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Abstract: The paper considcrs data modelling using multi-output regression models. A locally 
regularised orthogonal least-squares (LROLS) algorithm is proposed for constructing sparse 
multi-output regression models that generalise well. By associating each regressor in the 
regression model with an individual regularisation parameter, the ability of the multi-output 
orthogonal least-squares (OLS) model selection to produce a parsimonious model with a good 
generalisation performance is greatly enhanced. 

1 Introduction 

Data-modelling practicioners have traditionally relied on the 
parsimonious principle to combat over-fitting. Apart from 
the obvious computational advantage, small models often 
generalisc better. Among various construction algorithms 
for producing parsimonious models, e.g. [1-6], the ortho- 
gonal least-squares (OLS) algorithm [ I ,  21 has certain 
advantages. A key feature of this algorithm is its ability to 
show the contribution of an individual selected model 
regressor to the modclling accuracy. This ability to provide 
quantitative information regarding the significance of an 
individual regressor enables the algorithm to select only the 
significant regressors and is responsible for producing 
parsimonious models. In practical modelling problems, 
full data matrices are usually ill-conditioned and oRen 
non-invertiblc. A simple mechanism is automatically built 
into the OLS algorithm to avoid any ill-conditioning of 
leaming problems, and the algorithm does not require an 
inverse of the full data matrix, as many other data modelling 
algorithms do. The parsimonious principle alone, however, 
is not entirely immune to over-fitting. If the data are highly 
noisy, the small models constructed may still fit into the 
noisc. A useful technique for overcoming over-fitting is 
regularisation [7, 81. A uniformly regularised OLS 
(UROLS) algorithm 191 has been proposed for single- 
output regrcssion, which employs a single uniform regular- 
isation parameter for each weight in the model. From the 
Bayesian learning viewpoint, a regularisation parameter is 
equivalent to the ratio of the related hyperparameter to a 
noise parameter [IO]. 

The Bayesian lcarning framework is perhaps the most 
general and powerful learning technique for data model- 
ling. Various Bayesian learning methods can be cate- 
gorised into three specific classes: the type-I1 maximum 
likelihood or evidence proccdure, the Markov chain Monte 
Carlo sampling approach and the variational learning 
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method. For a recent review of these Bayesian learning 
methods see, for example, [ I  I]. All the Bayesian learning 
algorithms are conceptually complicated and computation- 
ally expensive. The evidence procedure, which iteratively 
optimises model parameters and associated hyperpara- 
meters [IO],  is relatively simple. Applying the evidence 
procedure to single-output kernel regression models leads 
to the relevance vector machine (RVM) method 1121. A key 
feature of the RVM is the introduction of an individual 
hyperparameter for each weight in the regression model. 
During the optimisation process, many of these hyperpara- 
meters are driven to large values, so that the corresponding 
model weights are effectively forced to be zero. A drdw- 
back of the RVM method is that tbc iterative optimisation 
process involved is inherently ill-conditioned, and numeri- 
cally robust methods, such as the singular value decom- 
position or other pseudo-inverse algorithms, often have to 
be used to solve for the corresponding optimisation 
problem. Recent work [I31 has combined the idea of 
OLS subset model selection with an individually regu- 
larised approach to derive a single-output LROLS algo- 
rithm, which does not suffer from this disadvantage. 

For multi-output regression, the choice of construction 
algorithms is far less than for the single-output case. One 
approach is to fit multiple singlc-output models as, for 
example, in [14]. An altemativc is to construct a single 
multi-output regression model as, for example, in [ 151. 
The latter approach has some advantages: a selected 
regressor must be significant in explaining all the outputs, 
and this can result in a smaller number of regressors 
overall than the former approach to achieve the same 
modelling accuracy. This paper proposes combining the 
local regularisation approach with the multi-output OLS 
regression. For an effective updating of regularisation 
parameters, the single-output evidence procedure of [ I  01 
is extended to the multi-output case. In this proposed 
multi-output LROLS algorithm, regularisation is intro- 
duced in the orthogonal weight space, and the Hessian 
matrix needed for updating the regularisation parameters 
is diagonal. This offers considerable numerical advan- 
tages: the algorithm retains the ability to select significant 
regressors and local regularisation further enforces spar- 
sity. The end result is therefore a very efficient yet simple 
algorithm for constructing sparse multi-output regression 
models that generalise well, especially under highly noisy 
learning conditions. 
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2 The multi-output regression model 

