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Abstract— We propose a powerful symmetric kernel classifier
for nonlinear detection in challenging rank-deficient multiple-
antenna aided communication systems. By exploiting the in-
herent odd symmetry of the optimal Bayesian detector, the
proposed symmetric kernel classifier is capable of approaching
the optimal classification performance using noisy training data.
The classifier construction process is robust to the choice of the
kernel width and is computationally efficient. The proposed
solution is capable of providing a signal-to-noise ratio gain in
excess of 8 dB against the powerfull linear minimum bit error
rate benchmarker, when supporting five users with the aid of
three receive antennas.

I. I NTRODUCTION

Kernel-modelling techniques have found wide-ranging
applications in regression and classification [1]-[16]. The
standard kernel modelling method constitutes a black-box
approach that seeks a (usually sparse) model representation
extracted from the training data. Adopting black-box mod-
elling is appropriate, if noa priori information exists regard-
ing the underlying data generating mechanism. However, a
fundamental principle in practical data modelling is that if
there existsa priori information concerning the system to be
modelled it should be incorporated in the modelling process.
Many real-life phenomena exhibit inherent symmetry, but
these properties are hard to infer from data with the aid of
black-box-type kernel or radial basis function (RBF) models.
However, by imposing symmetry on the model’s structure,
exploiting the symmetry properties becomes easier and this
often leads to substantial improvements in the achievable
modelling performance. In regression-type applications,the
symmetric properties of the underlying system have been
exploited by imposing symmetry in both RBF networks and
least squares support vector machines (SVMs) [17],[18].

We consider nonlinear detection in multiple-antenna as-
sisted beamforming systems. Detection in communication
receivers in general can be viewed as a classification prob-
lem, and both RBF as well as other kernel models have
been applied to solve this nonlinear detection problem [19]-
[28]. A kernel classifier or detector attempts to realise or
approximate the underlying optimal Bayesian solution. Pre-
vious studies [19]-[28] have shown that a block-box kernel
detector typically requires more kernels than the number of
the channel states to approximate the Baysian detector, and
moreover there often exists a performance gap between the
kernel detector and the Baysian solution. This performance
degradation can be explained as follows. The Bayesian
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nonlinear detection solution has an inherent odd symmetry,
because the signal states corresponding to the different signal
classes are distributed symmetrically with respect to the
optimal decision boundary [29]. A black-box kernel classifier
or detector, however, has difficulty realising this symmetry.

The novelty of this contribution is that we propose a
symmetric kernel classifier for multiple-antenna aided com-
munication systems, which renders realisation of the sym-
metric Baysian detection solution easier. The orthogonal
forward selection (OFS) procedure [13],[16],[27],[28] can
readily be applied to construct a sparse representation forthis
symmetric kernel classifier based on various criteria, such
as the Fisher ratio of class separability measure (FRCSM)
[13],[27] and the leave-one-out misclassification rate (LOO-
MR) [16]. The OFS procedures based on the FRCSM and the
LOO-MR are computationally very efficient, in comparion
to other existing kernel construction methods. We adopt
the FRCSM, since it is computationally even simpler to
implement than the LOO-MR. It is interesting to see that,
even though we do not directly minimise the misclassification
rate, the sparse symmetric kernel classifier constructed by
incrementally maximising the FRCSM is capable of ap-
proaching the minimum misclassification rate.

The advantage of the proposed symmetric kernel classifier
is demonstrated in challenging detection scenarios, when
the number of users supported is almost twice the number
of antenna elements, while conventional techniques cannot
support more users than the number of antenna elements
[30],[31]. Although we apply the proposed symmetric kernel
classifier in the context of multiple-antenna aided beamform-
ing systems, it is equally applicable to other classification
problems with similar symmetric properties. To the best of
our knowledge, this is the first time that the symmetry is
explicitly exploited in kernel classifier construction.

