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Abstract— An orthogonal forward selection (OFS) algorithm
based on leave-one-out (LOO) misclassification rate is proposed
for the construction of radial basis function (RBF) classifiers with
tunable units. Each stage of the construction process determines
a RBF unit, namely its centre vector and diagonal covariance
matrix as well as weight, by minimising the LOO statistics. This
OFS-LOO algorithm is computationally efficient and it is capable
of constructing parsimonious RBF classifiers that generalise well.
Moreover, the proposed algorithm is fully automatic and the
user does not need to specify a termination criterion for the
construction process. The effectiveness of the proposed RBF
classifier construction procedure is demonstrated using three
classification benchmark examples.

I. INTRODUCTION

A basic principle in nonlinear data modelling is that of
ensuring the smallest possible model which explains the train-
ing data. This parsimonious principle is particularly relevant
in the construction of radial basis function (RBF) classifiers.
The key questions in constructing a RBF classifier are how
many RBF units to use, the positions (centres) and shapes
(variances or covariance matrices) of the RBF nodes. The
objective is to obtain sparse RBF classifiers that generalise
well, i.e. achieving small misclassification rate for data un-
seen in training. A popular approach for constructing RBF
classifiers is to consider the training input data points as the
RBF centres and to employ a common variance for every
RBF unit. A sparse representation is then sought using for
example the support vector machine (SVM) and other sparse
kernel methods [1], [2], [3], [4], [5], [6], or the orthogonal
forward selection (OFS) [7], [8]. The SVM is based on
the structural risk minimisation principle and approximately
minimises an upper bound on the generalisation error [1]. The
OFS procedure of [7] incrementally maximises the Fisher ratio
of class separability measure, while the OFS construction algo-
rithm of [8] incrementally minimises the leave-one-out (LOO)
misclassification rate, which is a measure of the classifier’s
generalisation capability [9].

In the above-mentioned methods, the value of the common
RBF variance used has an important influence on the sparsity
level of the classifier and its generalisation capability. Since the
construction algorithms themselves do not provide this RBF

variance, it has to be learnt typically via cross validation [9],
[10]. A RBF classifier will have better modelling capability if
its centres are tunable and each node has its own covariance
matrix [11]. Thus, all the parameters of the RBF classifier, the
RBF centres, variances or covariance matrices and weights,
can alternatively be learnt together via nonlinear optimisation
(e.g. [12]). The optimisation process associated with this non-
linear learning approach, however, is highly complex and non-
convex, and the evolutionary optimisation has been suggested
to solve this type of nonlinear learning problems [13], at the
cost of an increased computational complexity. The work [14]
has compared several sophisticated state-of-the-art nonlinear
optimisation algorithm for constructing RBF classifiers. Note
that in this completed nonlinear optimisation approach, the
number of RBF units to use has to be determined typically
via (costly) cross validation.

We present a construction method for producing sparse
RBF classifiers with tunable units. Unlike the “linear-in-the-
parameters” kernel approach, RBF centres are not restricted
to be the training input data and each RBF unit has an
individually tuned diagonal covariance matrix. On the other
hand, we do not attempt to optimise all the parameters of
the RBF classifiers together, as the nonlinear optimisation
approach does. Rather, we construct RBF units one by one
in the OFS incremental construction process. At Each stage
of the construction process, a RBF unit is tuned by de-
termining its RBF centre and diagonal covariance matrix
through minimising the LOO misclassification rate criterion.
Since this optimisation task is non-convex, a guided global
search algorithm, referred to as the repeated weighted boosting
search (RWBS) [15], is adopted to perform this optimisation.
Due to the orthogonal decomposition, the computation of the
LOO misclassification rate is very efficient and this ensures a
fast construction process [8], [16]. Moreover, the number of
RBF units to use is automatically determined without costly
additional cross validation, and the user does not need to
specify a termination criterion for the construction process.
Experimental results involving three benchmark classification
examples are included to illustrated the effectiveness of the
proposed OFS-LOO construction algorithm for the RBF clas-
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sifier with tunable units.

