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Semi-blind fast equalization of QAM channels using concurrent
gradient-Newton CMA and soft decision-directed scheme
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SUMMARY

This contribution considers semi-blind adaptive equalization for communication systems that employ high-throughput quadra-
ture amplitude modulation signalling. A minimum number of training symbols, approximately equal to the dimension
of the equalizer, are first utilized to provide a rough initial least-squares estimate of the equalizer’s weight vector. A
novel gradient-Newton concurrent constant modulus algorithm and soft decision-directed scheme are then applied to adapt
the equalizer. The proposed semi-blind adaptive algorithm is capable of converging fast and accurately to the optimal
minimum mean-square error equalization solution. Simulation results obtained demonstrate that the convergence speed of this
semi-blind adaptive algorithm is close to that of the training-based recursive least-square algorithm. Copyright q 2009 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In certain communication systems, training is infea-
sible and blind equalization provides a practical means
for combating the detrimental effects of channel
dispersion in such systems. Since no training sequence
is needed, blind equalization improves system band-
width efficiency. For systems with constant modulus
(CM) signalling, the stochastic-gradient CM algo-
rithm (CMA) [1–3] and block-based CMA [4, 5]
offer popular low-complexity equalization schemes.
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U.K.

†E-mail: sqc@ecs.soton.ac.uk

Although the block-based CMA achieves better equal-
ization performance than the stochastic-gradient one,
the former introduces excessive processing delay
that can cause a serious problem for delay-sensitive
applications, such as voice communication. The perfor-
mance and convergence behaviour of the CMA have
been extensively studied [6–8]. Although the CMA is
very robust to imperfect carrier recovery, it converges
very slowly and introduces undesired phase rotation
to the recovered symbol constellation. In addition,
the steady-state mean-square error (MSE) achiev-
able by the CMA may not be sufficiently low for
the system to achieve an adequate symbol error rate
(SER) performance. In particular, in order for the
CMA to avoid undesired local minima, it is critical to
have a proper initialization of the equaliser’s weight
vector.
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Owing to the ever-increasing demand for wireless
communication capacity, high-throughput quadra-
ture amplitude modulation (QAM) schemes [9] have
become popular in numerous wireless network stan-
dards. For example, the WiMax standard [10] adopts
both the 16-QAM and 64-QAM schemes. Although
QAM schemes are not CM signals, the stochastic-
gradient CMA-based equalizer is shown to work for
high-order QAM systems [11]. However, it is even
more difficult to obtain a sufficiently low steady-state
MSE so that the system achieves an adequate SER
performance. A possible solution is to switch to a
decision-directed (DD) least mean-square (LMS) adap-
tation after the convergence of the CMA [12], which
should be able to achieve a performance close to the
minimum MSE (MMSE) solution. As pointed out in
[13], a successful switch to the DD adaptation requires
that the CMA’s steady-state MSE must be sufficiently
small. In practice, such a low level of MSE may not
be achievable by the CMA scheme. Alternatively, a
block-based composite cost function, which consists
of the CMA cost function and the decision-based
MSE [14], can be adopted. But the weighting of
the two component cost functions must be carefully
chosen, which can be difficult to do.

An interesting solution to overcome the above-
mentioned problem of the CMA-based blind equaliza-
tion was suggested in [13]. Instead of switching to a
DD adaptation after the CMA has converged, a DD
equalizer operates in parallel with a CMA equalizer.
The stochastic-gradient-based weight adaptation of the
DD equalizer follows that of the CMA equalizer and, to
avoid error propagation due to incorrect decisions, the
DD adjustment only takes place if the CMA adaptation
is deemed to have achieved a successful adjustment of
the equalizer weight vector with a high probability. At
a cost of slightly more than doubling the complexity of
the simple CMA, this combined CMA and DD equal-
izer is capable of achieving a dramatic improvement
in equalization performance over the CMA [13]. More
recently, a novel combined CMA and soft DD (SDD)
blind equalizer has been proposed [15–17], which
achieves a faster convergence and has simpler imple-
mentation than the combined CMA and DD scheme
of [13]. This stochastic-gradient combined CMA and
SDD scheme operates a CMA-based equalizer and the

last-stage SDD equalizer of [18] in a truly parallel
manner. It is capable of achieving an equalization
performance that is close to the MMSE equalization
solution based on the perfect channel information
and, thus offers a low-complexity high-performance
technique for blind equalization of high-order QAM
channels.

