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Low-Density Parity-Check Codes and Their
Rateless Relatives

Nicholas Bonello, Sheng Chen, and Lajos Hanzo

Abstract—This survey guides the reader through the extensive
open literature that is covering the family of low-density parity-
check (LDPC) codes and their rateless relatives. In doing so, we
will identify the most important milestones that have occurred
since their conception until the current era and elucidate the
related design problems and their respective solutions.

Index Terms—Low-density parity-check (LDPC) codes, rate-
less codes and codes-on-graph.

I. INTRODUCTION

LOOKING back over the last six decades or so, one can
reasonably surmise that the family of low-density parity-

check codes (LDPC) [1] and that of turbo codes [2], constitute
the two most practical realizations of Shannon’s theory [3],
which have revolutionized the field of error correction cod-
ing [4].

It was precisely the year 1948, when Claude E. Shannon,
who at that time was a researcher at Bell Labs, published
one of the most important theories, which inspired the re-
search community for many years to come. At that time, his
theories disproved the widely supported belief that increasing
the amount of information-carrying bits transmitted over the
channel per second, imposes an increase in the probability
of error. Shannon demonstrated that it is possible to transmit
information arbitrarily reliably over any unreliable channel,
provided that the information transmission rate is lower than
the capacity of the channel [3]. Therefore, the channel capacity
sets the bound on how much information we can transmit over
a channel.

Shannon’s claim can be realized by a technique referred
to as forward error correction. The basic idea is that of
incorporating redundant bits, or check bits, thus creating what
is known as a codeword. If the check bits are introduced
in an “appropriate manner” so as to make each codeword
sufficiently distinct from each other, the receiver will then
become capable of determining the most likely codeword that
has been transmitted. The channel capacity will determine the
exact amount of redundancy that has to be incorporated by
the encoder in order to be able to correct the errors imposed
by the channel.

However, Shannon’s theory only quantifies the maximum
attainable rate, but refrains from specifying the means of
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achieving it. This triggered widespread research efforts result-
ing in diverse extensions, deeper interpretations and practical
realizations of Shannon’s original work, which reached its
pinnacle in the definition of LDPC and turbo codes.

A. Fixed-rate Versus Rateless Forward Error Correction

In the majority of the research literature, fixed-rate and rate-
less codes are generally treated separately and hence the reader
inevitably gets the impression that these channel codes are
strikingly dissimilar or even perhaps unrelated. By contrast, in
this survey we will be treating them jointly and thus endeavor
to portray both the differences and the similarities of fixed-rate
and rateless codes.

Let us commence by outlining the differences. In simplis-
tic terms, fixed-rate error correction codes, also referred to
as fixed-rate channel codes, incorporate a fixed amount of
redundant bits and thus may be deemed to possess a fixed
code-rate. For example, a half-rate channel code will be
outputting twice the number of input information bits for the
whole duration of our transmission. Therefore, a fixed-rate
code having a rate Rx, can be carefully designed in order
to attain a performance that is close to the capacity target
C(ψx) at a specific channel signal-to-noise (SNR) value of
ψx dB, for which it was originally contrived for. However,
having a fixed-rate will impose two limitations. Firstly, if
the channel SNR encountered is actually higher than ψx dB,
the fixed-rate channel code essentially becomes an inefficient
channel code, albeit it exhibits a good performance at ψx dB,
since the code incorporates more redundancy than the actual
channel conditions require. Secondly, if on the other hand, the
channel SNR encountered becomes lower than the SNR value
of ψx dB, then the link is said to be in outage for the simple
reason that the fixed-rate channel code under consideration
is failing to supply sufficient redundancy to cope with the
channel conditions encountered. The fixed-rate channel code
can be modified in order to become more suitable or more
efficient for employment in channels of higher or lower quality
by using the so-called code puncturing [5] or code extension
techniques [6]. Code puncturing involves removing some of
the codeword bits and thus creating a code having a rate that
is higher than the original rate Rx, whilst code extension is
used to incorporate additional parity bits and thus for reducing
the code-rate.

On the other hand, rateless codes solve this problem from
a slightly different perspective. By delving into their fun-
damental principles and thus portraying their philosophical
differences, rateless codes do not fix their code-rate, or equiv-
alently, the amount of redundancy, before transmission. This
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is essentially the interpretation of the terminology ‘rateless’. A
rateless code will progressively transmit more redundant bits,
until the receiver can correctly recover the transmitted data.
Therefore, their code-rate can only be determined by taking
into account the total redundancy that had to be transmitted
in order to achieve correct reception. Rateless codes were
also intended to be employed in situations, where channel
state information is unavailable at the transmitter. However,
we particularly emphasize that this does not automatically
imply that rateless codes do not require a feedback channel;
on the contrary, it is still necessary to have a reliable low-rate
feedback channel for the receiver to acknowledge the correct
recovery of the data by sending its acknowledgment flag and
thus to allow for the next codeword’s transmission to start.
Another significant characteristic of rateless codes, which
makes them eminently suitable for employment on time-
varying channels is their inherent flexibility and practicality,
when it comes to the calculation of the transmitted codeword.

As we briefly mentioned at the beginning of this subsection,
it is equally important to appreciate the strong similarities
between the two code families. In order to make our argu-
ments conceptually appealing, we progress by saying that the
analogy between rateless and fixed-rate channel codes may
be viewed in the same way, as the correspondence between
the continuous and the discrete representation of the same
signal or mathematical function. A fixed-rate channel code
will then correspond to a discrete signal in our simplified
analogy, because provided it is designed appropriately, it is
well-capable of attaining a near-capacity performance at the
(single) SNR value of ψx dB. By contrast, a rateless code may
be deemed to be constructed from an infinite number of fixed-
rate channel codes (of different rates) and thus are capable of
attaining a near-capacity performance over a wider range of
channel SNR values. Interestingly enough, this analogy also
applies to their underlying code construction. In fact, we will
also see in the forthcoming sections that a good number of
rateless codes’ constructions may be viewed as being instances
of other fixed-rate channel code constructions.

B. Organization of this Survey

In this survey, we will only focus our attention on LDPC
codes and their rateless relatives. We will guide the reader
through the extensive literature, commencing from the con-
ception of both code-families and portraying their evolution,
including the current state-of-the-art. We will commence our
discourse by introducing the related preliminary terminology
and definitions. We will then proceed to provide further
insights on the most pertinent issues related to LDPC codes,
such as their code constructions, their encoding and decoding
techniques, their performance metrics, the convergence of
their decoding as well as the associated design techniques.
Subsequently, we will also outline a range of hardware-
implementation-related issues and detail a variety of current
research endeavors. We will then progress further by outlining
some important milestones in the history of rateless coding as
well as discuss the related design problems and identify their
solutions. The list of abbreviations that have been used in this
survey is summarized in Table I.

TABLE I
LIST OF ABBREVIATIONS USED IN THIS SURVEY

ALT approximate lower triangular
ARA accumulate-repeat-accumulate
ARAA accumulate-repeat-accumulate-accumulate
AWGN additive white Gaussian noise
BCH Bose-Chaudhuri-Hocquenghem
BEC binary erasure channel
BER bit error ratio
BF bit-flipping
BLER block error ratio
BP belief propagation
BWBF bootstrapped weighted bit-flipping
CND check node decoder
CSS Calderbank-Shor-Steane
EXIT extrinsic information transfer
FG finite geometry
GA genetic algorithm
GF Galois field
GLDPC generalized low-density parity-check
HARQ hybrid automatic repeat request
LUT look-up table
LT Luby transform
LDGM low-density generator matrix code
LDPC low-density parity-check
MIMO multiple-input multiple-output
MWBF modified weighted bit-flipping
QC quasi-cyclic
RA repeat-accumulate
RS Reed-Solomon
SPA sum product algorithm
UMP universally most-powerful
VND variable node decoder
WBF weighted bit-flipping

II. PRELIMINARIES

In this section, we will strive to explain the basic principles
and the LDPC code related terminology in a simple and
concise manner. Our discourse will be limited to the following
topics:

• The basic principles of linear block codes;
• Their generator and parity-check matrices as well as the

associated graphical representation and
• Some important graph-theoretic properties.

Each point will be treated separately in the forthcoming
subsections. Those readers who are familiar with the above-
mentioned topics, might like to proceed directly to Section III.
On the other hand, we would like to direct the attention of
those readers, who wish to delve into further detail, to some
excellent magazine papers and textbooks such as [7]–[16],
amongst others.

A. Basic Principles of Linear Block Codes

LDPC codes form part of a larger family of codes, which
are typically referred to as linear block codes. A code is
termed a block code, if the original information bit-sequence
can be segmented into fixed-length message blocks, hereby
denoted by u = u1, u2, . . . , uK , each having K information
digits. This implies that there are 2K possible distinct message
blocks. For the sake of simplicity, we will here be giving
examples for binary LDPC codes, i.e., the codes are associated
with the logical symbols/bits of (1, 0). The elements (1, 0)
are said to constitute an alphabet or a finite field, where the
latter is typically referred to as Galois field (GF). Using this
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terminology, a GF containing q elements is denoted by GF(q)
and correspondingly, the binary GF is represented as GF(2).

The LDPC encoder is then capable of transforming each
input message block u according to a predefined set of rules
into a distinct N -tuple (N -bit sequence) z, which is typically
referred to as the codeword. The codeword length N , where
N > K , is then referred to as the block-length. Again, there
are 2K distinct legitimate codewords corresponding to the
2K message blocks. This set of the 2K codewords is termed
as a C(N,K) linear block code. The word linear signifies
that the modulo-2 sum of any two or more codewords in
the code C(N,K) is another valid codeword. The number of
nonzero symbols of a codeword z is called the weight, whilst
the number of bit-positions in which two codewords differ is
termed the distance. For instance, the distance between the
codewords z1 = (1101001) and z2 = (0100101) is equal
to three. Subsequently, codewords that have a low number
of binary ones are referred to as low-weight codewords. The
minimum distance of a linear code, hereby denoted by dmin,
is then determined by the weight of the non-zero codeword/s
in the code C(N,K), which has/have the minimum weight.