II. CONSTRUCTION OF THE RBF CLASSIFIER WITH
TUNABLE UNITS

Consider the two-class classification problem with a given
training data set {(xk, yk)}N

k=1, where xk is an m-dimensional
pattern vector and yk ∈ {±1} is the class label for xk. The
data set is used to construct the RBF classifier of the form

ỹk = sgn(ŷk) with ŷk = f
(M)
RBF(xk) =

M∑

i=1

wigi(xk), (1)

where ỹk is the estimated class label for xk, f
(M)
RBF(•) denotes

the RBF classifier with M RBF units and

sgn(y) =

{ −1, y ≤ 0,

+1, y > 0.
(2)

Let us define the modelling residual as ek = yk − ŷk. Then
the classification model can be written in the regression form

yk = ŷk + ek =
M∑

i=1

wigi(xk) + ek = gT (k)w + ek, (3)

where w = [w1 w2 · · ·wM ]T is the RBF weight vector and
g(k) = [g1(xk) g2(xk) · · · gM (xk)]T is the “regressor” vector.
We will consider the general RBF unit of the form

gi(x) = K

(√
(x− µi)

T Σ−1
i (x− µi)

)
, (4)

where µi is the centre vector of the ith RBF unit, the diagonal
covariance matrix Σi = diag{σ2

i,1, · · · , σ2
i,m}, and K(•) is

the basis function. By defining y = [y1 y2 · · · yN ]T , e =
[e1 e2 · · · eN ]T , and G = [g1 g2 · · ·gM ] with

gk = [gk(x1) gk(x2) · · · gk(xN )]T , 1 ≤ k ≤ M, (5)

the “regression” model (3) over the training data set can be
written in the matrix form

y = Gw + e. (6)

Note that gk denotes the kth column of G while gT (k) is the
kth row of G.

Let an orthogonal decomposition of the regression matrix
G be G = PA, where A is the upper triangular matrix with
unity diagonal elements

A =




1 α1,2 · · · α1,M

0 1
. . .

...
...

. . . . . . αM−1,M

0 · · · 0 1




(7)

and
P = [p1 p2 · · ·pM ] (8)

with the orthogonal columns that satisfy pT
i pj = 0, if i 6= j.

The regression model (6) can alternatively be expressed as

y = Pθ + e, (9)

where the weight vector θ = [θ1 θ2 · · · θM ]T in the orthogonal
model space satisfies the triangular system Aw = θ. Since
the space spanned by the original model bases gi(•), 1 ≤ i ≤
M , is identical to the space spanned by the orthogonal model
bases, the RBF model output is equivalently expressed by

ŷk = pT (k)θ, (10)

where pT (k) = [p1(k) p2(k) · · · pM (k)] is the kth row of P.
The goal of a classifier is to minimise the misclassification

or error rate. Define the signed decision variable

sk = sgn(yk)ŷk = ykŷk = ykf
(M)
RBF(xk). (11)

Then the misclassification rate over the data set {(xk, yk)}N
k=1

is evaluated as

Mr =
1
N

N∑

k=1

Id (sk) , (12)

where the indication function Id is defined by

Id (y) =

{
1, y ≤ 0,

0, y > 0.
(13)

The classifier’s generalisation capability however is usually
measured by the test error rate over data unseen in training.

A. Orthogonal forward selection based on the leave-one-out
misclassification rate

It is highly desirable to construct the RBF classifier (1)
by directly optimising the classifier’s generalisation capability.
Cross validation criteria are metrics that measures a model’s
generalisation capability. One commonly used version of cross
validation is the LOO cross validation [9], [10]. Let us denote
the n-unit RBF classifier, identified using the entire training
data set {(xk, yk)}N

k=1, as f
(n)
RBF(•). The kth modelling error

for this RBF classifier is given by

e
(n)
k = yk − f

(n)
RBF(xk) = yk − ŷ

(n)
k . (14)

Let f
(n,−k)
RBF (•) be the n-unit RBF classifier identified using

the data set {(xk, yk)}N
k=1 but with its kth data point being

removed. The “test” output of this n-unit RBF classifier at the
kth data point not used in training is computed by

ŷ
(n,−k)
k = f

(n,−k)
RBF (xk). (15)

The associated LOO signed decision variable is defined by

s
(n,−k)
k = ykŷ

(n,−k)
k (16)

and the LOO misclassification rate is computed by

Jn =
1
N

N∑

k=1

Id

(
s
(n,−k)
k

)
. (17)

This LOO misclassification rate is a measure of the classifier’s
generalisation capability.