Consider the multi-output regression model of the form 

Yi(x-) = X k )  + e,@) 
M 

= 8j, j+j(k) +ei@)  1 5 k 5 N (1) 

for 1 5 i 5 n,,, where yi(k) is the ith target or desired output, 
e,(k) is the error between yi(k) and the ith model output 
j i (k ) ,  O;, are the model weights, d, (k)  are the regressors, M 
is the total number of candidate regressors, no the number 
of outputs and N the number of training samples. Define 

j= I 

for I 5 i 5 no and 

@=[+I + 2  " '  +.MI (3)  

4, = [dj(l) dj(2) . . .  bj(N)lr  1 5 j  5 M (4) 

y,=Q,DBj+ci l S i < n ,  (5) 

with 

The multi-output regression model ( I )  becomes 

Further define 

Y = b l  Y2 . ' '  Y,.I @ = [ @ I  02 " '  e,] 
E = [el e2 . . . e,,,] ( 6 )  

The regression model ( I )  can he rewritten in the matrix 
form as 

Y = Q , O + E  ( 7 )  
Let an orthogonal decomposition of the regression 
matrix @ b e  

Q, = WA (8) 
where 

al ,2  . . .  O1.M 1 
.I, :o: I J (9) 

adf-1.M 
. . .  

and 

W = [wl w2 " '  WMI (10) 

with orthogonal columns that satisfy wTwi=O, if j f r .  
The regression model (7) can altematively be expressed as 

Y = W C + E  (1 1) 

G = ki g 2  . . .  g,,I (12) 

g, = kl., g2,, ' . .  sM.,1' 1 5 i 5 n, (13) 

where the orthogonal weight matrix 

with 

and C satisfies the triangular system 

A O = C  (14) 

Knowing A and G, 0 can readily he solved from (14). 
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3 Multi-output locally regularised OLS algorithm 

With local regularisation, each orthogonal regressor ny has 
an associated regularisation parameter ?.I. Denote the 
regularisation parameter vector as A = [il A2 . . . ibf]' and 
a diagonal matrix A = diag(E., , A 2 , .  . . , LM}. The multi- 
output LROLS algorithm is based on the following regu- 
larised error criterion: 

JR(G. A )  = trace(E'E + C'AC) 

The original multi-output OLS algorithm [I51 can be 
viewed as a special case of this LROLS algorithm with 
+O,  Vj .  It is also possible to derive a multi-output 
UROLS algorithm hy setting 'I=)., Vj,  just as in the 
single-output case [9]. 

After some simplification (see the Appendix, 
Section l . l ) ,  the criterion (15) can be expressed as 

trace(ETE + G'AC) = trace(YTY ~ G'(W'W + A)G) 

(16) 

or 

(17) 

Normalising (16) by trace(Y'Y) yields 

Define the regularised error reduction ratio due to the 
regressor wi as 

Based on this ratio, significant regressors can be selected in 
a forward-regression procedure, exactly as in the case of 
the multi-output OLS algorithm [15]. The selection is 
terminated at the M,th stage when 

M. 
1 - 1 [rerrIi < (20) 

i= I 

is satisfied, where 0 < 5 < 1 is a chosen tolerance. This 
produces a sparse model containing M, (<<M) significant 
regressors. The detailed algorithm-selection procedure is 
given in the Appendix (Section 7.2). Notice that, in the 
selection procedure, if wlwi is too small (near zero), this 
term will not he selected. Thus, any ill-conditioning or 
singular situations can automatically be avoided. 

The Bayesian evidence procedure [ I O ]  can readily 
he extended to the multi-output case and thus used 
to 'optimise' the regularisation parameters. From the 
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Bayesian viewpoint, the following error criterion is equiva- 
lent to the criterion (15): 

I 
2 

JB(C, h ,  b) = -trace(/iE'E + @HG) 

where f l  is a noise parameter, h = [h ,  h Z . .  . h,]' is the 
hyperparameter vector and H = d i a g ( h , ,  h2, .  . . , hM} .  The 
relationship between a regularisation parameter and its 
corresponding hyperparameter is obviously given by 

Following MacKay [IO], it can be shown that the log 
evidence for h and 0 is (see the Appendix, Section 7.3) 

1 
2 

log(evidencc) = -- trace(@E + CTHG) 

I n" 
2 ,=I 

- -log(det(B)) +IC log(hj) 

(23) 
n N  

2 
+ "log(B) + c 

where c is a constant that does not depend on h and p, and 
the (n,M) x ( n a g  diagonal matrix 

Bo 0 . . .  0 

(24) 
. .  

. . .  

with the M x M diagonal matrix Bo given by 
Bo = H + /IWrW = diaglh, + /?wl T w , ,  

h, + pw:wz, .  . . , h, + BwLwn,1 (25)  

Setting the derivatives of log(evidence) with respect to h 
and to zeros yields the updating formulas for h and 8, 
respectively, as given in Section 7.3. Substituting these 
updating formulas into (22) results in the updating formu- 
las for the regularisation parameters: 

12" 

eTe, 
=I.% 1 c j s M  (26) . ,/Ci$. 