Blind equalization schemes typically converge
much slower than training-based algorithms. For the
high-order QAM channels, even the best stochastic-
gradient CMA+SDD-based equalizer of [15–17]
requires adaptation in tens of thousands of samples
to converge. Additionally, blind equalization has
an inherent decision ambiguity, which can only be
resolved by other means. For example, differential
encoding can be employed to resolve this decision
ambiguity at the cost of worst-case 3 dB penalty. Alter-
natively, a few training symbols can be used to remove
this decision ambiguity, which leads to semi-blind
equalization. The novelty of this contribution is that
we propose a gradient-Newton concurrent CMA and
SDD scheme for fast semi-blind equalization. Training-
based gradient-Newton-type algorithms [19] employ
second-order statistics of the input signal to modify
the stochastic gradient, which results in much faster
convergence and smaller steady-state misadjustment
than training-based stochastic-gradient-type algorithms
at the cost of increased complexity. A training-based
gradient-Newton minimum bit error rate algorithm,
for example, is proposed in [20]. In our proposed
semi-blind approach, a minimum number of training
symbols, approximately equal to the dimension of the
equalizer, are first utilized to provide a rough initial
least-squares (LS) estimate of the equalizer’s weight
vector. A gradient-Newton concurrent CMA+SDD
algorithm is then applied to adapt the equalizer. The
proposed semi-blind adaptive algorithm is shown to
be capable of converging fast and accurately to the
optimal MMSE equalization solution.

It is worth emphasizing that a blind gradient-
Newton CMA‡ has been proposed for equalization
of CM signals [21]. However, we have found that

‡We avoid using the RLS CMA in order not to cause any confusing
with the training-based RLS algorithm.
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this blind gradient-Newton CMA equalizer cannot
achieve the equalization objective for high-order QAM
systems. This is one of the motivations for considering
semi-blind equalization of high-order QAM systems.
With the aid of the information provided by a very
short training symbol sequence, in our case in the form
of LS initialization of the equalizer’s weight vector,
it becomes feasible to apply a blind gradient-Newton
algorithm. Our simulation results demonstrate that the
proposed semi-blind gradient-Newton CMA+SDD
adaptive algorithm achieves a convergence speed close
to that of the training-based recursive least-square
(RLS) algorithm [22]. In terms of computational
requirements, the stochastic-gradient CMA+SDD
algorithm has a computational complexity of O(Ne)

operations, where Ne is the order of equalizer, similar
to that of the training-based LMS algorithm [22], while
the gradient-Newton CMA+SDD algorithm has a
computational complexity of O(N 2

e ) operations, similar
to that of the RLS algorithm [22]. It is also worth
pointing out that an alternative semi-blind equalizer has
been developed for CM signals [4, 23], which adopts
a combined criterion of the block training-based MSE
cost function and the block CMA cost function. Our
approach is preferred as it leads to a recursive adaptive
algorithm. Furthermore, the combined CMA+SDD
adaptation is superior over the CMA adaptation for
QAM systems.

The remainder of the paper is organized as follows.
Section 2 briefly presents the system signal model and
equalizer structure. The proposed semi-blind gradient-
Newton CMA+SDD adaptive algorithm is detailed in
Section 3. Simulation results are presented in Section 4,
and the paper concludes in Section 5.

2. SIGNAL MODEL AND EQUALIZER
STRUCTURE

Denote the symbol-rate channel impulse response
(CIR) as

cT=[c0 c1 . . . cNc−1] (1)

where Nc is the length of the CIR. The symbol-rate
received signal sample x(k) at receiver can be expressed
as [24]

x(k)=
Nc−1∑
i=0

ci s(k−i)+n(k) (2)

where n(k) is a complex-valued Gaussian white noise
process with E[|n(k)|2]=2�2n , and s(k) is the kth trans-
mitted symbol with the symbol energy E[|s(k)|2]=�2s .
The modulation scheme is assumed to be the M-QAM
and therefore s(k) takes the values from the symbol set

S�{si,l =ui + jul ,1�i, l�
√
M} (3)

with the real-part symbol �[si,l ]=ui =2i−√
M−1

and the imaginary-part symbol �[si,l ]=ul =2l−√
M−1. We define the receive signal-to-noise ratio

(SNR) as

SNR�cHc�2s
2�2n

(4)

The equalizer output, given by

y(k)=
Ne−1∑
i=0

w∗
i x(k−i) (5)

is passed to the decision device to produce an estimate
ŝ(k−�) of the transmitted symbol s(k−�), where Ne is
the equalizer order, wi are the complex-valued equal-
izer weights, and 0����max is the equalizer’s decision
delay with �max�Ne+Nc−2.