B. Generator and Parity-Check Matrices

The unique and distinctive nature of the codewords implies
that there is a one-to-one mapping between a K-bit infor-
mation sequence u and the corresponding N -bit codeword z
described by the set of rules of the encoder. Clearly, if both
K and N are small, then the 2K distinct message blocks
and the corresponding codewords can be stored in a look-
up table (LUT). However, for large K and N , the N -entry
LUT encoder will be prohibitively complex. This complexity
is significantly reduced by the fact that LDPC codes are
linear codes and thus the codeword z can be calculated by
multiplying the input message sequence u with a (K × N)-
element matrix G, which is referred to as the generator matrix.
So, if we consider the simple example of having a four-bit
input message sequence u and assume that the ith column of
G is given by [1101]T, then the ith bit of the codeword z will
be equal to the modulo-2 sum of the first, second and fourth
bit of u.

We also note that G can also be transformed into what is
referred as the systematic matrix form, i.e., to G = [IK A],
where IK is a (K × K)-element identity matrix and A
has K × (N −K)-elements. This transformation is carried
out by using the so-called row and column operations, which
include permutations of the rows (columns), multiplication of
a row (column) with a nonzero scalar and the addition of a
scalar multiple of one row to another. When G is expressed
in its systematic form, the resultant N -bit codeword z can be
divided into two parts. The first K bits of z constitute of the
information segment u of the code; whilst the second segment
consists of the (N − K) redundant parity-check bits which
are calculated by means of the previously described modulo-2
addition.

There is another useful matrix associated with a linear
block code. This matrix is referred to as the parity-check
matrix, which is typically denoted by H and contains (N −
K)×N elements. If the generator matrix is in the systematic

TABLE II
THE CODEWORDS FOR THE CODE C(7, 4) AND ITS DUAL CODE C⊥(7, 3),

GIVEN THE GENERATOR MATRIX AND PARITY-CHECK MATRIX

REPRESENTED IN (2) AND (3), RESPECTIVELY

z ∈ C z⊥ ∈ C⊥

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1 1 1 1 0 0 1
0 0 1 0 1 1 0 0 1 1 1 0 1 0
0 0 1 1 1 0 1 1 0 1 0 0 1 1
0 1 0 0 1 1 1 1 1 1 0 1 0 0
0 1 0 1 1 0 0 0 0 1 1 1 0 1
0 1 1 0 0 0 1 1 0 0 1 1 1 0
0 1 1 1 0 1 0 0 1 0 0 1 1 1
1 0 0 0 1 0 1
1 0 0 1 1 1 0
1 0 1 0 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 1 0
1 1 0 1 0 0 1
1 1 1 0 1 0 0
1 1 1 1 1 1 1

matrix form, then the H matrix of the code is given by
H =

[
−AT IN−K

]
, where IN−K is an identity matrix of

dimension (N − K) × (N − K). A characteristic of the
H matrix of LDPC codes is that it is sparse, i.e., there are
fewer ones than there are zeros. As a result, their H matrix
is said to have a ‘low-density’ - hence the terminology of
low-density parity-check codes. If all the rows of H matrix
are linearly independent, then the rate of the code becomes
R = K/N = 1 − (N −K)/N . The H matrix is also said to
be the generator matrix of the so-called dual code C⊥.

We will provide a simple example in order to illustrate our
discourse. Let a (7, 4) code be described by means of the
generator matrix G given by

G =

⎡
⎢⎢⎣

1 1 1 1 1 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1

⎤
⎥⎥⎦ . (1)

The generator matrix seen in (1) can be converted to its
standard form with the aid of the previously described row
and column operations which results in

G =

⎡
⎢⎢⎣

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎤
⎥⎥⎦ . (2)

The H matrix is then given by

H =

⎡
⎣

1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

⎤
⎦ . (3)

The resultant codewords corresponding to the linear (7, 4)
block codes and its dual code C

⊥(7, 3) are subsequently
shown in Table II, which were generated according to z = uG.
Observe in Table II that the first four bits of a codeword are
the systematic information bits, followed by three parity bits,
each of which checks the parity of the specific information
bits as determined by the generator matrix represented in (2).

The H matrix can also be represented graphically by what
is known as a bipartite graph, as exemplified in Figure 1. Let
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Fig. 1. (a) A parity-check matrix (b) The bipartite graph having girth of
four and corresponding to the parity-check matrix of (a). A cycle of six
(represented by the continuous bold edges) and a cycle of four (represented
by dashed bold edges) are shown.

us consider as an example the LDPC code having N = 6,
associated with the H matrix shown in Figure 1(a). The
corresponding graph is then illustrated in Figure 1(b). It can be
observed that this graph can be divided in two parts (and hence
the name bipartite), whereby the right-hand side of the graph
shows the so-called parity-check nodes, which correspond to
a row of H, whilst the left-hand side (LHS) contains the
variable nodes, which relate to the columns of H. A variable
node is essentially a transmitted bit in the codeword z. The
ones in the H matrix of Figure 1(a) represent the edges that
interconnect the parity-check nodes and the variable nodes
located on the graph of Figure 1(b). For example, one can
observe from Figure 1(b) that the first parity-check node c1
is checking the result of the modulo-2 sum (called the parity)
of v1, v3, v5 and v6, which is also seen in the first row of the
corresponding H matrix; i.e., if the transmitted bits represented
by v1, v3, v5 and v6 are received correctly, then the value of
v1 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ c1 = 0, where ‘⊕′ denotes the modulo-2
sum.

C. Important Graph Theoretical Properties

Let us once again focus our attention on the bipartite graph
illustrated in Figure 1(b). The bipartite graph representing an
LDPC code is also said to be undirected since its edges do not
posses any sense of direction. Following this, the term chain
is used to refer to the series of successive edges that form a
continuous curve passing from one node to another located on
an undirected graph. A cycle in a graph refers to a particular
chain of nodes forming a closed loop, where the initial and
final node are the same and no edge is used more than once.
The number of edges in a cycle is then called the length of the
cycle and the shortest cycle-length of the graph corresponds to

what is referred to as the girth. The girth in a bipartite graph is
always even and its smallest value is four. The graph depicted
in Figure 1(b) has a girth of four and the corresponding cycle
of four is shown by the dashed bold edges. A cycle of six is
also shown marked by the continuous bold edges. An LDPC
code is also said to be regular, if it is associated with an H
matrix having a fixed row and column weight. Let the row
and column weight of the H matrix be denoted by ρ and γ,
respectively. Subsequently, an LDPC code is said to be regular
if every parity-check node contained in its underlying graph
is connected to ρ variable nodes, whilst every variable node is
connected to γ parity-check nodes. If this is not the case, the
code (and its associated graph) are termed to be irregular. For
example, the graph shown in Figure 1(b) can be described as
being left-regular, since all the variable nodes located in the
graph have the same degree.

III. IMPORTANT MILESTONES IN THE HISTORY OF

LOW-DENSITY PARITY-CHECK CODES

Following this rudimentary introduction to the related ter-
minology, we will now proceed with a glimpse of history.
LDPC codes were conceived by Gallager in his doctoral
dissertation in 1962 [1], [17]. However, having limited com-
puting resources prevented him from proving the near-capacity
operation of these codes and from finding rigorous perfor-
mance bounds of the decoding algorithm. In addition to this,
the introduction of Reed-Solomon (RS) codes a few years
earlier [18], and the widely accepted belief that concatenated
RS and convolutional codes [19] were perfectly suited for
practical error-control coding resulted in Gallager’s work be-
coming neglected by researchers for approximately 30 years.
Exceptions to this which are worth mentioning are the work of
Zyablov, Pinsker and Margulis from the Russian school [20]–
[22] and by Tanner [23]. Margulis proposed a structured
regular construction for a half-rate Gallager code based on
the Cayley graph, which is nowadays known as the ‘Margulis’
code [22]. The algebraic construction rules for LDPC codes
given by Margulis were still found to be valid and applicable
by Rosenthal and Vontobel [24] 20 years later, who proposed a
similar code known as the ‘Ramanujan-Margulis’ code. Later,
MacKay and Postol [25] discovered the existence of near-
codewords in the Margulis codes and the presence of low-
weight codewords in Ramanujan-Margulis codes.

Tanner [23] was first to propose the previously described
graphical representation of LDPC codes using bipartite graphs.
Tanner also introduced the min-sum as well as the sum-
product decoding algorithms and demonstrated their conver-
gence on cycle-free graphs. It was Wiberg [26]–[28] who first
referred to these graphs as ‘Tanner graphs’ and extended them
to include trellis codes. Forney [29] called these graphs Tanner
- Wiberg - Loeliger graphs. Another contribution related
to that of Tanner [23] was later made by Kschischang et
al. [30], when they introduced the so-called factor graphs.
The natural association of factor graphs with the sum-product
algorithm (SPA) was also discussed. The forward/backward
algorithm [29], the Viterbi algorithm and the Kalman filter
were also considered as instances of the SPA. The work of [30]
can also be considered as an alternative approach to that
taken by Ali and McEliece [31], in which they view various
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algorithms as generalized message passing algorithms1 and
grouped them under the term of ‘generalized distributive law’.
Forney [32] later extended the concept of factor graphs to
normal graphs.

The excellent performance of turbo codes reported during
the mid-1990s [2], [33], [34] demonstrated the benefits of
using low-complexity constituent codes and iterative decoding,
but since they were patented, this rekindled the community’s
interest in LDPC codes [35]. Sipser and Spielman [36], [37]
analyzed LDPC codes in terms of various code-construction
expansions and introduced a sub-class of LDPC codes based
on the so-called expander graphs which were appropriately
referred to as ‘expander codes’ and decoded them with the
aid of what is known as Gallager’s ‘Algorithm A’, devised by
Gallager [1], [17]. An encoder for these expander graphs was
designed in [38].

The advantages offered by linear block codes having low-
density parity-check matrices were rediscovered by MacKay
and Neal, who proposed the MacKay-Neal [39] codes and
showed that pseudo-randomly constructed LDPC codes can
perform within about 1.2 dB of the theoretical upper bound
of the Shannon limit [40]–[42]. Alon and Luby [43] made the
first attempt to design an LDPC code capable of correcting
erasures. A more practical algorithm based on cascaded ran-
dom bipartite graphs was then devised in [44]. It is important
to note that up to this point in time the understanding of LDPC
codes was mostly limited to the regular codes. The understand-
ing of both regular and irregular graphs was further deepened
in [45]–[47] and it was demonstrated that the performance
of the latter may be superior to that exhibited by the former.
In [48], Luby et al. devised a new probabilistic tool, which
significantly simplified the analysis of the probabilistic decod-
ing algorithm proposed by Gallager [1], [17]. Richardson et
al. further improved the results of [47] by using a technique
referred to as density evolution [49] for analysing the behavior
of irregular LDPC codes. Discrete density evolution was used
by Chung et al. [50] in order to simulate a half-rate code
having a block length of 107 exhibiting a performance within
0.04 dB of the Shannon limit at a bit error ratio (BER) of
10−6.