,.i N - ,,old n,, 

i= I 
c g:i 

where 

and 
rM 

Y=cYj ( 2 8 )  
j= I 

The iterative regression-model selection procedure can 
now be summarised: 

Initialisation: Set I?, I sjs M to the same small positive 
value, e.g. 0.001. 
Step 1 .  Given the current A, use the procedure described in 
Section 7.2 to select a subset model with M, terms. 
Step 2. Update A using (26)-(2S) with M=M,. If A 
remains sufficiently unchanged in two successive iterations 
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or a pre-set maximum iteration number is reached stop; 
otherwise go to step I .  

At the beginning of the iterative loop, the value o f t  for 
terminating the subset model selection can deliberately be 
chosen to be smaller than really needed, so that step I 
produces a M,-term model which is larger than is really 
needed. This ensures that no significant terms are lost when 
A is far from its optimal value. When A has converged 
(typically after I O  to 30 iterations), an appropriate value of 
5 should then be used to produce a parsimonious final 
model. 

The ideal value of 5 can usually be learnt by interacting 
with the selection procedure [ I ,  161, or a cross-validation 
using a separate testing data set can be used to leam an 
appropriate value for 5.  Alternatively, the selection can be 
terminated when the Akaike information criterion 

AIC(x) = N Iog(det(N-IETE)) + M,% (29) 

2 

1 

T o  c 
5 

-1 

-2 

-2 -1 0 1 2 

I I  I I I I 1  
-2 -1 0 1 2 

Fig. 1 Two-dintensional representotions of the noisy fime serier 
observations 
Initial conditions were pl(0)=y,(-I)=y2(0)=y2(-l)=0.0. and the 
covariance of the noise was 0.041, 
a Phase plot of noisy time series y,(k) 
h Phase plot of noisy time series y2(k) 
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Table 1: Comparison of t h e  OLS and LROLS algorithms for t h e  simulated two-output 
nonlinear time series modelling example 

Algorithm Training set CovlEi Testing set CovlEl 
~ 

OLS 3.404865 x lo-’ 4.109623 x lo-‘ 5.330108~ 10.’ 3.248144 x 
4.109623 x lo-‘ 3.359714 x lo-’ 3.248144 x 4.879024~ lo-* 
logldetlCovlEll) = -6.77349 logldetlCov(Ol)= -5.95610 

5.746453 x lo-’ 3.481578 x lo-’ 2.858339 x 4.560991 x lo-’ 
logldetlCovlElll= -6.69587 log(detlCovlEl1) = -6.07293 

LROLS 3.550233 x lo-‘ 5.746453 x lo-’ 5.070231 x 2.858339 x 

Cav(E)=ane-step prediction error Covariance 

reaches its minimum [17], where is the critical value of 
the chi-squared distribution with one degree of freedom for 
a given level of significance. I t  should be pointed out, 
however, that the choice of 5 is less critical than the 
original OLS algorithm. In the original OLS selection 
procedure, when data is very noisy, it is possible that the 
normalised error measure 1 - [err]! continuously 
decreases as more terms are added. This may lead to 
over-fitting unless the value of 5 is chosen carefully. As 
is demonstrated in the single-output case [13], multiple 
rcgularisers enforce sparsity, and I ~ [rerr]! will not 
continuously decrease as more terms arc addcd. This is 
because those unnecessarily added tenns will have a very 
large I.! associated with them, effectively forcing their 
weights to be zero. This also helps to determine how 
many regressors to include in the final model. 

4 Nonlinear system modelling examples 

Three examples are used to illustrate the multi-output 
LROLS algorithm and to compare it with the original OLS 
algorithm. The regression model employed is the multi- 
output radial basis function (RBF) network of the form: 

.M 
= C ~~, ,d( l l~(~)  - c,ll) 1 5 i 5 n,, (30) 

j= I 

with the thin-plate-spline function 

d,(r) = ? Iog(r) (3 1) 
where the input vector to the RBF network is 

x(k)  = [,rr,(k) x 2 ( k )  . . . .xn,(k)lr (32) 

and c,, of dimension nl, are the RBF centres. 