Define the received signal vector

x(k)=[x(k)x(k−1) . . . x(k−Ne+1)]T (6)

Then x(k) can be expressed by the following well-
known signal model:

x(k)=C s(k)+n(k) (7)

where the noise vector is

n(k)=[n(k)n(k−1) . . .n(k−Ne+1)]T (8)

the transmitted symbol vector is

s(k)=[s(k)s(k−1) . . .s(k−Ne−Nc+2)]T (9)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2010; 24:467–476
DOI: 10.1002/acs



470 S. CHEN

and the Ne×(�max+1) CIR convolution matrix has the
Toeplitz form

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cT 0 . . . 0

0 cT
. . .

...

...
. . .

. . . 0

0 . . . 0 cT

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=[c0c1 · · ·c�max] (10)

Similarly, the equalizer can be expressed in the vector
form

y(k)=wHx(k) (11)

where the equalizer’s weight vector is defined by

w=[w0w1 . . .wNe−1]T (12)

With the perfect channel knowledge, the optimal
MMSE solution that minimizes the MSE JMSE(w)�E
[|s(k−�)− y(k)|2] is given by [22]

wMMSE=
(
CCH + 2�2n

�2s
INe

)−1

c� (13)

where INe denotes the Ne×Ne dimensional identity
matrix and c� the (�+1)th column of C.

For the equalizer with the weight vector w and
an unknown decision delay �, define the combined
response of the equalizer and CIR as

fT=[ f0 f1 . . . f�max]�wHC (14)

and let

imax=arg max
0�i��max

| fi | (15)

The equalizer’s decision delay is in fact �= imax. In
simulation, the quality of equalization can be judged
using the maximum distortion (MD)measure defined by

MD(w)�
(�max∑
i=0

| fi |−| fimax |
)/

| fimax | (16)

Alternatively, the equalization performance can be
assessed using the MSE criterion given by

JMSE(w) � �2s

(
(1−wHc�−wTc∗

�)

+wH
(
CCH + 2�2n

�2s
INe

)
w

)
(17)

Ultimately, the SER can be simulated to assess the
equalization performance.

3. THE PROPOSED SEMI-BLIND ALGORITHM

Assume that the number of available training symbols
is K . We denote the available training data as

XK =[x(1)x(2) . . .x(K )] (18)

and

s̄K =[s(1−�)s(2−�) . . .s(K −�)]T (19)

The LS estimate of the equalizer’s weight vector based
on the training data {XK , s̄K } is readily given as

w(0)=(XKXH
K )−1XK s̄∗K (20)

In order to maintain throughput, the number of training
pilots should be as small as possible. To ensure that
XKXH

K has a full rank, we will choose K slightly larger
than Ne, the dimension of x(k). Because the training
data with K ≈Ne are generally insufficient, the initial
LS weight vector (20) may not be sufficiently accu-
rate to open the eye. Therefore, decision direct adapta-
tion is generally unsafe. We propose a gradient-Newton
CMA+SDD blind scheme to adapt the equalizer (11)
with w(0) of (20) as the initial weight vector, which is
capable of converging fast and accurately to the MMSE
equalization solution.

A gradient-Newton algorithm [19] uses the inverse
of the autocorrelation matrix of x(k) to modify the
stochastic gradient. In reality, the autocorrelation matrix
of x(k) is unknown, and an exponentially weighted
time averaging is used to approximate it. As in the
training-based RLS algorithm, this inverse matrix can
be updated recursively according to [22]

P(k)=�−1P(k−1)−�−1g(k)xH (k)P(k−1) (21)
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Figure 1. Local decision region partition for soft
decision-directed adaptation with 64-QAM constellation.
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Figure 2. SER comparison of the three equalizers (the block
LS equalizer with training symbols K =24 and 250, the
semi-blind gradient-Newton CMA+SDD equalizer, and the

MMSE equalizer) for the 5-tap 16-QAM example.

with

g(k)= �−1P(k−1)x(k)

1+�−1xH (k)P(k−1)x(k)
(22)

where ��1 is the forgetting factor [22]. For stationary
channels, �=1 is appropriate. The initial P(0) can be

Table I. Algorithmic parameters of the gradient-Newton
and stochastic-gradient CMA+SDD algorithms for the

5-tap 16-QAM example given SNR=21dB.