A. Code Constructions

Broadly speaking, the parity-check matrix associated with
an LDPC code can be constructed in either an unstructured [1],
[42] or in a structured manner [51]. Table III lists some note-
worthy examples of both structured as well as of unstructured
LDPC code classifications. We note that the construction of
LDPC codes has been a highly active research area in the last
decade or so, and therefore Table III represents only a small
fraction of the body of attractive designs available in the open
literature. We also note that this classification of structured
and unstructured constructions is in itself very broad.

A specific class of unstructured constructions is constituted
by the pseudo-random constructions, which are typically dis-
tinguished by what is called an ensemble [1]. This defines

1In this context, it is worth mentioning that LDPC decoding algorithms
are referred by a number of names, the most common being the SPA, the
message passing algorithm and the belief propagation algorithm.

the group of pseudo-random constructions that are governed
by the same constraints. Typical constraints can be the block
length N , the row and column weights of the H matrix,
the girth etc. Richardson and Urbanke [52] showed that any
constituent code can be used to approximate the average per-
formance of the entire ensemble. There is also another class of
unstructured LDPC codes, where the codes are constructed by
means of a search algorithm, typically attempting to increase
the girth of the underlying Tanner graph. These techniques
were for example proposed by Mao and Banihashemi [53],
Campello et al. [54], [55], Hu et al. [56], [57] as well as
by Asamov and Aydin [58]. The underlying philosophy of
these constructions is generally based upon the intuition that
the presence of short cycles (i.e., having a graph with a low
girth) severely violates the independence assumption between
the messages exchanged between the left and right vertices of
the graph, potentially propagating errors at a faster rate than
they can be corrected.

The unstructured LDPC codes do not impose any
implementation-related constraints on their corresponding
parity-check matrix or underlying graph and they typically
exhibit a performance that is close to the best achievable
error correction performance [42], [50]. Hence, these unstruc-
tured constructions are often considered to be the baseline
benchmarkers in BER or block error ratio (BLER) perfor-
mance assessments. As we will outline in more detail in
the forthcoming subsections, the excellent error-correction
capabilities of unstructured LDPC codes are however achieved
at the expense of a relatively high encoding and decoding
complexity. Therefore, structured (sometimes referred to as
deterministic) constructions may be regarded as attractive de-
sign alternatives, especially when considering their increased
flexibility and adaptability, their lower cost and simpler imple-
mentation as well as their reduced encoding/decoding latency.
Various structured constructions have been investigated in
the literature, such as for example those using geometric
approaches [60] or combinatorial designs [74]. The latter
family includes the classes referred to as balanced incomplete
block designs [70], such as the Steiner and Kirkman triple sys-
tems [62], [64], Bose designs [68], mutually orthogonal Latin
rectangles [65] and the so-called anti-Pasch techniques [66].

In our preliminary section, we have limited our discourse
to binary LDPC codes, for the sake of simplifying our anal-
ysis in the hope of capturing a wider audience. However,
LDPC codes may also be classified as binary or nonbinary.
Nonbinary LDPC codes were first proposed and investigated
by Davey and Mackay [75], who demonstrated that nonbi-
nary LDPC codes constructed over higher-order Galois fields
may achieve a superior performance in comparison to binary
codes for transmission over binary symmetric channels and
binary Gaussian channels. The achievable performance im-
provement may be attributed to two main factors; the reduced
probability of forming short cycles when compared to their
binary counterparts and to the increased number of nonbinary
check and variable nodes, which ultimately improves the
achievable decoding performance. However, nonbinary LDPC
codes suffer from the disadvantage of having an increased
number of values, which potentially renders the classification
of symbols more complex and hence naturally increases the
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TABLE III
CLASSIFICATION OF THE LDPC CODES’ CONSTRUCTIONS TOGETHER WITH SOME OF THEIR EXEMPLARS

Construction Construction Example

Structured

Designs based on finite geometries [59], [60]

Balanced incomplete block designs [61]–[70]

Geometry-based designs [71], [72]

Turbo-structured designs [73]

Unstructured

Gallager’s construction [17]

MacKay’s ensembles [42]

Lin and Costello’s technique for random construction [10]

Bit-filling and extended bit-filling [54], [55]

Progressive edge growth [56], [57]

Successive edge growth [58]

decoding complexity imposed. Nonbinary codes have been
applied for transmission over nondispersive Rayleigh fading
channels [76], over frequency selective channels [77] and
multiple-input multiple-output (MIMO) channels [78]–[81].
The results in [75] were also substantiated by Hu et al. [57],
who proposed a construction for irregular nonbinary LDPC
codes defined over GF(q) constructed using the so-called
progressive edge growth algorithm. It was also demonstrated
that the performance of these codes improves upon increasing
the Galois field size.

Lentmaier et al. [82] as well as Boutros et al. [83] proposed
a more generalized version of the classic LDPC codes of
Gallager [1], [17], which were referred to as generalized
low-density codes (sometimes also known as generalized
LDPC (GLDPC) codes). Instead of having each check node
corresponding to a single-parity check equation as in the
conventional LDPC codes proposed by Gallager [1], [17],
the check nodes of GLDPC codes are associated with more
powerful codes such as Hamming codes,2 Bose-Chaudhuri-
Hocquenghem (BCH) codes [84], [85] and RS codes [86].
GLDPC codes have been investigated, for instance in [87]–
[92]. Irregular GLDPC codes have also been proposed by
Liva et al. [93].3 Recently, Wang et al. [95] proposed the
doubly-GLDPC, which represent a wider class of codes than
those GLDPC codes proposed in [82], [83], where linear block
codes can be used as component codes for both the check
and variable nodes. The investigation of doubly-GLDPC codes
for transmission over the binary erasure channel (BEC) was
carried out by Paolini et al. [96]. Further developments on
GLDPC and doubly-GLDPC codes were provided recently
in [97], [98].

B. Encoding of Low-Density Parity-Check Codes

The encoding operation requires the calculation of the gen-
erator matrix G from the parity-check matrix H by Gaussian

2Hamming codes are considered to be a very efficient class of short
codes having a minimum distance equal to 3. The resultant GLDPC codes
constituted from Hamming component codes, are characterized by a relatively
high minimum distance. This conjecture was verified in [83].

3Liva et al. [93], [94] also refer to these codes as doped LDPC codes due
to the presence of more powerful (doped) nodes created by replacing any
node by a linear block code.

elimination, whose complexity is a cubic function of the
number of rows of the H matrix. The message block u is then
multiplied by G in order to calculate the transmitted codeword.
The complexity of this process is a quadratic function of the
number of rows of the parity-check matrix H. This may be
viewed as a disadvantage of LDPC codes, when compared to
turbo codes, considering that the latter have a lower encoding
complexity.

Several authors have proposed complexity reduction mea-
sures in order to address this issue. For example, Luby et
al. [99], [100] investigated the performance of cascaded
graphs instead of bipartite graphs for transmission over the
BEC. Careful selection of the number of cascaded graph
stages as well as of the size of each stage may result in
codes, which are encodable (and decodable) at a complex-
ity that is a linear function of the block length. Likewise,
Spielman [36], [37] promoted the employment of another
concatenated scheme employing expander codes. However, in
both cases, the performance exhibited by the resultant codes
based on cascaded graphs appeared to be inferior to that of
standard LDPC codes,4 since the block length of each stage
of the cascaded code is lower than that of the overall length
of the standard LDPC code. MacKay et al. [101] suggested
that the parity-check matrix must be constrained to be in an
approximate lower triangular (ALT) form depicted in Figure 2
which guarantees a linear increase of the encoding complexity.
Richardson and Urbanke [52] proved that in general, the
encoding complexity increases nearly linear with the block
length, being quadratic only in a small term g2, where g
is referred to as the gap [102], which is a measure of the
‘distance’ [102] between the parity-check matrix and the lower
triangular matrix as shown in Figure 2. For example, a regular
LDPC code associated with an H matrix having a column
weight of γ = 3 and row weight of ρ = 6 has a gap of
g = 0.017. There are many LDPC code families with the gap
of g = 0. For a more detailed discussion on the topic, we
would like to refer the interested reader to Section 4 of [102].

Haley et al. [103] described a method, which performs
LDPC encoding using an iterative matrix inversion technique.

4By ‘standard’ code, we are referring to those codes that can only be
encoded by using the conventional encoded method [1], [17].
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Fig. 2. A pictorial representation of a parity-check matrix in the approximate
lower triangular (ALT) form. The parameter g denotes the so-called gap [102],
which is a measure of the ‘distance’ [102] between the parity-check matrix
and the lower triangular matrix.

It was shown in [103] that if the matrix satisfies certain
conditions, then the proposed iterative encoding algorithm
will converge after a finite number of iterations and more
importantly, the resultant codes exhibits no performance loss
when compared to the corresponding classic LDPC codes.
This was only verified for regular LPDC codes. In [57], Hu et
al. constructed parity-check matrices having a lower triangu-
lar form using the aforementioned progressive edge growth
algorithm, and thus creating code that have a linear block-
length dependent complexity. Burshtein et al. [104] proposed
the ALT-LDPC code ensemble, which has an inherent tradeoff
between the gap size (and hence the encoding complexity) as
well as the achievable performance for any given block length.

Another class of codes, which attracted the attention of
many researchers due to having linearly increasing block-
length-dependent encoding complexity is that of the repeat
accumulate (RA) codes, first proposed Divsalar et al. [105],
which encompass the attractive characteristics of both LDPC
codes and serial turbo codes. In the RA encoder, the source
message is repeated a given dv-number of times and then
passed through an interleaver. The parameter dv would then
correspond to what is known as the variable node degree.
The interleaved bits are then grouped into groups of dc

bits, where dc denotes the so-called check node degree, and
the modulo-2 sum of each group is then calculated. The
resultant bits, corresponding to the modulo-2 sum of each
group of interleaved and repeated source bits, are then passed
through a rate-1 encoder, which is also referred to as an
accumulator (or a recursive systematic convolutional code).
Jin et al. [106] also extended the concept of RA codes to the
family of irregular repeat-accumulate codes, where the bits of
the information block are repeated in an irregular manner and
where the interleaved bits are grouped into sets of different
sizes. In [107], Roumy et al. demonstrated that these codes
exhibit a near-capacity performance and have a linearly block-
length-dependent encoding complexity. Abbasfar et al. [108]
have also proposed the further enhanced accumulate-repeat-
accumulate (ARA) which may be considered to be a pre-
coded RA code. Divsalar et al. [109] extended these concepts
to accumulate-repeat-accumulate-accumulate (ARAA) codes,
which are basically punctured ARA codes concatenated with
another accumulator. Both ARA and ARAA codes enjoy the
benefits of having low-complexity encoding due to the sparse

matrix multiplication based encoder and fast decoding due to
their appropriately structured graph construction.