The recent work [8] has shown that the LOO signed decision
variable s

(n,−k)
k can be calculated very fast owning to the or-

thogonal decomposition. Therefore, the LOO misclassification
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rate Jn can be computed efficiently. Firstly the LOO modelling
error e

(n,−k)
k = yk − ŷ

(n,−k)
k can be expressed as [10]

e
(n,−k)
k =

e
(n)
k

η
(n)
k

, (18)

where η
(n)
k is known as the LOO error weighting. Next it can

be shown that [16], [17]

e
(n)
k = yk −

n∑

i=1

θipi(k) = e
(n−1)
k − θnpn(k), (19)

and

η
(n)
k = 1−

n∑

i=1

p2
i (k)

pT
i pi + λ

= η
(n−1)
k − p2

n(k)
pT

npn + λ
, (20)

respectively, where λ ≥ 0 is a small regularisation parameter.
Thus the LOO modelling error is given by

yk − ŷ
(n,−k)
k =

yk − ŷ
(n)
k

1−∑n
i=1

p2
i
(k)

pT
i
pi+λ

. (21)

Multiplying both sides of (21) with yk and applying y2
k = 1

yields [8]

1− s
(n,−k)
k =

1− ykŷ
(n)
k

1−∑n
i=1

p2
i
(k)

pT
i
pi+λ

, (22)

that is,

s
(n,−k)
k =

∑n
i=1 yk θi pi(k)−∑n

i=1
p2

i (k)

pT
i
pi+λ

1−∑n
i=1

p2
i
(k)

pT
i
pi+λ

=
φ

(n)
k

η
(n)
k

. (23)

The recursive formula for the LOO error weighting η
(n)
k

is given in (20), while φ
(n)
k can be represented using the

following recursive formula

φ
(n)
k = φ

(n−1)
k + yk θn pn(k)− p2

n(k)
pT

npn + λ
. (24)

The proposed OFS-LOO algorithm constructs the RBF
units of the classifier one by one by minimising the LOO
misclassification rate Jn. Specifically, at the nth stage of the
construction procedure, the nth RBF unit is determined by
minimising Jn with respect to the RBF unit’s centre vector
µn and diagonal covariance matrix Σn

min
µn,Σn

Jn (µn,Σn) . (25)

The construction procedure is automatically terminated when

JM ≤ JM+1, (26)

yielding an M -term RBF classifier. Note that the LOO crite-
rion Jn is at least locally convex, and there exists an “optimal”
M such that: for n ≤ M Jn decreases as the model size n
increases while the condition (26) holds [16], [17].

B. Positioning and shaping a RBF unit
It can be seen that the task at the nth stage of the RBF

classifier construction is to position and shape the nth RBF
unit by solving the optimisation problem (25). Since this op-
timisation problem is non-convex, a gradient-based algorithm
may become trapped at a local minimum. Alternatively, global
optimisation methods, such as the genetic algorithm (GA) [18],
[19] and adaptive simulated annealing (ASA) [20], [21], may
be used to perform the optimisation task (25). We adopt a
simply yet efficient global search algorithm called the RWBS
[15] to determine µn and Σn. The motivation and analysis
of the RWBS algorithm as a general global optimiser are
detailed in [15]. A comparative study given in [15] shows that
the RWBS algorithm achieves a similar convergence speed as
the GA and ASA for several global optimisation applications.
The RWBS algorithm has additional advantages of requiring
minimum programming effort and having fewer algorithmic
parameters that require to tune, in comparison with the GA
and ASA. The procedure for determining the nth RBF unit
based on the RWBS algorithm is summarised in the following.

Let u be the vector that contains µn and Σn. Give the initial
conditions

φ
(0)
k = 0 and η

(0)
k = 1, 1 ≤ k ≤ N, and J0 = 1. (27)

Specify the population size PS , the number of generations in
the repeated search NG, and the accuracy for terminating the
weighted boosting search ξB .

Outer loop: generations For l = 1 : NG

Generation initialisation: Initialise the population by setting
u[l]

1 = u[l−1]
best and randomly generating rest of the population

members u[l]
i , 2 ≤ i ≤ PS , where u[l−1]

best denotes the solution
found in the previous generation. If l = 1, u[l]

1 is also randomly
chosen.