Example 1: This was a simulated two-output time-scrics 
process. The data set contained 1000 noisy observations 
generated using the model 

yl(k) = 0.1 sin(ny,(k - 1)) 

+(0.8-0.5cxp(-~$(k - I)))yl(k - 1) 

- (0.3+0.9exp(-y:(k - ~)))y,(k ~ 2) + cl(k) 

+ 1.2 tanh(y,(k ~ 2)) + c2(k)  
y2(k) = 0.6y2(k ~ I )  + 0.2y2(k ~ I)y2(k ~ 2) 

(33) 

given the initial conditions ,v,(O) =yl(- I )  =y2(0) = 
y 2 ( -  I )  = 0, where the zero-mean Gaussian noise E(k) = 
[el(k) ez(k)]7 had a covariance 0.041, with Z2 being the 
2 x 2 identity matrix. The first 500 data samples were used 
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for training and the other 500 samples for validating the 
obtained model. The noisy traiuing data set is depicted in 
Fig. 1. A two-output RBF network was used to model this 

1 .o 

0.5 

I 
N 

i o  - 
h 

-0.5 

-1 .o 

0 0.5 1.0 1.5 -1.5 -1.5 -1.0 4 . 5  

1.5 

1.0 

0.5 

- 
N 
i o  
F 

I I 

I 

-1 -.-wH--+i- .o 

-1.5 
-1.5 -1.0 4.5 0 0.5 1.0 1.5 

Y2Ik-11 
b 

Fig. 2 
series ohservarions 
Initial conditions were yd,(O) =ydl(- I)=ya(O) =~>,a(-l) = 0.1 
a Phase plat of noise-free time series j>,,,(k) 
b Phase plot of noise-free time series ya(k) 

Tho-ilimensivnul represenfalions of the noise-pee time 
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time series, with the input vector to the RBF network 
given by 

x(k)  = b,(k - 1)  )Jl(k - 2) y2(k I) y2(k - 2117 

(34) 

As each training input was used as a candidatc RBF centre, 
the number of candidate regressors M in (30) was 500. 

In the previous study [ I  5 ] _  the OLS algorithm identified 
a RBF network of 50 centres for this times series, where 
the noise covariance was 0.0112. In the current example, 
the noise level was much higher. Both the OLS and 
LROLS algorithm were used to construct RBF networks 
o f  50 centres. The covariances of the resulting network 
prediction errors between the noisy observations ,v;(k) and 
the one-step network predictions j , ( k ) ,  i =  I ,  2, over both 
the training and testing sets are listed in Table 1. It can be 

scen that the generalisation performance of the LROLS 
algorithm is better than that of the OLS algorithm. The 
underlying dynamics of the simulated time series was 
governed by 

y d l ( k )  = 0.1 sin(7rjJ<12(k - I)) 

+ (0.8 - 0.5 exp(-j&(k - I)))j>,,,(k - I )  

- (0.3 + 0.9exp(-j&(k - l)))ydl(k - 2 )  

yd2(k) = 0.6~,,~(k - I )  + 0.2yd2(k - I)j~,,~(k - 2 )  

( 3 5 )  

Given the initial conditions y<,,(O) =?',,I(- I) =.v,,2(0) = 
yd2(-1)=0.1, the response of this noise-free time scries 
is dcpicted in Fig. 2. The generalisation capability of an 
identified model can best be tested by examining the 
iterative model output. If the iterative model output can 

+ 1 .Z tanhO>,,, (k  - 2)) 

-1.5 I I I I I I 
-1.5 -1.0 -0.5 0 0.5 1.0 1.5 

Y$lk-l) 

I 
-1.5' 

-1.5 -1.0 -0.5 0 0.5 1.0 1.: 

YZ(k-1) 
b 

Fig. 3 Rro-dimensional represoiiotiuns of the irerotive model 
utrrputu 
lnilial conditions were !,;,(a) =.Cd,(- I J =yn(0) =.$&(-I J = O .  I ,  and 
the model was constnicrcd by the OLS algorithm using "cry noisy data 
a Phase plot of the itcratiw imodel output Tdni(k) 
h Phase plot of the iterative model output j,fi(k) 

Fig. 4 R+~o-dinwnsionui represenmions of the iterative model 
otrt/J,rts 

Initial conditions were .C,,,(O)=.j,,,(- I )  =9,,40) =.Cd2(- I ) =  0.  I .  and 
the model was constructed by thc LROLS algorithm using "cry noisy 
data 
ii Phase plol of the iterative modcl nutput ,$,,,(k) 
h Phase plot of thc iferati\~c model output >,ii2(kJ 
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Fig. 5 
(2 In-phase current devialion u , ( k )  
b Out-of-phase current deviation ul(k) 

Swtem input data for the turbo-ulrernotor example 

4.7' 
0 20 40 MI 80 100 

k 
b 

Fig. 6 
vu1puts 
The 45-term model was constructed hy the LROLS algo"thm 
a Voltage deviation/onc-step prediction y)(k)/.C,(b) 
b Frequency deviation/one-step prediction y2(k)/y2(k) 