Algorithm �CMA �SDD �

Gradient-Newton 0.006 0.99 0.2
Stochastic-gradient 6×10−6 10−3 0.2

set to P(0)=(XKXH
K )−1. Let the equalizer’s weight

vector be split into two parts, yieldingw=wc+wd . The
initial wc and wd are simply set to wc(0)=wd(0)=
0.5w(0). Denote the equalizer’s output at sample k as
y(k)=wH (k)x(k).
The weight vector wc is updated using the gradient-

Newton CMA according to

wc(k+1)=wc(k)+�CMAP(k)ε∗(k)x(k) (23)

with

ε(k)= y(k)(�−|y(k)|2) (24)

where �=E[|s(k)|4]/E[|s(k)|2] and �CMA is the step
size of the CMA. It is obvious that this gradient-
Newton CMA algorithm reduces to the conventional
stochastic-gradient CMA [1, 2] if P(k) is replaced with
an identity matrix. Note that for semi-blind block-based
CMA equalization of CM signals, an optimal step size
can be found at the expense of considerably increased
complexity [23] but this optimal step size is inappli-
cable here for the recursive gradient-Newton CMA.
In practice, the step size �CMA in (23) can be chosen
empirically to achieve a best performance in terms
of convergence speed and steady-state misadjustment.
Note that the step size of the gradient-Newton CMA
algorithm can be set to a value much larger than the
step size of the stochastic-gradient CMA counterpart.

The weight vector wd is updated using the gradient-
Newton SDD scheme, which is now described. The
complex phasor plane is divided into the M/4 rect-
angular regions, and each region Si,l contains four
symbol points as defined in the following:

Si,l ={sr,m, r =2i−1,2i,m=2l−1,2l} (25)

where 1�i, l�
√
M/2. If the equalizer output y(k)∈

Si,l , a local approximation of the marginal probability
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Figure 3. Convergence performance of the stochastic-gradient and gradient-Newton CMA+SDD algorithms as well as the
training-based RLS algorithm, in terms of the MSE and MD measures averaged over 10 runs, for the 5-tap 16-QAM example

given SNR=21dB.
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Figure 4. SER comparison of the three equalizers (the block
LS equalizer with training symbols K =24 and 250, the
semi-blind gradient-Newton CMA+SDD equalizer, and the

MMSE equalizer) for the 5-tap 64-QAM example.

density function (PDF) of y(k) is given by [15, 16]

p̂(w, y(k))≈
2i∑

r=2i−1

2l∑
m=2l−1

1

8��
e−(|y(k)−sr,m |2)/2� (26)

where � is the cluster width associated with the
four clusters of each Si,l . An illustration of deci-
sion region partition is given in Figure 1. The
stochastic-gradient SDD algorithm [15, 16] is designed
to maximize the log of the local marginal PDF
criterion E[JLMAP(w,k)], where JLMAP(w,k)=
� log( p̂(w, y(k))), via a stochastic gradient optimiza-
tion. By contrast, the proposed gradient-Newton SDD
algorithm uses P(k) to modify the stochastic gradient
and updates wd according to

wd(k+1)=wd(k)+�SDDP(k)
�JLMAP(w(k),k)

�wd
(27)

where �SDD is the step size of the SDD, and

�JLMAP(w,k)

�wd
= 1

ZN

2i∑
r=2i−1

2l∑
m=2l−1

e−(|y(k)−sr,m |2)/2�

×(sr,m− y(k))∗x(k) (28)

with the normalization factor

ZN =
2i∑

r=2i−1

2l∑
m=2l−1

e−(|y(k)−sr,m |2)/2� (29)

This gradient-Newton SDD algorithm reduces to the
stochastic-gradient SDD algorithm of [15, 16] by
replacing P(k) with an identity matrix.

Soft decision nature can be seen explicitly in (28).
Rather than committing to a single hard decision
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Figure 5. Convergence performance of the stochastic-gradient and gradient-Newton CMA+SDD algorithms as well as the
training-based RLS algorithm, in terms of the MSE and MD measures averaged over 10 runs, for the 5-tap 64-QAM example

given SNR=27dB.

Table II. Algorithmic parameters of the gradient-Newton and stochastic-gradient CMA+SDD
algorithms for the 5-tap 64-QAM example given SNR=27dB.