The class of algebraically constructed codes [110] may also
be encoded at a complexity, which increases linearly as a
function of the block length, which is a benefit of the cyclic or
quasi-cyclic (QC) nature of their parity-check matrix. A QC
code is defined as that code in which any cyclic shift of a
constituent codeword by x number of bits is also a codeword.
For a cyclic code, we have x = 1. For instance, each
row of the parity-check matrix of a cyclic code, such as the
LDPC codes based on balanced incomplete block designs [68],
[111], [112], is constituted by a cyclic shift of the previous
row and the first row is the cyclic shift of the last row.
We also define a circulant matrix as a square matrix, where
each row is constructed from a single right cyclic shift of
the previous row, and the first row is obtained by a single
right cyclic shift of the last row [14]. A QC code, such
as those proposed in [113]–[118] has a parity-check matrix,
which is constituted from circulant sub-matrices. For example,
Figure 3 shows the H matrix of a quarter-rate QC LDPC code
constituted from circulant matrices of size 5. For a cyclic or
a QC code, the generator matrix is also cyclic/QC and hence
only the first row of the each circulant will be stored, while
successive rows can be generated by a shift register generator.
The encoding of QC codes was detailed by Li et al. [119]–
[121]. Another class of algebraically constructed, cyclic or QC
codes is constituted by the family of finite geometry (FG)-
based LDPC codes, which were rediscovered by Kou [60].
The parity-check matrix of FG-LDPC codes does have some
redundant checks (similar to MacKay’s constructions [42])
and the row as well as the column weights tend to be higher
than those of other LDPC codes. This implies that although
FG-LDPC codes benefit from the same linearly block-length-
dependent encoding complexity of cyclic or QC codes, they
achieve their relatively high performance at the price of a
higher decoding complexity owing to their increased logic
depth.

C. BER/BLER Performance Metrics

The performance of any channel code is typically assessed
by means of plots of the BER/BLER versus the channel’s SNR
or versus the ratio of the energy-per-bit to the noise power
spectral density, commonly denoted by Eb/N0. The overall
BER/BLER versus SNR performance of an LDPC code is
generally described by two different regions and a threshold.

The first region is commonly referred to as the ‘waterfall’
or the ‘turbo-cliff’ region, which corresponds to the low-to-
medium SNR region of the BER/BLER versus SNR plot.
By contrast, the error floor is located at the bottom of the
‘waterfall’-shaped curve, where it can be observed that the
BER/BLER no longer exhibits the rapid improvement as in
the ‘waterfall’ region. More often than not, the error floor
is not explicitly visible in the corresponding BER/BLER
plot, since it is below the BERs readily generated by the
simulation performed. There is also the parlance of ‘turbo-
cliff’ SNR or the convergence SNR threshold, above which the
BER/BLER performance improves rapidly upon increasing the
SNR. The word ‘cliff’ is again another figure of speech used
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Fig. 3. The parity-check matrix of a quarter-rate LDPC code constituted from circulant matrices of size 5.

to signify that the SNR threshold occurs at that point where
the ‘waterfall’-shaped BER/BLER curve exhibits a rapid drop.

The SNR threshold phenomenon was first observed by
Gallager [1], [17], when using regular graph constructions
and by Luby et al. [46] for randomly constructed irregular
graphs. Richardson and Urbanke [52] generalized these obser-
vations and argued that LDPC codes will exhibit a decoding
threshold phenomenon, regardless of the channels encountered
and the iterative decoders considered.5 An arbitrarily small
BER/BLER can be achieved with the aid of a high-girth LDPC
code provided that the noise level is lower than this SNR
threshold, as the block length tends to infinity. This SNR
threshold can be determined using either the density evolution
technique [49], [50] or by minimizing the area of the open
extrinsic information transfer (EXIT) tunnel between the check
node decoder (CND) and variable node decoder (VND) EXIT
chart curves.6 Both techniques assume an infinite block length,
a high-girth and an infinite number of decoder iterations.

The achievable BER/BLER performance in the ‘waterfall’
region is predetermined by the girth. As we have briefly de-
scribed in Section II-C, short cycles prevent the decoder from
gleaning independent parity-check information. Therefore, the
higher the girth, the faster the iteration-aided BER/BLER
improvement. This is in fact the reason why we find quite
a number of LDPC constructions [51], [55], [58], [60], [62],
[71]–[73], [118], [122], [123], which attempt to maximize
the girth7 of the bipartite graph. One of the most attractive
example is the aforementioned progressive edge growth algo-
rithm proposed by Hu et al. [56], [57], [124] since they have
excellent error correction capabilities, especially for codes
having short block lengths.

The performance in the error floor region depends on three
main factors, namely (a) on dmin as well as the presence of

5The observation was generalized to include a wide range of binary-input
channels, including the binary erasure, the binary symmetric, the Laplace as
well as the additive white Gaussian noise (AWGN) channels, when employing
various message passing decoding algorithms [52].

6The EXIT chart will be explained in more detail in Section III-E.
7These techniques are collectively referred to by the term girth condition-

ing.

particular graphical structures in the underlying graph, which
are referred to as (b) stopping sets and (c) trapping sets.8 We
will continue our discourse by discussing each of these factors
in more detail.

Classic coding theory has always placed strong emphasis
on trying to design codes that have a large dmin, which is
clearly justified when one recalls the fact that a code can
correct up to �(dmin − 1) /2� errors using a bounded distance
decoder, where �x� denotes the floor function, returning the
largest integer less than or equal to x. Tanner [23] derived
the lower bounds on the achievable dmin of an LDPC code
and demonstrated that this increases with both the parity-
check matrix column weight as well as with the girth of the
underlying graph. According to these bounds, a regular LDPC
code having a girth of 10 and with a γ = 3 will attain a
dmin ≥ 10, whilst that code having the same girth but with
a γ = 4 will attain a dmin ≥ 17. Moreover, a regular LDPC
code having the same γ = 4 but with a higher girth of 12 will
achieve a dmin ≥ 26. However, the relationship between these
parameters is quite intricate, since whilst increasing the girth
or the column weight of the associated parity-check matrix
improves the minimum distance, an increase in the column
weight will degrade the girth. Hence, if we consider two LDPC
codes having the same rate but different column weights, the
code having the highest column weight will exhibit a lower
error floor owing to its higher dmin, but a worse BER/BLER
in the ‘waterfall’ region due to its lower girth.

A code having a small dmin is characterized by the presence
of low-weight codewords. These will cause the so-called
undetected errors, which occur when the decoding process will
find a valid codeword that satisfies all the parity-check nodes,
but it is not the originally transmitted codeword. However,
given the fact that dmin of most LDPC codes increases linearly
with N , undetected errors are relatively uncommon,9 unless

8We remark that failures on the erasure channel are characterized by means
of stopping sets, whilst trapping sets play an analogous role for AWGN and
binary symmetric channels.

9This is in contrast with turbo codes, which do not possess a large
dmin and therefore their error floor is largely contributed by the low-weight
codewords [4].
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the block-length is short (less than a few hundred bits) or the
code-rate is high. Nonetheless, it is was shown in [125] that
it is computationally complex to directly design codes having
a high dmin.

An indirect way of increasing dmin is to increase the girth of
the bipartite graph. However rather than using the conventional
girth conditioning techniques, which only focus on increasing
the shortest cycle length, Tian et al. [125] revealed that it
is also important to consider the specific connectivity of the
cycles with the other parts of the bipartite graph, rather than
only the length of the cycles. This is because not all cycles
are equally harmful - those which are well-connected to the
rest of the graph are acceptable, whilst poorly connected long
cycles may be more detrimental. This technique, which is
commonly referred to as cycle conditioning - as opposed to
girth conditioning - requires the identification of the so-called
stopping sets,10 which are a particular group of variable nodes
that is connected to a group of neighboring parity-check nodes
more than once. One example of a stopping set exemplified
in Figure 1(b) is constituted by the variable nodes v2, v3
and v6, because all the neighboring parity-check nodes c1,
c2 and c3 is connected to this variable node set twice. If the
underlying graph does not contain any degree-one variable
nodes, then it will not be possible to locate any cycle-free
stopping set in that graph. Furthermore, most stopping sets
are constituted by multiple cycles, unless the variable nodes
in the stopping set have a degree of 2. This can also be
verified from the previously mentioned stopping-set example
containing v2, v3 and v6 in the graph of Figure 1(b), which
only contains one cycle of six. By means of avoiding small
stopping sets, the technique of Tian et al. [125] succeeded in
significantly reducing the error floor of irregular LDPC codes,
whilst only suffering from a slight BER degradation in the
waterfall region.

The so-called trapping sets also have a direct influence on
the error floor of LDPC codes. A trapping set (a, b) refers to
that particular set of a variable nodes in the associated bipartite
graph which are connected to b odd-degree and an arbitrary
number of even-degree parity-check nodes. For example, a
trapping set (5, 2) can be observed in the bipartite graph of
Figure 1(b) constituted by the variable nodes v1, v2, v3, v4
and v6 and the parity-check nodes c2 and c3. When the values
of a and b are relatively small, the variable nodes in the
trapping set are not well-connected to the rest of the graph
and therefore the corresponding bits have a weak protection. In
some research literature [25], [127], trapping sets are described
as near-codewords, because when the parameters a and b are
relatively small, an incorrectly decoded codeword may only
be slightly different from that transmitted. We emphasize that
the errors resulting from the presence of small trapping sets as
well as small stopping sets are detected by the decoder; i.e.,
the decoder will be aware that the no legitimate codeword

10The study of stopping sets gained importance when Di et al. [126]
managed to derive exact analytical BER performance curves for the LDPC-
coded transmission over the BEC in terms of the distribution of the stopping
set sizes. It is an often quoted result that the size of the smallest stopping
set in the graph, which is called the stopping number or stopping distance,
lower bounds the minimum distance of the code and essentially corresponds
to the smallest number of erasures which cannot be recovered under iterative
decoding.

was found owing to having some unsatisfied (nonzero-valued)
parity-check nodes after the affordable maximum number of
decoding iterations. The problems that arise from the presence
of trapping sets/near-codewords can be mitigated by either
altering the parity-check matrix [128] (without changing the
actual code) or by modifying the decoder [129], [130].