One-step predictions superimposed on turbo-alternator 

closely realise the behaviour shown in Fig. 2, the identified 
model truly captures the underlying dynamics of the 
system and does not simply fit the noise contained in the 
training data. Given the same initial conditions, the two 
RBF models identified by the OLS and LROLS algorithms 
were used to iteratively generate the network outputs-Cd,(k), 

deviation yz(k) are shown in Fig. 6. The two-output RBF 
network with the input vector 

x(k) = bl(k - I )  yl(k - 2) y l ( k  - 3 )  y,(k - 1) 

Y,(k - 2) .Y,@ 3) u1(k - 1) 

i = I ,  2, with the input u , ( k  - 2) u*(k I )  u,(k - 2)IT (37) 

Xd(k)yFd l (k - l )  Ldl(k-2) > d Z ( k p  1) j d 2 ( k - 2 ) 1 r  

(36) 

The iterative model outputs so generated are plotted in 
Figs. 3 and 4, respectively. It can be seen that the model 
conshucted hy the LROLS algorithm captured the underlying 
dynamics of the system better than the OLS algorithm did. 

Example 2: This example was a two-input two-output data 
set collected from a turbo-alternator [18]. The data set 
contained 100 samples. The system inputs, the in-phase 
current deviation u l ( k )  and the out-of-phase current devia- 
tion u2(k), are plotted in Fig. 5 ;  whereas the system 
outputs, the voltage deviation y l ( k )  and the frequency 

was used to fit this data set. In the previous study [IS], the 
OLS algorithm constructed a 45-centre RBF model for this 
example. As this data set contained very low noise, it was 
expected that the LROLS algorithm should produce a 
similar model. The modelling accuracies of the two 45- 
centre RBF networks constructed by the OLS and LROLS 
algorithms, respectively, are compared in Table 2. The 
model validation in this case was performed by evaluating 
the iterative model outputs 3di(k), i =  1, 2, with the input 

X d ( k ) = E d l ( k - l )  j d l (k -2 )  j d i (k -3 )  ,?d;dz(k- 1) 

jd2(kp2)  ,?d;d2(k-3) ul(k-l) 

u l ( k  2 )  u2(k - 1) u,(k 2)]' (38 )  

Table 2: Comparison of the OLS and LROLS algorithms for the turbo-alternatoi 
modelling example 

Algorithm Training set CovlEl Training set CovIE,l 

OLS 2.698050 x lo-' -1.011401 Y 4.980833~ lo-" -2.739734 x lo-' 
-1.011401 x 2.565515 x -2.739734 Y 9.454893 Y lo-' 
logIdet(Cov1El)) = -16.4875 

-1.521883~ lo-* 2.307177 x lo-' -2.652641 x 9.176416 x 

logldetlCovlElll= -16.5938 logldetlCovlE,)ll= -14.7886 

IogldetICovlE,,))) = -14.7422 
LROLS 2.703650 x -1.521883 Y 4.885013 x lo-" -2.652641 x lo-' 

CovW=one~step prediction error covariance. CovIE,l =iterative model error covariance 
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Fig. 7 
output.x 
The 45-term model was constructed by the LROLS algorithm 
a Voltaga deviationjitemtive output y,(k)/jdlik) 
h Frequency deviationJitcrativc output y,(k)/y,&) 

Iterative model orrtprrts srywimppored on rrrrbo-nlternaror 
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Fig. 8 System input qf the simulated single-input two-output 
nonlinear system rrumple 
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Fig. 10 
output nonlineur swtem exomple 

Two systenz noises of the .simulated single-input mu- 

The results given in Table 2 show that the model constructed 
by the LROLS algorithm is marginally better than the 
model constructed by the OLS algorithm. The one-step 
model predictions and the iterative model outputs are 

Table 3: OLS selection procedure for the simulated 
single-input two-output nonlinear system modelling 
example 

Stage I Accuracy 1 - 1  [err], 

1 0.9266648402 

2 0.7812246356 

3 0.6857712253 

4 0.6712676332 

5 0.6617631 403 

53 0.5513383266 

54 0.5490380984 

55 0.5468145452 

56 0.5444882713 

57 0.5420129044 

58 0.5396682820 
59 0.5370542849 

60 0.53369031 55 

69 0.5124715883 

70 0.5099673726 

71 0.5077152658 

72 0.5054002839 

73 0.5028909486 

74 0.5000084333 

75 0.49751 49006 

76 0.4948750220 



Table 4 LROLS selection procedure for the simulated single-input two-output 
nonlinear system modelling example after A has converged 