Algorithm �CMA �SDD �

Gradient-Newton 5×10−4 0.99 0.1
Stochastic-gradient 10−7 10−4 0.1

Q[y(k)]= ŝ(k−�), where Q[•] denotes the quantization
operator, as the hard DD scheme would, alternative
decisions are also considered in the local region Si,l
that includes Q[y(k)], and each tentative decision
is weighted by an exponential term e{•}, which is
a function of the distance between the equalizer’s
soft output y(k) and the tentative decision sr,m . This
soft decision nature substantially reduces the risk
of error propagation and achieves faster and more
accurate convergence, compared with the hard DD
scheme [15, 16]. The choice of the cluster width �,
defined in the context of the local PDF (26), should
ensure a proper separation of the four clusters of Si,l .
As the minimum distance between the two neigh-
bouring constellation points is 2, � is typically chosen
to be less than 1. If the value of � is too large, a
desired degree of separation may not be achieved. On
the other hand, if too small a � value is used, the
algorithm attempts to impose an overly tight control
on the size of clusters and hence may fail to achieve
its goal. Apart from these two extreme situations, the

algorithm is insensitive to the value of � employed
and an appropriate � can easily be chosen from a large
range of values. More specifically, when the equaliza-
tion objective is accomplished, y(k)≈s(k−�)+e(k),
where e(k) is Gaussian distributed with zero mean.
Therefore, the value of � is related to the variance of
e(k), which is 2�2nw

Hw. Thus, for high SNRcases, small
� may be desired, while for low SNR cases, large �
may be preferred. The choice of �SDD for the gradient-
Newton SDD algorithm is particularly simple, as it can
be set to 1.0 or a value smaller than but close to 1.0.§

It is also clear that the proposed gradient-Newton
CMA+SDD algorithm has a computational complexity
of O(N 2

e ) operations per update, similar to that
of the training-based RLS algorithm, while the

§Because the SDD adaptation is more like the true training-based
adaptation, the step size for the gradient-Newton SDD algorithm
can be set to �SDD=1.0 just as in the case of the training-based
RLS algorithm. But there is no reason against using a more
cautious value, say, �SDD=0.99.
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Figure 6. SER comparison of the three equalizers (the block
LS equalizer with training symbols K =24 and 250, the
semi-blind gradient-Newton CMA+SDD equalizer, and the

MMSE equalizer) for the 5-tap 256-QAM example.

stochastic-gradient CMA+SDD algorithm has a
simpler complexity of O(Ne) operations per update,
similar to that of the training-based LMS algorithm.

4. SIMULATION STUDY

A simulated QAM communication system was consid-
ered, whose CIR was defined by

cT = [(−0.2+ j0.3) (−0.5+ j0.4) (0.7− j0.6)

(0.4+ j0.3) (0.2+ j0.1)] (30)

This CIR had a length of Nc=5. The equalizer order
was set to Ne=23, and the optimal decision delay
was found empirically to be �=17. The proposed
semi-blind gradient-Newton CMA+SDD algorithm
was compared with the semi-blind stochastic-gradient
CMA+SDD algorithm, using the block training-based
LS estimator (20) and the training-based RLS algorithm
as the benchmarks. Since the equalizer length was

Ne=23, the initial training data length was chosen as
K =24 for the two semi-blind adaptive equalizers. The
step sizes �CMA and �SDD as well as the cluster width
� for the stochastic-gradient CMA+SDD algorithm
were chosen empirically to ensure a best perfor-
mance in terms of convergence speed and steady-state
misadjustment. For the gradient-Newton CMA+SDD
algorithm, the step size �CMA and the cluster width
� were chosen similarly, while the set size �SDD was
simply set to the value of 0.99.

16-QAM Example. The modulation scheme was
16-QAM, and the SER performance of the optimal
MMSE equalizer is depicted in Figure 2. The block
training-based LS equalizer was next tested. Given
the training data {XK , s̄K }, the LS estimate of the
equalizer weight vector was provided by (20), and
the SER performance of the block training-based LS
equalizer was also depicted in Figure 2, given K =24
and 250, respectively. It can be seen that K =24 was
insufficient for the training-based equalizer to achieve
an adequate SER performance and at least K =250
training symbols were required by the equalizer to
approximate the optimal MMSE equalization solution.