Carefully designed irregular LDPC codes can attain a lower
‘turbo-cliff’ SNR than regular codes of the same rate; i.e., their
exhibited BER/BLER starts to rapidly decrease at a lower SNR
value and hence their BER/BLER performance is superior in
the ‘waterfall’ region. The reason for this phenomenon lies in
the conflicting (ideal) requirements of the variable and parity-
check nodes, whereby the variable nodes benefit from having
large degrees, which strongly protects them. By contrast, a
parity-check node should have a low degree to prevent error
propagation, when it is corrupted. In this regard, irregular
codes are well-capable to compromise between these seem-
ingly competing variable and parity-check node requirements.
We note however that the superior BER/BLER performance
of irregular LDPC codes is achieved at the expense of a
potentially increased implementational complexity.

Previously, we have emphasized that irregular LDPC codes
must be ‘carefully designed’ for two main reasons. Firstly, the
design of irregular codes necessitates the use of sophisticated
techniques such as the aforementioned density-evolution or
else EXIT charts, both of which can predict the value of the
‘turbo-cliff’ SNR. Both density-evolution and EXIT charts
can also provide the actual (nonuniform) distributions for
the row and column weights of the irregular parity-check
matrix. Secondly, the BER/BLER performance exhibited by
irregular LDPC codes is inferior to that exhibited by regular
LDPC codes in the error floor region, unless we employ
the previously outlined techniques, which attempt to reduce
the error floor. In fact, the achievable BER performance of
relatively unconditioned irregular LDPC codes will show an
error floor at slightly below 10−6, which is higher than that
exhibited by their regular counterparts.

For the case of irregular LDPC codes, especially for those
having a high proportion of degree-2 and 3 check-nodes, the
construction is more difficult, since having large girths does
not automatically result in a good distance properties. Chen et
al. [131] provides an insightful example that flipping all the
variable nodes in a cycle which are constituted of only degree-
2 variable nodes will still leave the checks all satisfied and will
therefore lead to an undetected error. Therefore, the dmin value
of this code would be equal to the number of degree-2 variable
nodes in that cycle. This observation led some authors [132],
[133] to suggest that irregular codes should preferably have
no degree-2 variable nodes.

Another important design aspect that has to be considered
at an early stage of the LDPC construction is the issue of
having a random (or more precisely pseudo-random) versus
a more structured construction. It is widely accepted that in
general, the former construction achieves a better performance
in the waterfall region than structured LDPC codes having
comparable parameters. However, we have already seen in
Section III-B that structured constructions, such as for ex-
ample, cyclic or QC codes, have lower-complexity encoding
than most pseudo-random codes. The fact that the BER/BLER
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performance exhibited by carefully designed structured LDPC
codes can be comparable to that of pseudo-random construc-
tions has been shown in a number of publications, for example
in [114], [134]–[137].

D. Iterative Decoding Techniques for Low-Density Parity-
Check Codes

The underlying principle of the different decoding tech-
niques used for LDPC codes is that of having messages
exchanged between the left and right nodes of the Tanner
graph representing the code. The first decoding algorithm was
introduced by Gallager [1], [17] and is commonly referred
to as the bit-flipping (BF) algorithm. This hard-decoding
technique was later improved by Kou et al. [60], who pro-
posed a similar algorithm, referred to as the weighted bit-
flipping (WBF) algorithm, which further exploits the bit-
reliability information whilst still retaining the appealing con-
ceptual and implementational simplicity of the BF algorithm.
The BER performance and decoding complexity of the WBF
algorithm were later improved by Nouh and Banihasehemi, us-
ing the so-called bootstrapped WBF (BWBF) algorithm [138].
The basic principle of the BWBF algorithm is to identify
the symbols, which are less reliable than some predefined
threshold (i.e., spotting the ‘unreliable symbols’) and then
estimate their values as well as their corresponding reliabilities
by exchanging information both with the more ‘reliable’
symbols and with the check nodes.11 Inaba and Ohtsuki [139]
investigated the performance of LDPC decoding using the
BWBF technique for transmission over fast fading channels.

The WBF algorithm of [60] was also improved by Zhang
and Fossorier [140] using a technique which is different from
the BWBF solution of [138], by considering both the parity
information supplied by the check nodes and that gleaned from
the variable nodes. Their algorithm, which is referred to as
the modified WBF (MWBF), was invoked for the decoding
of LDPC codes based on FGs. Liu and Pados [141] modified
the check node output in the decoding algorithm of [140].
Guo and Hanzo [142] improved the algorithm of [141] by
using a reliability-based ratio and without relying on any off-
line preprocessing. The BER performance exhibited by the
bootstrap version of the MWBF was characterized by Inaba
and Ohtsuki [143], where it was shown that the bootstrap
MWBF (BMWBF) is capable of outperform the WBF, the
MWBF and the BWBF algorithms, despite its lower decoding
complexity.

As previously mentioned in Section III, soft decoding of
LDPC codes is typically performed using the SPA, which
achieves a better performance than hard decoding using the
BF algorithm, at the expense of an increased complexity. We
have also mentioned in Section III that the SPA comes under
a number of different names, largely due to its independent
discovery by different researchers. Its use has not been limited
to the decoding of LDPC codes, it has also found employment
in solving inference problems in artificial intelligence, in
computer vision and in statistical physics.

11A ‘reliable’ check node is defined as the check node, which is only
connected to one ‘unreliable’ bit node [138], [139].

The first soft decoding method proposed for LDPC codes
was also introduced by Gallager [17] and was referred to
as the probabilistic decoding method (please refer to Section
5.3 of [17]). In principle, this method is identical to Pearl’s
belief propagation (BP) [144], which was proposed in 1988 in
the context of belief networks for solving inference problems.
Although it gained popularity within the artificial intelligence
community, it remained unknown to information theorists until
it was employed by MacKay and Neal [39] as well as by
McEliece et al. [145]. The latter work [145] created the
link between turbo decoding and Pearl’s belief propagation
algorithm. Kschischang et al. [30] demonstrated that the SPA
constitutes an instance of Pearl’s BP operating on a factor
graph [146].

Other researches focused their attention on reducing the
complexity of the SPA. One of these reduced complexity al-
gorithm is the min-sum algorithm introduced by Wiberg [26],
which is very much related to the Viterbi algorithm and to
Tanner’s ‘Algorithm B’ [23]. A few years later, Fossorier et
al. [147] proposed the universally most-powerful (UMP) -
BP technique, which reduces the complexity of the check-
to-source bit message passing by using a combination of
hard- and soft-decisions. The normalised BP technique was
later introduced by Chen and Fossorier [148], which improves
the accuracy of soft values of the UMP-BP by multiply-
ing the log-likelihood ratios during the check-to-source bit
message exchange with a normalization factor. A genetic
algorithm (GA) [149] based decoder designed for the LDPC
codes was detailed by Scandurra et al. [150]. In contrast to the
SPA decoder, the proposed GA-based decoder does not require
the SNR value.12 Its BER performance and its computational
complexity can be readily modified by optimizing the GA’s
fitness function and the other GA’s parameters.

Improving the performance of the conventional BP algo-
rithm was also the focus of the contribution of Yedidia et
al. [152] who introduced the generalized BP algorithm. The
achievable performance improvement can be attributed to
the fact that the generalized BP focuses its efforts on the
messages exchanged by a group nodes rather than single
nodes. Wang et al. [153] introduced the ‘plain shuffled’ and the
‘replica shuffled’ BP algorithm, as reduced-latency variants of
the conventional BP and investigated their performance using
both density evolution and EXIT charts. Further efforts were
invested by Fossorier [154], who suggested the combination
of ordered statistical decoding and the SPA for the decoding
of LDPC codes. The output of the decoder is reprocessed
using ordered statistical decoding in an attempt to bridge
the gap between the performance exhibited by the SPA and
the optimum maximum likelihood decoding, which has a
potentially excessive complexity.

E. Convergence of the Iterative Decoding

The structure of the LDPC decoder is essentially constituted
by a serial concatenation of two decoders; a VND and a CND
separated by the so-called edge interleaver, as portrayed in

12The independence of the performance exhibited by an LDPC code
on the assumed and actual noise level was investigated by MacKay and
Hesketh [151] both for the binary symmetric and Gaussian channel.
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Fig. 4. The LDPC decoder consisting of a serial concatenation of the variable node decoder (VND) and check node decoder (CND) separated by an edge
interleaver.

Figure 4. In parlance, the VND is referred as being the inner
decoder, since it is the nearest to the communications channel,
whilst the CND is referred to the outer decoder. Elaborating
slightly further, each decoder can be mathematically described
by a so-called EXIT function, which describes the average
extrinsic mutual information of the respective decoder. The
performance of the decoder can be then characterized by
monitoring the exchange of extrinsic information between the
two component decoders, which is pictorially represented by
EXIT charts. EXIT charts were introduced by ten Brink [155]
and became a popular tool for determining the convergence
behavior13 of any iterative decoding scheme.

An example of an EXIT chart is shown in Figure 5,
which portrays the EXIT chart for a half-rate regular LDPC
code that is associated with a parity-check matrix having a
column weight of γ = 3 and a row weight of ρ = 6. We
also assume binary phase shift keying (BPSK) modulated
transmissions over the AWGN channel at Eb/N0 = 2 dB. In
Figure 5, we have explicitly marked the two EXIT curves,
which correspond to the aforementioned EXIT function of
the respective inner or outer constituent decoder, and the
corresponding EXIT trajectory. The trajectory gives an esti-
mate of the number of decoding iterations that are required
to reach the perfect convergence to a vanishingly low BER,
which corresponds to the (1, 1) point of the EXIT chart. A
single decoding iteration will correspond to one step on the
corresponding EXIT trajectory.