Weighted boosting search initialisation: Assign the initial
distribution weightings δi(0) = 1

PS
, 1 ≤ i ≤ PS , for the

population. Then
1) For 1 ≤ i ≤ PS , generate gi)

n from u[l]
i , the candidates

for the nth model column, and orthogonalise them:

α
i)
j,n =

pT
j gi)

n

pT
j pj

, 1 ≤ j < n, (28)

pi)
n = gi)

n −
n−1∑

j=1

α
i)
j,npj , (29)

θi)
n =

(
pi)

n

)T

y
(
pi)

n

)T

pi)
n + λ

. (30)

2) For 1 ≤ i ≤ PS , calculate the LOO cost function value
of each u[l]

i

φ
(n)
k (i) = φ

(n−1)
k +ykpi)

n (k)θi)
n−

(
p

i)
n (k)

)2

(
pi)

n

)T

pi)
n + λ

, (31)
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η
(n)
k (i) = η

(n−1)
k −

(
p

i)
n (k)

)2

(
pi)

n

)T

pi)
n + λ

, (32)

for 1 ≤ k ≤ N , and

J i)
n =

1
N

N∑

k=1

Id

(
φ

(n)
k (i)

η
(n)
k (i)

)
. (33)

where p
i)
n (k) is the kth element of pi)

n .

Inner loop: weighted boosting search Set t = 0; t = t + 1

Step 1: Boosting
1) Find

ibest = arg min
1≤i≤PS

J i)
n and iworst = arg max

1≤i≤PS

J i)
n .

Denote u[l]
best = u[l]

ibest
and u[l]

worst = u[l]
iworst

.
2) Normalise the cost function values

J̄ i)
n =

J
i)
n∑PS

j=1 J
j)
n

, 1 ≤ i ≤ PS .

3) Compute a weighting factor βt according to

ξt =
PS∑

i=1

δi(t− 1)J̄ i)
n , βt =

ξt

1− ξt
.

4) Update the distribution weightings for 1 ≤ i ≤ PS

δi(t) =

{
δi(t− 1)βJ̄i)

n
t , for βt ≤ 1,

δi(t− 1)β1−J̄i)
n

t , for βt > 1,

and normalise them

δi(t) =
δi(t)∑PS

j=1 δj(t)
, 1 ≤ i ≤ PS .

Step 2: Parameter updating
1) Construct the (PS + 1)th point using the formula

uPS+1 =
PS∑

i=1

δi(t)u
[l]
i .

2) Construct the (PS + 2)th point using the formula

uPS+2 = u[l]
best +

(
u[l]

best − uPS+1

)
.

3) Calculate gPS+1)
n and gPS+2)

n from uPS+1 and uPS+2,
orthogonalise these two candidate model columns (as in
(28) to (30)), and compute their corresponding LOO cost
function values J

i)
n , i = PS + 1, PS + 2 (as in (31) to

(33)). Then find

i∗ = arg min
i=PS+1,PS+2

J i)
n .

The pair (ui∗ , J
i∗)
n ) then replaces (u[l]

worst, J
iworst)
n ) in

the population

If ‖uPS+1 − uPS+2‖ < ξB , exit inner loop.

End of inner loop
The solution found in the lth generation is u = u[l]

best.

End of outer loop
This yields the solution u = u[NG]

best , i.e. µn and Σn of the
nth RBF unit, the nth model column gn, the orthogonalisation
coefficients αj,n, 1 ≤ j < n, the corresponding orthogonal
model column pn, and the weight θn, as well as φ

(n)
k and

η
(n)
k for 1 ≤ k ≤ N .

The motivations and analysis of the RWBS algorithm as
a global optimiser is detailed in [15]. To guarantee a global
optimal solution as well as to achieve a fast convergence, PS ,
NG and ξB need to be set carefully. The appropriate values
for these algorithmic parameters depend on the dimension
of u and how hard the objective function to be optimised,
and generally they have to be found empirically. The elitist
initialisation is very useful, as it keeps the information ob-
tained by the previous search generation, which otherwise
would be lost due to the randomly sampling initialisation.
In the inner loop optimisation, there is no need for every
members of the population to converge to a (local) minimum,
and it is sufficient to locate where the minimum lies. Thus ξB

can be set to a relatively large value. This makes the search
efficient, achieving convergence with a small number of the
cost function evaluations. A sufficiently large NG should be
used to ensure that the parameter space is sampled sufficiently.

It is worth emphasising that PS , NG and ξB are not the
learning hyperparameters of the proposed OFS-LOO algo-
rithm. Rather they are the optimisation algorithmic parameters,
which are similar in nature to the step size in a gradient-based
optimisation algorithm or the algorithmic parameters of the
particular quadratic optimiser chosen to solve the optimisation
task of the SVM learning algorithm. It is important to distin-
guish the algorithmic parameters of a particular optimiser used
to solve the optimisation task of a learning problem from the
possible learning hyperparameters that may be inherent in the
learning problem.