The convergence performance of the proposed semi-
blind gradient-Newton CMA+SDD algorithm was
investigated, using the semi-blind stochastic-gradient
CMA+SDD algorithm and the training-based RLS
algorithm as the two benchmarks. Given SNR=21dB,
appropriate algorithmic parameters found empirically
for the two blind algorithms are given in Table I. The
initial weight vector was obtained as the block LS
estimate (20) with K =24 for all the three adaptive
equalizers, and Figure 3 shows the learning curves of
the three adaptive algorithms in terms of the MSE and
MD measures, respectively, where the performance
measures were averaged over 10 different random
runs. It can be seen from Figure 3 that the conver-
gence speed of the gradient-Newton CMA+SDD
algorithm, which was observed to be close to the
training-based RLS algorithm, was much faster than
that of the stochastic-gradient CMA+SDD algorithm.
The SER of the proposed semi-blind gradient-Newton
CMA+SDD equalizer, illustrated in Figure 2, closely
matched that of the optimal MMSE equalizer.

64-QAM Example. For the 64-QAM signalling, the
SER performance of the optimal MMSE equalizer and

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2010; 24:467–476
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Figure 7. Convergence performance of the stochastic-gradient and gradient-Newton CMA+SDD algorithms as well as the
training-based RLS algorithm, in terms of the MSE and MD measures averaged over 10 runs, for the 5-tap 256-QAM

example given SNR=36dB.

Table III. Algorithmic parameters of the gradient-Newton and stochastic-gradient CMA+SDD
algorithms for the 5-tap 256-QAM example given SNR=36dB.

Algorithm �CMA �SDD �

Gradient-Newton 2×10−5 0.99 0.05
Stochastic-gradient 10−8 10−5 0.05

the block training-based LS equalizer given K =24
and K =250, respectively, are compared in Figure 4.
Again it is seen that K =24 was insufficient for the
training-based equalizer to achieve an adequate SER
performance and at least K =250 training symbols
were required by the training-based equalizer to
approximate the optimal MMSE equalization solu-
tion. The convergence performance of the semi-blind
gradient-Newton and stochastic-gradient CMA+SDD
algorithms as well as the training-based RLS algo-
rithm are shown in Figure 5, given SNR=27dB and
averaged over 10 runs, where the initial weight vector
was obtained as the LS estimate (20) with K =24.
The appropriate algorithmic parameters for the two
semi-blind algorithms were found empirically and they
are listed in Table II. It can be seen from Figure 5
that the convergence speed of the gradient-Newton
CMA+SDD algorithm was very close to that of
the training-based RLS algorithm, and it was much
faster than that of the stochastic-gradient CMA+SDD

algorithm. Accurate convergence of the proposed
semi-blind gradient-Newton CMA+SDD equalizer to
the optimal MMSE solution was also confirmed by its
SER performance depicted Figure 4.

256-QAM Example. For this 256-QAM example,
the SER performance of the optimal MMSE equal-
izer and the block training-based LS equalizer given
K =24 and K =250, respectively, as well as the
semi-blind gradient-Newton CMA+SDD equalizer are
compared in Figure 6. The initial weight vector of the
semi-blind gradient-Newton CMA+SDD algorithm
was set to the LS estimate (20) with K =24. It can
be seen from Figure 6 that the proposed semi-blind
gradient-Newton CMA+SDD equalizer converged
to the optimal MMSE solution accurately. Figure 7
depicts the learning curves in terms of the MSE and
MD measures, respectively, for the training-based
RLS algorithm, the semi-blind stochastic-gradient
and gradient-Newton CMA+SDD algorithms given
SNR=36dB, where the performance measures were
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averaged over 10 different random runs. The appro-
priate algorithmic parameters for the two semi-blind
algorithms found empirically are listed in Table III.

5. CONCLUSIONS

Fast semi-blind adaptive equalization has been consid-
ered for communication systems that employ high-
throughput QAM signalling. The scheme is semi-blind
as it employs a minimum number of training symbols,
approximately equal to the dimension of the equalizer,
to provide a rough initial LS estimate of the equalizer’s
weight vector. This enables the utilization of a novel
gradient-Newton concurrent CMA and SDD scheme to
adapt the equalizer. The proposed semi-blind adaptive
algorithm is capable of converging fast and accurately
to the optimal MMSE equalization solution. Specifi-
cally, it has a computational complexity similar to that
of the training-based RLS algorithm and the simula-
tion results obtained have demonstrated that the conver-
gence speed of this semi-blind adaptive algorithm is
very close to that of the training-based RLS algorithm.
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