Stage I Accuracy 1-x Irerrl, 

1 0.9290445009 
2 0.8102458145 
3 0.7230709198 
4 0.7048683716 
5 0.6917827744 

51 0.6314173375 
52 0.631349061 1 
53 0.6312695431 
54 0.631221 1359 
55 0.6311776920 
56 0.631 1154361 
- 57 0.6310975544 
58 0.631 0970858 

60 0.6310970658 
61 0.6310970638 

59 0.631 0970693 

62 0.6310970617 
63 0.6310970617 
64 0.6310970617 
65 0.6310970617 
66 0.6310970617 
67 0.6310970617 
68 0.6310970617 
69 0.6310970617 
70 0.6310970617 
71 0.6310970617 

Weights O,,,, 111.2 Regulariser ;., 
~ 

-1.40107 io-‘ 2.28733 io-’ 
7.41665 x io-’ -2.40987 io-’ 

-5.52066 x io-‘ 2.85684 io-’ 
1.15299 x lo-’ -5.39292 x 

-1.10061 -1.79131 x lo-’ 

2.40694 x lo-’ -1.72133~ 10.’ 
-3.83076 io-* -1.00672 io-2 
-7.54805 10.~ -7.26621 x io-= 
-5.63049 10.~ -2.18998 
4.03370 x lo-’ -2.10492 x lo-* 
2.06592 x io-2 -2.15718 io-2 
1.09999 x lo-’ 1.35215 Y 

3.60116~ lo-’ -1.53099~ lo-‘ 
6.47015 x 10.‘ 9.37922 Y 

9.26853 x io-’ 3.56768 
-4.943~8~ io-6 -1.15381 io-6 
1.97632~ -1.09804~ 

-1.64595~ lo-’’ 4.03026 x lo-’’ 
-2.03159 Y lo-‘’ 7.91477 x lo-‘’ 
3.65183~ 1.11422~ 
2.61706~ lo-‘’ 1.62022 x lo-’’ 

-7.07541 x 3.91732 Y 

1.02075 x -7.85205~ io-28 
1.78144 x 1.60239 Y 

-2.34416 x -1.12397 x 

9.08491 io-” -1.11975 

9.26011 x 10’ 
1.71147~10~ 
8.01033 

4.34778 io 
8.71645 x 10 

2.20599 x 10 
1.14253~ 10 
1.38760 Y ioz 
2.57337 Y 10 
1.94738~ 10 
1.71534~10 
7.28739 x io 
1.44289 x lo4 
1.01024~ 10’ 
1.46341 x lo5 
1.13584 x lo5 
3.44474 io5 
2.84426 iog 
1.22579 Y 10” 
5.42861 x 10l6 
6.09163 x 

5.30902 x 

3.36203 x 10‘’ 
1.87551 ioz8 
6.75809 x lo3‘ 
1.06856 x loa6 

supcrirnposed on the turbo-alternator outputs in Figs. 6 
and 7, respectively, which were very similar to those 
shown in [ 151. 

Example 3: This was a simulated single-input two-output 
nonlinear system. The data were gcnerated using the model 

yl(k) = 0.5yl(k - 1) + rr(k - 1) + 0.4 tanh(u(k - 2)) 
+0.1 sin(rrj+(k-2))y2(k- I )+tl (k) 

+ 0.4exp(-u2(k - I))v, ( k  - 2)  + c2(k) 

h ( k )  = 0.3y2(k - I )  + O.ly,(k - 2)yl(k - I )  

(39) 

where the system input u(k) was uniformly distributed in 
(-0.5, 0.5), and the system noises ~ ( k )  = [ t l (k)  cz(k)]‘were 
Gaussian with zero means and covariance 0.41,. Figs. 8 
and 9 show the system inputs and outputs, respectively. 
Notice that the system outputs were ‘buried’ in noise. This 
can be confirmed by observing the noise realisations used 
to generate the data, given in Fig. I O .  Thc first 500 data 
points were used for training, and the two-output RBF 
network with the input 

-+) = kl(k - 1) y , ( k  - 2) y*(k - 1)  
y2(k - 2) u(k - I) u(k - 2)l‘ (40) 

was employed to tit the training data. The last 500 data 
samples were used for model validation. Thc goodness of a 
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fitted model was also evaluated by computing the iterative 
model outputs with the input 

x&) = L?dl(k - 1) ?</l(k - 2 )  .P</Ak - 1) 
j d Z ( k  - 2) u(k  - 1) u(k - Z)]‘ (41) 