Assuming this EXIT chart-based framework, there are three
basic requirements to be satisfied in order to design a near-
capacity system. Firstly, it is required that both the inner as
well as the outer decoder’s EXIT curves should reach the (1, 1)
point on the EXIT chart, in order to attain near-error-free
decoding. Secondly, the inner decoder’s curve should always
be above the outer decoder’s curve and hence should never
intersect. This will result in an a so-called open tunnel between
the two EXIT curves. If the two EXIT curves intersect and
therefore no open tunnel will be available, the EXIT trajectory
will fail to reach the error-free (1, 1) point of the EXIT
chart. Consequently, the resultant BER/BLER performance
will exhibit high error floors.

13The convergence behavior of a code can also be analyzed by means of
the aforementioned density evolution [49].
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Fig. 5. The EXIT chart for a half-rate regular LDPC code, associated with
a parity-check matrix having a column weight of γ = 3 and a row weight
of ρ = 6. We also assume BPSK modulated transmission over the AWGN
channel at Eb/N0 = 2 dB. The a-priori information input and the extrinsic
information output for the CND and VND are denoted by IA,CND, IE,CND,
IA,VND and IE,CND, respectively.

Thirdly, in order to maximize the achievable throughput, the
two constituent decoder curves must match as accurately as
possible, thus resulting in an infinitesimally low EXIT-chart-
tunnel area. Indeed, a code that operates close to capacity has
EXIT curves, which have a similar shape, as it was demon-
strated for a variety of channels such as the BEC [156], single-
input single-output as well as MIMO Gaussian channels [157],
[158], for dispersive channels imposing inter-symbol inter-
ference [159] and for partial response [160] channels. As a
consequence, it was also shown [156] that the area between
the two EXIT curves is proportional to the SNR distance from
capacity.14 In this context, irregular codes allow for more
flexibility in the design of their degree distribution and so,
their corresponding EXIT curves can be better matched in
order to attain a near-capacity performance. This can also
be verified from Figures 6(a) and 6(b), which portray the

14The EXIT curve matching can be very easily obtained using linear
programming [161].
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EXIT chart for a half-rate regular and irregular LDPC code,
respectively. It can be observed that the open-tunnel area in
the EXIT chart of the irregular code is significantly smaller
than that of the corresponding regular counterpart. However,
it is worth mentioning that the decoding complexity of the
irregular LDPC code will be higher, since it requires more
decoding iterations to reach the near-error-free (1, 1) point of
the EXIT chart.

Zheng et al. [162] discovered that there is only a 0.01 dB
difference between the results predicted by using EXIT chart
analysis in comparison to those determined by density evo-
lution. However, EXIT chart analysis may be deemed to be
more convenient, especially when considering that no Fourier
and inverse Fourier transform computations are necessary. In
the same paper [162], the EXIT chart analysis provided for
LDPC codes was also extended to flat uncorrelated Rayleigh
flat fading channels. Jian and Ashikhmin [163] utilize EXIT
charts in order to determine the convergence SNR threshold
for LDPC coded systems transmitting over flat Rayleigh
fading channels and exploiting the knowledge of the channel
impulse response. In Section III-C, we have mentioned that
the convergence SNR threshold can be determined by finding
the minimum SNR, at which the two EXIT curves no longer
intersect and thus create a marginally open tunnel. In this
context, we can observe from Figures 6(a) and 6(b) that the
convergence SNR threshold of the regular and irregular LDPC
code is equal to -1.71 dB (i.e., Eb/N0 = 1.3 dB) and -2.51 dB
(i.e., Eb/N0 = 0.5 dB), respectively. The lower SNR threshold
of the irregular code reaffirms our previous argument, namely
that irregular LDPC codes are capable of attaining a superior
performance in the waterfall region over their corresponding
regular counterparts.

Typically, the variable-to-check and check-to-variable node
information, as well as the channel’s output messages are
assumed to be Gaussian distributed [155], [157], [158], [164]–
[166]. However, in practice this is not an accurate assumption
for the check-to-variable node messages. The reason is es-
sentially due to the fact that the check-node is performing a
tanh operation and hence, the magnitude of the log-likelihood
ratios at the output of the check node is typically smaller than
that of the incoming messages at the CND. Thus, one can
argue that the CND is producing the minimum soft value.
This effectively makes the probability density function of the
check-to-variable node messages skewed towards the origin,
thus rendering their distribution non-Gaussian, especially at
low SNR [167], [168]. However, according to Chung et
al. [169], this approximation produces accurate result for
codes having a code-rate between R = 0.5 and R = 0.9,
provided that the variable nodes have degrees less than or
equal to 10. Ardakani and Kschischang [167], [168] prefer
to use the true histogram-based probability density function
for the messages arriving from the check nodes and hence
to produce a more accurate EXIT chart analysis. The same
authors in [170] consider a general code design for achieving
a specific desired convergence behavior and to provide the
necessary as well as sufficient conditions satisfied by the EXIT
chart of the highest rate LDPC code.

EXIT charts were also employed in the design of systems
amalgamating coded modulation schemes and LDPC codes

have been investigated in [171], [172]. The latter work by
Francheschini et al. [172] presents a novel bound and design
criterion, which directly links the EXIT chart analysis to
the achievable BER performance, where the decoding con-
vergence behavior has been characterized as a function of
the LDPC code’s degree distributions. This design criterion
of [172] also provides a bound for the degree distribution
coefficients, which must be satisfied in order to attain con-
vergence within a specified number of iterations. Both density
evolution and EXIT chart analysis were extended to the case
of nonbinary LDPC codes by Rathi and Urbanke [173] as well
as by Byers et al. [174], respectively.15

F. Hardware Implementation of Low-Density Parity-Check
Codes

The hardware implementation of any channel code is typ-
ically orders of magnitude faster than their software-based
counterparts, which results in a higher achievable bit rate.
Hence it is desirable that the LDPC construction can be con-
veniently implemented in hardware. Several LDPC hardware
implementations have been proposed, for example in [175]–
[182], with many of them exploiting the speed and flexibility
of field programmable gate arrays and of digital signal pro-
cessors.

Whilst it can never be denied that pseudo-random codes
such as the classic regular MacKay LDPC codes [42] and
conditioned irregular codes [50], [125] exhibit an excellent
BER/BLER performance, the random selection of the con-
nections between their parity-check and variable nodes makes
it particularly hard to create a convenient description for the
code. Hence their implementation often results in either in-
flexible hardwired interconnections or large inefficient lookup
tables. On the other hand, structured codes [51] benefit from
simplified descriptions as well as from facilitating efficient
read and write operations from/to memory. This underlines
the argument that the design of an LDPC code construction
has to maintain a good BER/BLER performance as well as to
benefit from hardware-friendly implementations.

The primary factor which substantially affects the ease (or
difficulty) of building an LDPC encoder is the description
complexity, i.e., the amount of memory required to store the
LDPC code’s description, which is directly proportional to
the number of nonzero bits in the H matrix or the number of
edges in the corresponding Tanner Graph. For the case codes
having a pseudo-random parity-check matrix, this simply
means that the locations of all the nonzero bits of the H
matrix must be enumerated. This is an important aspect to
take into consideration, especially for those encoders that will
be positioned in a remote location with limited source of
power, for example in deep space [183]. In Section III-B, we
have discussed the issue of the encoding complexity of LDPC
codes, in particular, we referred to the work of Richardson
and Urbanke [52], which demonstrated that in general, LDPC
codes have a near-linearly block-length-dependent encoding
complexity. Therefore it becomes evident that a desirable
characteristic is to have a small gap factor. Preferably, the code
construction will consist of circulant permutation matrices,

15Rathi and Urbanke [173] only considered transmission over the BEC.



BONELLO et al.: LOW-DENSITY PARITY-CHECK CODES AND THEIR RATELESS RELATIVES 15

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A,VND

,I
E,CND

I E
,V

N
D

,I A
,C

N
D

VND
CND

(a) Regular LDPC code

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A,VND

,I
E,CND

I E
,V

N
D

,I A
,C

N
D

VND
CND

(b) Irregular LDPC code

Fig. 6. The EXIT chart for (a) a half-rate regular LDPC code, associated with a parity-check matrix having a column weight of γ = 3 and a row weight of
ρ = 6 at Eb/N0 = 1.3 dB and (b) a half-rate irregular LDPC code at Eb/N0 = 0.5 dB. The parity-check matrix for this irregular code follows the design
of [158] and possesses 51% of the columns have a column weight of γ = 2, 42% of the columns have γ = 4 and 7% of the columns have γ = 2. All the
rows of this irregular parity-check matrix have a row weight of ρ = 8. We also assume BPSK modulated transmission over the AWGN channel.

which makes it possible to carry out the encoding operation
using shift registers.

The main challenge which has to be tackled, when imple-
menting the SPA in hardware is that of effectively managing
the exchange of extrinsic messages between the check and
variable nodes. Howland and Blanskby [181] suggest two
possible hardware architectures, namely a hardware-sharing
and a parallel decoder architecture. After contrasting the
two architectures, the authors opt for advocating the parallel
decoder architecture, mainly for the reasons of its lower
power dissipation and the reduced amount of control logic
required, as well as owing to the inherent suitability of the
architecture for the SPA. Andrews et al. [183] argue that
the so-called protograph LDPC codes structured on a base
protograph having a low number16 of edges Eb are well-
suited to semi-parallel hardware architectures. In fact, Lee et
al. [184] proposed a hardware architecture, which is capable of
simultaneously processing Eb edges per cycle, and therefore
requiring 2J cycles per iteration, where J is the number
of base protographs in the resultant protograph LDPC code.
This implementation has the added advantage that the size
of the protograph can also be tailored to match the available
hardware.

In this context, it is worth mentioning that the task of
designing an LDPC code that achieves a good BER/BLER
performance and yet possesses implementational benefits is
not at all simple. In [185], we have outlined the intricate
dependencies that exist between the design attributes of LDPC
codes and advocated code design techniques that aim for
achieving the highest number of desirable attributes, rather
than closely approaching the ultimate bounds, which hence
tend to possess impractical hardware implementations. Con-
structions of LDPC codes using this design philosophy have

16Andrews et al. [183] suggest that the number of edges in the base
protograph, hereby denoted by Eb, should be less than 300.

been proposed in [136], [137], [186], [187], amongst others.
Further insights related to the hardware implementation of
LDPC codes are provided in [188].