III. CLASSIFICATION RESULTS

Numerical experiments were performed to demonstrate the
modelling results of the proposed OFS-LOO algorithm for
construction RBF classifiers with tunable units, in comparison
to those of several benchmark classification algorithms as
published in [14]. Three two-class data sets, Breast Cancer,
Diabetes and Hhyroid, were experimented. These benchmark
data sets were originated in the UCI repository [22] and we
obtained the data sets from [23]. The information regarding
these benchmark data sets can be found in [23]. In our exper-
iments, the basis function K(•) was chosen to be Gaussian.
Seven benchmark RBF classifiers were studied in [14], and
the results given in [23] were reproduced in Table I to III, in
comparison with the results obtained by our proposed OFS-
LOO algorithm. It can be seen that our method produced the
best classification accuracy with the smallest RBF classifier
for all the three data sets.
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TABLE I
AVERAGE CLASSIFICATION TEST ERROR RATE IN % OVER THE 100

REALIZATIONS OF THE BREAST CANCER DATA SET. THE FIRST 7 RESULTS

WERE QUOTED FROM [23].

method test error rate model size
RBF-Network 27.64± 4.71 5

AdaBoost with RBF-Network 30.36± 4.73 5
LP-Reg-AdaBoost (-”-) 26.79± 6.08 5
QP-Reg-AdaBoost (-”-) 25.91± 4.61 5

AdaBoost-Reg (-”-) 26.51± 4.47 5
SVM with RBF-Kernel 26.04± 4.74 not available

Kernel Fisher Discriminant 24.77± 4.63 not available
Proposed OFS-LOO 24.49± 3.28 3.1± 1.2

TABLE II
AVERAGE CLASSIFICATION TEST ERROR RATE IN % OVER THE 100

REALIZATIONS OF THE DIABETIS DATA SET. THE FIRST 7 RESULTS WERE

QUOTED FROM [23].

method test error rate model size
RBF-Network 24.29± 1.88 15

AdaBoost with RBF-Network 26.47± 2.29 15
LP-Reg-AdaBoost (-”-) 24.11± 1.90 15
QP-Reg-AdaBoost (-”-) 25.39± 2.20 15

AdaBoost-Reg (-”-) 23.79± 1.80 15
SVM with RBF-Kernel 23.53± 1.73 not available

Kernel Fisher Discriminant 23.21± 1.63 not available
Proposed OFS-LOO 22.16± 1.47 4.0± 1.6

TABLE III
AVERAGE CLASSIFICATION TEST ERROR RATE IN % OVER THE 100

REALIZATIONS OF THE THYROID DATA SET. THE FIRST 7 RESULTS WERE

QUOTED FROM [23].

method test error rate model size
RBF-Network 4.52± 2.12 8

AdaBoost with RBF-Network 4.40± 2.18 8
LP-Reg-AdaBoost (-”-) 4.59± 2.22 8
QP-Reg-AdaBoost (-”-) 4.35± 2.18 8

AdaBoost-Reg (-”-) 4.55± 2.19 8
SVM with RBF-Kernel 4.80± 2.19 not available

Kernel Fisher Discriminant 4.20± 2.07 not available
Proposed OFS-LOO 3.21± 1.35 3.9± 0.8

IV. CONCLUSIONS

A novel construction algorithm has been proposed for RBF
classifiers with tunable units. Unlike most of the sparse RBF
modelling methods, the RBF centres are not restricted to the
training input data points and each RBF unit has an individu-
ally adjusted diagonal covariance matrix. On the other hand,
we do not attempt to optimise all the RBF classifier’s parame-
ters together using nonlinear optimisation. Rather we optimise
the RBF units one by one by minimising the LOO misclassi-
fication rate, which is a measure of the model generalisation
capability. The RBF units are selected in a computationally
efficient OFS procedure, and the orthogonal decomposition
ensures a fast updating of the LOO misclassification rate
criterion. Moreover, the RBF classifier construction is fully
automatic and the user does not need to specify any additional
termination criterion. Three classification benchmark examples

have been used in our simulation experiment, and the results
obtained have demonstrated that the proposed RBF classifier
construction algorithm compares favourably with several ex-
isting state-of-the-art classifier construction algorithms.
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