Because this data set was extremely noisy, the normalised 
error measure 1 - [err.]/ continuously decreased as 
more terms were added by the OLS model-selection 
procedure, as illustrated in Table 3 .  This would certainly 
lead to over-fitting. Thus, the value of 5 used to terminate 
selection was critical in this case for the OLS algorithm. 
The LROLS selection procedure, after A had converged, is 
listed in Table 4. Two observations can be made here. First, 
the modelling accuracy 1 - [ i w r ] ,  did not continuously 
decrease as more terms were added by the LROLS selec- 
tion procedure. In this particular example, 1 - [rerr]) 
rcmained unchanged after the 1=61 stage. This clearly 
indicated that the model should contain no more than the 
tirst 62 selected terms. Secondly, the regularisation para- 
meters related to the terms from 58 onwards were very 
large and the corresponding weights were effectively zeros. 
This clearly indicated that a 57-term model was sufficient. 
This desired property of enforcing sparsity by local regu- 
larisation is very useful in helping to terminate the model- 
selection procedure at an appropriate stage without using 
costly cross-validation based on a separate testing data set. 
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Table 5: Comparison of the OLS and LROLS algorithms for the simulated single-input 
two-output nonlinear system modelling example 

57-term model OLS LROLS 

Training set 3 . 3 3 2 2 8 8 ~  io-' 2 . 1 8 4 4 0 5 ~  3.640266 x io-'  2.307056 x io-' 

covin 2.184405 x io-2 3 . 2 ~ 4 2 4 6 ~  io-' 2 . 3 0 7 0 5 6 ~  io-' 3.718092 x io-'  
IogidetiCoviFt)) -2.23526 -2.00385 

Testing set 5.356972 x lo-'  3.857507 x lo-' 4.977092 x lo-' 2.699694 x 10.' 

covin 3.857507 Y lo-' 4.888409 x lo-' 2.699694 x 10.' 4.380525 x lo-' 
log(detiCovinl1 -1.34560 . .  -1.52650 

Iterative model 6 . 0 1 1 0 3 3 ~  lo-' 7.425149 x lo-' 5 . 8 0 3 8 4 8 ~  lo-' 7.540281 x 

COViE,) 7.425149 x lo-* 6 . 1 9 3 3 7 8 ~  lo-'  7.540281 x 5 . 8 0 6 3 5 9 ~  lo-' 

logidetiCov(E,)Il -1.00301 -1.10471 

71-term model OLS LROLS 

Training set 3.100165 x lo-' 1.578568 x 10.' 3.640265 x lo-' 2.307079 x lo-' 
covin 1 . 5 7 8 5 6 8 ~  io-2 3.041483 io-'  2.307079 io-> 3.718081 x io-' 

log(detiCovIEN -2.36402 -2.00385 
Testing set 5.595245 x lo-' 3.987048 x 10.' 4.977094 x 1 O - I  2.699648 x lo-' 

covin 3.987048 x lo-' 4.958190 x I O - '  2 . 6 9 9 6 4 8 ~  4.380519 x lo-' 
IogidetiCoviFt)) -1.28796 -1.52651 

Iterative model 6.337929 x 10.' 9.950650 x lo-' 5.803847 x lo-' 7.540273 x 10.' 

COViE,) 9.950650 x lo-' 6.496305 x lo-' 7.540273 x lo-' 5.806359 Y lo-'  

logldetlCov(Ed))) -0.91173 -1.10471 

Covin =one-step prediction error covariance, CovlEdl= iterative model error covariance 

Themodellingaccuraciesofthe57-termand 71-term RBF 
models constructed by the OLS and LROLS algorithms are 
compared in Table 5.  From Table 5 ,  it can he seen that the 
training-error variances ofthe models identified by the OLS 
algorithm were clearly smaller than the system-noise 
variances, indicating that the models were fitted into the 
noisc, and moreover over-fitting of the 71-tenn model was 
more serious than that of the 57-term model. The two 
models identified by the LROLS did not appear to suffer 
from over-fitting, and they had the same generalisation 
accuracy, which was much better than the models 
constructed by the OLS algorithm without regularisation. 

5 Conclusions 

A locally regularised OLS algorithm has been developed for 
constructing sparse multi-output regression models. This 
multi-output LROLS algorithm combines both the advan- 
tages of OLS model selection, which has the ability to select 
only those significant regressors to explain training data, 
and local regularisation, which enforces the sparsity of the 
models. The end result is an efficient construction algorithm 
that is capable of producing sparse multi-output regression 
models with excellent generalisation performances. As 
regularisation is introduced in the orthogonal weight 
space, the computational requirements of the iterative 
modcl selection procedure are simple and straightfonvard. 
Any numerical ill-conditioning problems can automatically 
be avoided. It has also been shown that the decision on when 
to terminate the model selection procedure is greatly 
assisted by local regularisation. 
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7 Appendixes 