G. Co-located versus Distributed Coding

A research area that has recently received substantial re-
search attention lately is ‘cooperative communications’, which
was originally referred to as ‘cooperation diversity’ [189]–
[192]. The design of cooperative systems was motivated by
the widely accepted fact that diversity is the most effective
strategy of mitigating the effects of time-varying multipath
fading in a wireless communication system. In practical terms,
this directly implies that multiple antennas must be employed
at the transmitter and the receiver, thus creating a MIMO
system. One of the main benefits of MIMO systems is the
linear increase in capacity with the number of transmitting
antennas [193]–[196], provided that the number of receiver
antennas matches this number. A further benefit of MIMOs is
that they are capable of reducing the interference among dif-
ferent transmissions, they increase the diversity gain, the array
and the spatial multiplexing gain. However, while employing
multiple antennas at cellular base stations is practically real-
izable, it might be less feasible for the mobile terminals due
to their limited size, battery power consumption and hardware
complexity constraints.

This dilemma prompted researchers to move a further step
away from having co-located MIMO elements to having
distributed MIMO elements [197], [198]. This prompted a
similar idea, which is now known as distributed coding. The
most of the commonly used concatenated coding schemes
are constituted by a number of constituent encoders/decoders.
In this light, we may view traditional concatenated coding
schemes as being a code having co-located components, since
its constituent encoders/decoders are literally located within
the same transmitter/receiver. On the other hand, a distributed
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code involves having constituent components allocated to a
number of geographically dispersed transmitters/receivers. For
example, Zhao and Valenti [199] investigated a distributed
turbo coded system, which effectively emulates a parallel
concatenated convolutional code by encoding the data twice,
first at the source and then at the relay (after interleaving). The
data is then iteratively decoded at the destination by means of
a classic turbo decoder.

In 2005, Bao and Li [200]–[203] proposed a solution that
may be viewed as the first distributed LDPC code. Their
strategy was in fact based on systematic low-density generator
matrix (LDGM) based codes and on LDPC codes associated
with lower triangular parity-check matrices. These two fami-
lies of LDPC codes possess an H matrix that is comprised of
the horizontal concatenation of a sparse matrix and a lower tri-
angular (or in the case of systematic LDGM codes, an identity)
matrix. In [200], [203], Bao and Li related these two matrices
to two transmission phases of a cooperative communication
system, whereby the first phase consists of what is known as
the broadcast phase, whilst the second phase corresponds to
the so-called relaying phase. In doing so, the authors allocated
the function of the check-combiner to the relay, rather than
being also performed by the original transmitter. However,
Bao and Li do not portray their system as being a distributed
LDPC coded system, rather they make the interesting proposal
of representing the cooperative network by a Tanner graph, and
in so doing, a code-on-graph [32] such as an LDPC code may
be viewed in the above-mentioned context as ‘network-on-
graph’ [200]–[203].17 Subsequently, the information theoretic
analysis of network-on-graphs was carried out in [204], [205].
Interestingly enough, the principles underlying networks-on-
graph can be traced back to the roots of network coding [206].
The employment for LDPC codes for transmission over relay-
aided channels was also suggested by Razaghi and Yu [207],
Chakrabarti et al. [208] as well as by Hu and Duman [209],
amongst many others.

H. Quantum Error Correction Codes

In the last decade or so, we have witnessed the emergence
of what is now known as quantum information theory and
quantum error correction [210]–[213]. It was Feyman who
originally proposed the idea of processing information by
means of quantum systems. A fundamental problem that arises
is that of protecting the fragile quantum states from unwanted
evolutions, whilst guaranteeing the robust implementation of
the quantum processing devices. This phenomenon, referred
to as decoherence, can be reduced by what is now known as
quantum error correction.18 Following the landmark papers of
Shor [215] in 1995 and Steane [216], it was Calderbank and
Shor [217] who provided the proof of existence of ‘good’
quantum error correction codes, even though they did not
provide any explicit guidelines for their construction. These
codes are often referred to as Calderbank-Shor-Steane (CSS)
codes. These contributions further motivated researchers to

17These networks-on-graph were commonly referred to as adaptive network
coded cooperation or progressive network coding.

18The interested reader is referred to [214] for a thorough discussion on
quantum error correction.

construct interesting quantum codes based on classic binary
codes, such as those proposed in [218]–[220]. Other quantum
codes were based on the family of algebraic-geometric codes
(see [221]–[224] amongst others).

In 2001, Postol proposed the first quantum CSS code
constructed from classic FG-based LDPC codes [60]. This
contribution was followed by MacKay et al. [225], who
proposed quantum LDPC codes constructed with the aid of
cyclic matrices. Camara et al. [226] presented two methods for
constructing quantum LDPC codes and adopted the message
passing algorithm for employment in generic quantum LDPC
codes. Recently, Hagiwara and Imai [227] realized a CSS
code with the aid of quantum QC LDPC codes. The first non-
CSS quantum LDPC code was then proposed by Tan and Li
in [228]. Recently, Djordjevic also proposed quantum LDPC
codes based on balanced incomplete block designs [229] as
well as quantum LDPC encoders and decoders for employ-
ment in an all-optical implementation [230].

IV. IMPORTANT MILESTONES IN THE HISTORY OF

RATELESS CODING

Rateless codes were originally contrived for erasure chan-
nels and hence they were sometimes referred to as erasure-
filling codes or simply, erasure codes. The foundation of
erasure codes can be traced back to the proposal of the BEC in
1955 by Elias [231]. The encoded symbols transmitted over
this channel can either be correctly received or completely
erased with a probability of (1 − Pe) and Pe, respectively. It
was also demonstrated that a vanishingly low probability of
error can be attained if random linear codes with rates close to
(1 − Pe) are decoded using an maximum likelihood decoder.
The encoding and decoding complexity is at most a quadratic
function of the block length.

However, research focusing on codes designed for the BEC
remained dormant until the Internet became used on a large-
scale basis during the mid-1990s. The only codes which can
be regarded as being erasure-filling codes are the popular RS
codes proposed in 1960 [86] and their relatives, such as the
BCH codes [84], [85] as well as redundant residue number
system codes [232]–[234]. Nonetheless, their employment for
transmission over the BEC modeling the Internet channel
has been hampered by the fact that a priori estimation of
the channel’s erasure probability has to be known and hence
the code-rate has to be fixed before the actual transmission
commences.

The quest for more efficient erasure-filling codes was initi-
ated by Alon et al. [43], [235] and was first realized in the form
of erasure-filling block codes designed on irregular bipartite
graphs, which were termed as Tornado codes [44]. Their per-
formance is however dependent on the validity of the assump-
tion that the erasures are independent, which is not always
true, especially when taking into account the binary erasures
of the Internet channel imposed by statistical multiplexing-
induced Internet protocol packet loss events. Moreover, their
rate is still fixed like that of RS codes and hence, they cannot
be used to serve multiple users communicating over channels
having different qualities. Another effective erasure code was
proposed by Rizzo [236] based on a class of generator matrix
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based codes, where the generator matrix was constructed to
inherit the structure of the Vandermonde matrix [237].

Luby transform (LT) codes [238], proposed by Luby in
2002, can be considered as the first practical rateless code
family, which are reminiscent of the ideal digital fountain code
concept advocated by Byers et al. [239], [240]. Metaphorically
speaking, a fountain code can be compared to an abundant
water supply capable of sourcing a potentially unlimited
number of encoded packets (water-drops) [241]. The receiver
is capable of recovering K out of the N transmitted packets
on a BEC, if N is sufficiently larger than K .

The encoding and decoding process of an LT code is
conceptually appealing. Assume a message consisting of K
input (source) symbols v = [v1 v2 . . . vK ], where each symbol
contains an arbitrary number of bits.19 The LT encoded symbol
cj , j = 1, . . . ,N , is simply the modulo-2 sum of dc distinct
input symbols, chosen uniformly at random. The actual degree
of each symbol to be encoded is then chosen from a pre-
defined distribution, which is typically either the robust soliton
distribution or the so-called truncated Poisson 1 distribution.
Given the nature of this encoding scheme, there is no limit
on the possible number of encoded symbols that can be
produced and for this reason, fountain codes such as LT codes
are described as being rateless codes. LT codes also benefit
from having a low encoding and decoding cost, avoiding an
excessive complexity upon increasing the source’s codeword
length. Due to these characteristics, LT codes are considered
to be universal in the sense that they are near-optimal and thus
applicable for every type of erasure channels.

Similarly to the previously described LDPC codes, the
connection between the input and output symbols can also be
diagrammatically represented by means of a bipartite graph,
which is commonly referred to as a Tanner [23] or a factor
graph [30], as shown in Figure 7. In this context, an input
source symbol can be treated as a variable node, whilst
an LT encoded symbol can be regarded as a check node.
The terminology of input/output symbols, source/LT-encoded
symbols and variable/check nodes is interchangeably used in
the literature.

The decoding process as detailed by Luby [238] commences
by locating a self-contained symbol, i.e., a so-called degree-
one input symbol which is not combined with any other. The
decoder will then add (modulo-2) the value of this symbol to
all the LT-encoded symbols relying on it and then removes the
corresponding modulo-2 connections. The decoding procedure
will continue in an iterative manner, each time commencing
from a degree-one symbol. If no degree-one symbol is present
at any point during the decoding process, the decoding oper-
ation will abruptly halt. However, a carefully designed degree
distribution, such as the robust soliton distribution [238],
guarantees that this does not occur more often than a pre-
defined probability of decoding failure. This LT decoding
process is illustrated in Figure 2 of [100]. Clearly, using this
decoding technique for LT codes designed for transmission
over noisy channels constitutes an additional challenge, since
a single corrupted symbol will produce uncontrolled error

19The terminology used in [238] refers to the original data message as a
‘file’.

propagation. This have led the authors in [242] to formalize
the concept of a ‘wireless erasure’. A cyclic redundancy check
sequence is appended to a block of LT encoded symbols and
are consequently declared to be erased if the cyclic redundancy
check fails. In such a manner, the noisy channel can be
effectively treated as a block erasure channel. A superior
decoding strategy designed for LT codes transmitted over
channels such as the binary symmetric and the AWGN channel
is to allow the exchange of soft information between the source
and LT-encoded symbols [242]–[244] in a fashion akin to that
used for the decoding of LDPC codes.

A. Other Rateless Codes And Their Performance Over Noisy
Channels

Palanki and Yedidia [244], [245] were the first to document
the achieved performance of LT codes for transmission over
the binary symmetric and the binary-input AWGN channels.
More particularly, it was demonstrated that the BER and
BLER performance of LT codes over these channels exhibit
high error floors [244], [245]. For this reason, LT codes used
for transmission over noisy channels have always been con-
catenated with other forward error correction schemes, such
as iteratively detected bit-interleaved coded modulation [246],
generalized LDPC [247], convolutional and turbo codes [242],
[248], [249]. In the literature, the concatenation of LT codes
with turbo codes was referred to as the turbo fountain [249]
code.

