be computed very efficiently. Adaptive implementation
of the SVM DFE is also discussed, and it is possible to
realise the SVM DFE in data storage systems and slow
time-varying communication links.
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5 Appendix

Consider the problem of separating the set y of N training
data belonging to two separate classes

(yl’xl)7'~-7(.yN7xN) (36)
with a hyperplane

wix+c=0 (37

where x; € R” is an m-dimensional training data vector and
yie{—1, +1} its class indicator. It is assumed that y is
linearly separable. As there is some redundancy in the
parameters of the hyperplane (eqn. 37), it is appropriate to
consider a canonical hyperplane [11], where the para-
meters w, ¢ are constrained by

min |wal« +cl=1 (38)

XI€X

This constraint is preferred to other alternatives, as it
simplifies the formulation of the problem. A canonical
separating hyperplane must satisfy the constraints

yiw'xi+e) =1, ¥x; e 1 (39)

Referring to Fig. 7, there are innumerable hyperplanes
which can correctly separate y into two classes. Intuitively,
the best hyperplane is the one with the following property:
the distance between the closest training vector to the
hyperplane is maximal. Based on this belief, the optimal
hyperplane is given by maximising the margin, which is
defined as

Wi+l w'x; +c|
p(w,c) = min ——— wx; el

lyi=+1}  [lw]] =1 [l

- : T . r

= min [w'x; +c|+ min [w'x; +c|
”W” {x;ly;=+1} =1} .

2

N (40)

[[wll

Fig. 7 Optimal and nonoptimal separating hyperplanes

optimal
nonoptimal
~~~~~ margin
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subject to the constraints of expr. 39. Thus, the optimal
hyperplane is the one that minimises

D) = % Il (41

subject to the constraints of expr. 39. It is interesting to
notice that minimising the function of eqn. 41 is in fact
equivalent to implementing the powerful SRM principle
[11, 21].

The solution of the optimisation problem with the cost
function of eqn. 41 under the constraints of expr. 39 is
given by the saddle point of the Lagrangian [22, 23]

N
Low,c.g) =3 Wl = 3 glow™x, + e — 1] (42)

i=1

where g; are the Lagrange multipliers. The Lagrangian has
to be minimised with respect to w, ¢ and maximised with
respect to g; > 0. Classical Lagrangian duality enables the
primal problem (eqn. 42) to be transformed to its dual
problem

max Y(g) = mgx{rgigl L(w,c, 8)} (43)

The minimum with respect to w and ¢ of the Lagrangian L
is given by

oL ul

—=0 § v, =0 44
% = 2 g (44)
oL ul

o O0=w= 2 8iViX; (45)

i=1

Substituting eqn. 45 into eqn. 43 yields

1 XN N
max y(g) = m;X[— 5D D LYY+ Zgl-} (46)
=1 j=1 i=1
and the solution of the dual problem is given by

~ ) 1 N N N
g=arg Ir}gm{g 3O gyl - Zg,-} (47)
i=1

i=1 j=I
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with the constraints

=0, i=1---,N (48)
N
Y egmi=0 (49)
i=1

Solving the quadratic optimisation problem of eqn. 47
subject to the constraints of expr. 48 and eqn. 49 deter-
mines the Lagrange multipliers, and the optimal separating
hyperplane is given by

N
W= Zyx; (50)
i=1

c

— %WT(er +x) (51)

where x, and x_ are any ‘support vector’ from each class
with the corresponding Lagrange multipliers and class
indicators satisfying

g, >0, y,=+1; g >0, y_=-1 (52)

Notice that ¢ is simply obtained from y,(W'x, +c)=1
andy_(wix_ +¢c)=1.
From the Kuhn-Tucker conditions

gi(l’i[ﬁ’Txi +c—-1)=0 (53)
and only those points x; which satisfy
yi[’_"Txi +c]=1 (54)

will have nonzero Lagrange multipliers. These points are
termed SVs. All the SVs lie on the margin and the number
of SVs can be very small. The optimal hyperplane is
determined by the SVs, and all the other points in the
training set y can be removed without affecting the solu-
tion. Finally, the following observation can be made. In the
special case where the hyperplane passes through the
origin of the space, ¢ =0 and the solution of the quadratic
programming (eqn. 47) under the constraints of expr. 48
only can be computed very efficiently.
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