7.1 SimpIification of criterion (151 

The ‘least squares’ solution for G is obtained by setting 
a/,/aG=o, that is 

W 7 ~ = ( W 7 W + A ) G  (42) 

Now 

Y ” Y - 2 C T A G = ( W G + E ) ‘ ( W G + E ) - 2 G r A G  

= C ~ W ~ W C + E ~ E  + G ” W ~ E  

+ E T W C - 2 G r A C  (43) 

Noting (42), 

C ~ W ’ E  - G ~ A G  = cTwT(y - wc) - G ~ A C  
= CT(W7Y - W T W C  - AC) 

= o  (44) 

Similarly 

Thus. 

Y‘Y - Z G ~ A C = G ~ W ~ W G + E ~ E  (46) 

E ‘ E + G ~ A G =  Y ~ Y  - C ~ A G - G ’ W ’ W G  (47) 

or 

7.2 Algorithm-selection procedure 

The modified Gram-Schmidt orthogonalisation procedurc 
calculates the A matrix row by row and orthogonalises 4 
as follows: at the Ith stage make the columns 4,, 
I +  1 5;s M, orthogonal to the Ith column and repeat the 
operation for 1 5 Is M - 1, Specifically. denoting 
@=+,, I C j s M ,  thcn 

(48) 
I w, = &I’ 

7 (1-1) a l j  = wl +j /(w:wI) I + I s J  5 M 

9;’ = &;-I) - a,,;w1 I + 1 5;  5 M 
I = I .  2 , .  . . , M - 1 

The last stage of the procedure is simply wM=+gMM1’. 
The elements of G are computed by transforming Po)= Y 
in a similar way: 

This orthogonalisation scheme can be used to derive a 
simple and efficient algorithm for selecting subset models 
in a forward-regression manner. First define 

If some of the columns +$‘-I), . . . , +;;I1 in @“-I ’  have 
been interchanged, this will still he referred to as @“) for 
notational convenience. The Ith stage of the selection 
procedure is given as follows. 
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Step I :  For I 5.j 5 M and 1 5 i 5 n,,, compute 

= (9;~-~~)~yy-i~ (1-11 T (1-1) l K 4 J j  ) 9, + 2,) 

[rerrt” = 

Step 2 :  Find 

@j)* ((+;-l’)T&j’-l’ + ij)/trace(Y7Y) 1 
[rerrlI = [rerr]; = max{[rerr$J1 I 5 ;  5 M )  

Then the ;,th column of @(‘-‘I is interchanged with the 
Ith column of @‘‘-’I, the first I -  1 elements of the 
jlth column of A are interchanged with those of the Ith 
column of A ,  and the iIth element of A is interchanged 
with the Rh element of A. This effectively selects the 
jph candidate as the Ith regressor in thc subset model. 
Step 3: Perform the orthogonalisation as indicated in (48) 
to derive the Ith row of A and to transform 4(‘-” into @”. 
Calculate gl,; and update fi’-I1 into r”’ in the way shown in 
(49). 

The selection is terminated at the M, stage when the 
criterion (20) is satisfied and this produces a subset model 
containing M, significant regressors. The algorithm 
described here is in its standard form. A fast implementa- 
tion can he adopted as shown in [ I91 for the single-output 
case, to reduce complexity. 

7.3 Model evidence for h and [j 

The Bayesian evidence procedure formulated for the 
single-output case [IO] can easily be extended to the 
current multi-output case. According to MacKay [ IO]  and 
taking into account that the number of outputs is }I,,, the 
model evidence for / I  and /l can be expressed as 

whcre 

and 

Z,u(h, p)  = e-”u*p(2n)”’~“12det~”2(B) (54) 

with MMAP being the cost function (21) evaluated at the 
maximum a posteriori probability solution G, and B being 
the (nom x (nom diagonal matrix defined in (24). 

Thus the log evidence can be expressed as 

/j 4, 1 M n,, 

2 1-1 2j-I i=, 

2 2 ;=I 

log(P(Y. W1h.p)) = - -CeTe,  --Ch,zg;, 
A< I - - log(det(6)) + 5 C log@,) 

whcre 

n M  n M  n*N c = Llog(2n) 2 - ‘-log(n) 2 - -Iog(2n) 2 (56) 



yields the re-calculation formula for /l 

Setting 

provides the re-calculation formulas for h, , 1 5 j 5 M, 

Define 

with 

Then the re-calculation formulas for f l  and h, are, 
respectively, 

and 

Noting the relationship Aj=h,lj leads to the re-calculation 
formulas for I j 1  I 5 j 5 M, 
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