Recently, we have also witnessed the emergence of Rap-
tor codes [250], [251], which do not share the error floor
problem of their predecessors. In fact, the results published
in [244], [245], [252]–[258] attest near-capacity performance
and ‘universal-like’ attributes on a variety of noisy channels.
Note that our emphasis is on the phrase ‘universal-like’; since
it has been shown in [252] that Raptor codes are not exactly
universal on symmetric channels, since their degree distribu-
tion is in fact dependent on the channel statistics. The benefits
provided by Raptor codes were then exploited in a number of
practical scenarios, such as for wireless relay channels [259]–
[261] as well as for multimedia transmission [262]–[267].
Other types of rateless codes proposed in the literature are
the systematic LT codes [268]–[271], the online codes [272],
[273], the codes based on linear congruential recursions [274]
as well as the LDPC-like Matrioshka codes [275], [276]. The
latter codes were proposed as a solution to the Slepian-Wolf
problem [277]. Caire et al. [243] delved into the applicability
of rateless coding for variable-length data compression.

From another point of view, we can consider the family
of rateless codes for the provision of incremental redun-
dancy [278]–[281]; for example in the context of adaptive-
rate schemes or as an instance of the so-called type-II
hybrid automatic repeat-request (HARQ) [10], [282], [283]
schemes. In such schemes, the transmitter continues to send
additional incremental redundancies of a codeword until a
positive ACK is received or all redundancy available for the
current codeword was sent. If the latter case happens, i.e.,
the decoding is still unsuccessful after all the parity-bits have
been sent, the codeword is either discarded or rescheduled
for retransmission. The forward error correction codes that
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Fig. 7. A Tanner graph based description of LT code showing the source symbols (variable nodes) and the LT-encoded symbols (check nodes). The symbols
are of an arbitrarily size.

are employed in conjunction with incremental redundancy
are typically referred to as rate-compatible codes [284]. The
techniques applied in order to design rate-compatible codes
either use puncturing [284]–[286] of the parity bits from a
low rate mother code in order to obtain higher rate codes or
employ code extension [6] for concatenating additional parity
bits to a high-rate code in order create a low-rate code. Both
methods have their own limitations and typically a combi-
nation of both techniques is generally preferred [6], [287].
The striking similarities of rateless coding with HARQ were
first exploited by Soljanin et al. [288], [289], who compared
the performance of Raptor codes as well as punctured LDPC
codes for transmission over the binary-input AWGN channel.
Their results demonstrated that the family of Raptor codes
represents a more suitable alternative than punctured LDPCs
for covering an extensive range of channel SNRs (and thus
rates).

The state-of-the-art rateless codes employ a fixed degree
distribution [238]; i.e., the degree distribution used for coining
the degree dc for each transmitted bit is time invariant and thus
channel-independent. Consequently, such rateless codes, can
only alter the number of bits transmitted (i.e., the code-rate)
in order to cater for the variations of the channel conditions
encountered. However, it was shown in [290] that a degree
distribution designed for rateless coded transmissions over
time-varying noisy channels will depend on the underlying
channel characteristics, and therefore a fixed degree distribu-
tion can never be optimal20 at all code rates. Motivated by
this, the so-called reconfigurable rateless codes were proposed
in [291]. These codes are capable of not only varying the
block length (and thus the rate) but also adaptively modify
their encoding strategy according to the prevalent channel
conditions. Figure 8 compares the achievable throughput of the
reconfigurable rateless codes with that of Raptor codes [251]
and with punctured regular as well as with optimized irregular
LDPC codes. It can be observed that reconfigurable rateless
codes perform approximately 1 dB away from the discrete-
input continuous-output memoryless channel’s capacity over
a diverse range of channel SNRs. Moreover, it can be verified
that the performance of the proposed rateless reconfigurable

20In this context, we use the adjective ‘optimal’ in terms of attaining a
near-capacity performance.
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information bits used for all the simulated schemes was set to 9500 bits.

codes is superior to that of punctured regular and irregular
LDPC codes at all SNRs, and superior to that of the Raptor
codes for all SNRs higher than -4 dB. Rateless codes sharing
a somewhat similar philosophy were also explored in [292],
in the context of MIMO transmit preprocessing systems.

Similarly to the case of LDPC codes, rateless codes have
also been advocated in cooperative networks. Castura and
Mao [259] proposed a half-relaying protocol using Raptor
codes that naturally allows for their extension to multiple
antennas and relays. A different approach was also suggested
by Molisch et al. [293], [294]. Puducheri et al. proposed what
are known at the time of writing as distributed LT codes, when
considering a scenario, where the data is independently en-
coded from multiple sources and then combined at a common
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relay. The authors proposed the degree selection distribution
to be employed at the source to ensure that the resultant packet
stream at the common relay has a degree distribution that
approximates that of a conventional LT code.

B. Rateless Codes versus their Fixed-Rate Counterparts

In Section I-A, we have presented simplified arguments,
which helped us to create a link between the well-understood
fixed-rate coding and rateless coding families. In this context,
it is worth elaborating slightly further by noting that some
rateless code families are very closely related to their fixed-
rate counterparts. For instance, an LT code [238] is analo-
gous to a nonsystematic LDGM-based code [295], having a
generator matrix that is calculated online (and thus allowing
adaptive-rate configuration for diverse channel conditions) and
where the LT encoded codeword corresponds to a sequence
of repeated parity-check equation values, each checking the
parity of dc information bits. We remark that LDGM codes
are essentially the dual codes of LDPC codes, where the latter
codes where defined in Section II-B.

Similarly, we can regard Raptor codes [251] as a serial
concatenation of a (typically) high-rate LDPC code as the
outer code combined with a rateless LDGM code as the inner
code. Both the LT as well as Raptor codes are decoded using
the classic BP algorithm, in a similar fashion to the decoding
of LDPC codes. However, in contrast to fixed-rate codes,
code-design optimization techniques such as the often used
girth-conditioning [57] or cycle-connectivity analysis [125]
are inapplicable since the parity-check connections between
the information and parity bits are determined “on-the-fly”.
Nonetheless, this is advantageous in terms of memory require-
ments, since there is no need to store the code description (e.g.
the parity-check or the generator matrix).

V. CONCLUSIONS AND FUTURE DIRECTIONS

A. Summary of the Paper

In this article, we have provided a comprehensive survey
of the associated open literature that is related to LDPC
codes and their rateless relatives. We have commenced our
discourse by outlining the related basic terminology and
definitions in Section II. We have limited our elaborations to
the basic principles of linear block codes, to the description of
their generator and parity-check matrices as well as to their
graphical representation. We have also touched upon some
basic graph theoretical foundations. Following this prelimi-
nary foundation, we proceeded to provide a brief historical
overview of LDPC codes. More specifically, in Section III-A,
we provide a somewhat general discussion on the various
LDPC code constructions that have been previously proposed
in the literature. In Section III-B, we focused our attention
on the literature concerning the encoding of LDPC codes. We
stated that the encoding of conventional LDPC codes has a
complexity that increases as a quadratic function of the block
length. Subsequently, we detailed the proposed solutions,
which mitigate these specific problems. In Section III-C, we
outlined the BER/BLER performance metrics of LDPC codes
and associated these metrics with the LDPC construction
attributes. In Section III-D, we have summarized the majority

of the previously presented LDPC decoding algorithms and
discussed their complexity versus performance tradeoffs. The
iterative decoding convergence was then discussed in Sec-
tion III-E, and we outlined the basic principles of code design
tools, such as the EXIT chart. In Sections III-G and III-H, we
have focused our attention on current research topics related to
distributed coding in cooperative communications as well as to
the employment of LDPC codes in quantum error correction.
Finally, in Section IV, we have outlined the most important
milestones in the history of rateless coding and discussed
some of the related design problems as well as their respective
solutions.

B. Potential Future Research Directions

In this survey, we have offered a glimpse of six decades
of research pertaining to LDPC codes as well of the more
recent efforts concentrated on rateless coding. Beyond any
doubt, LDPC and rateless codes will find employment in a
myriad of other potential applications and be included in the
forthcoming standards. Against this backdrop, we will also
shed some light on some potential future research directions,
which are outlined in the points below:

• From a practical perspective, we expect that research
efforts will be shifted from that of solely focusing
on attaining further (minute) gains in their attainable
BER/BLER performance (or the achievable throughput in
the case of rateless codes) to a more holistic approach,
which attempts to strike the best balance between the
associated design tradeoffs. A stronger focus on the cost
minimization of the error correction codes is certainly to
be expected.

• In Section III-C, we described the stopping sets and trap-
ping sets as well as their role on the determination of the
error floor region of the LDPC-coded BER/BLER perfor-
mance. From a more theoretical viewpoint, contemporary
research is also focusing on the effects of the so-called
pseudo-codewords [296], [297], instantons [298], [299]
and absorbing sets [300] on the error floor region of the
LDPC-coded BER/BLER performance. Although exact
analytical performance curves for the LDPC transmission
over the BEC has already been formulated in terms of
the distribution of the stopping set sizes [126], the exact
nature of the relationship between these attributes and
the achievable performance of LDPC-coded transmission
over AWGN and fading channels remains to be found.

• We also foresee further developments on the design of
short codes as well as on the exact formulation of the
delay-limited performance bounds. Related work includes
that of Lee and Blahut [301]–[303] as well as of Tüch-
ler [304] for turbo codes, and that of [126], [305]–[307]
for LDPC codes. However, we note that the emphasis of
the latter was mostly placed on communications over the
BEC.

• We also anticipate the exact formulation of complexity-
limited performance bounds and the associated design of
codes that attempt to perform close to derive bounds.
Related work includes that of Yu et al. [308].

• Apart from the further exploitation of such codes in the
quantum domain, we also predict more developments in
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the employment of error control at the network layer. In
this context, these advances will be expedited by a better
understanding of the associated performance bounds as
well as by the extension of the well-understood code-
design-related tools to these upper layers. Future research
might also consider the codes discussed in this treatise,
for example when creating distributed error-correction
codes exchanging extrinsic information between ad-hoc
networks nodes [309], such as in inter-Vehicle communi-
cations [310], or in optical networks [311], in cognitive
radio applications [312] and in space Internet [313].
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