II. B EAMFORMING RECEIVER

Consider a coherent communication system that supports
S users, where each user transmits using the same carrier
frequency ofω = 2πf . For such a system, user separation
can be achieved in the angular domain [30],[31] if the
receiver is equipped with a linear antenna array consisting
of L > 1 uniformly spaced elements. Assume that the
channel is non-dispersive which does not induce intersymbol
interference. Then the symbol-rate complex-valued received
signal samples can be expressed as

xl(k) =

S
∑

i=1

Aibi(k)ejωtl(θi) + nl(k) = x̄l(k) + nl(k), (1)
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for 1 ≤ l ≤ L, where tl(θi) is the relative time delay at
array elementl for source i, with θi being the direction
(angle) of arrival for sourcei, nl(k) is the complex-valued
Gaussian white noise withE[|nl(k)|2] = 2σ2

n, Ai is the
complex-valued non-dispersive channel coefficient of user
i, and bi(k) is the k-th symbol of useri, which assumes
values from the binary phase shift keying (BPSK) symbol
set, i.e. bi(k) ∈ {±1}. Source 1 is assumed to be the
desired user and the rest of the sources are interfering users.
The desired user’s signal-to-noise ratio (SNR) is given by
SNR= |A1|

2σ2
b /2σ2

n, whereσ2
b = 1 is the BPSK symbol

energy, and the desired signal-to-interfereri ratio (SIR) is
defined by SIRi = |A1|

2/|Ai|
2, for 2 ≤ i ≤ S. The

received signal vectorx(k) = [x1(k) x2(k) · · ·xL(k)]T can
be expressed as

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (2)

wheren(k) = [n1(k) n2(k) · · ·nL(k)]T , the system matrix
is given by P = [A1s1 A2s2 · · ·ASsS ] and the steering
vector for sourcei is si = [ejωt1(θi) ejωt2(θi) · · · ejωtL(θi)]T ,
while the transmitted BPSK symbol vector isb(k) =
[b1(k) b2(k) · · · bS(k)]T .

Classically, a linear beamforming receiver is adopted to
detect the desired user signal [32],[33]. The output of the
linear beamformer is defined by

yLin(k) = w
H
x(k) (3)

and the associated decision is given by

b̂1(k) = sgn(ℜ[yLin(k)])

=

{

+1, ℜ[yLin(k)] ≥ 0,
−1, ℜ[yLin(k)] < 0,

(4)

wherew = [w1 w2 · · ·wL]T denotes the linear beamformer’s
weight vector andℜ[•] the real part. Traditionally, the weight
vectorw is set to the minimum mean square error (L-MMSE)
solution [32],[33]. The L-MMSE solution is based on the
following consideration. An antenna array ofL elements
can placeL − 1 nulls. Thus the system can support upto
S = L users. If the number of usersS is larger than
the number of array elementsL, the system is referred to
as rank-deficient. The state-of-the-art design for the linear
beamformer (3) in fact is the the (linear) minimum bit
error rate (L-MBER) solution [34], which directly minimises
the error probability or bit error rate (BER) of the linear
beamformer (3). The L-MBER beamforming outperforms
the L-MMSE one significantly, particularly for rank-deficient
systems. The L-MBER design is optimal for thelinear
beamforming. The true optimal solution for the multiple
antenna aided beamforming detector, however, isnonlinear
[27],[28].

Let us denote theNb = 2S legitimate combinations of
b(k) as bq, 1 ≤ q ≤ Nb, and denote the first element of
bq, corresponding to the desired user, asbq,1. The noiseless
channel output̄x(k) only takes values from the signal state

setX
△
= {x̄q = Pbq, 1 ≤ q ≤ Nb}, which can be divided

into two subsets conditioned on the value ofb1(k) as follows

X (±) △
= {x̄i ∈ X , 1 ≤ i ≤ Nsb : b1(k) = ±1}, (5)

where the size of the setsX (+) andX (−) is Nsb = Nb/2 =
2S−1. Denote the conditional probabilities of receivingx(k)
given b1(k) = ±1 asp±(x(k)) = p(x(k)|b1(k) = ±1). Ac-
cording to Bayes decision theory [35], the optimal detection
strategy should be

b̂1(k) =

{

+1, if p+(x(k)) ≥ p−(x(k)),
−1, if p+(x(k)) < p−(x(k)).

(6)

By introducing the real-valued Bayesian decision variable

yBay(k) = fBay(x(k))
△
=

1

2
p+(x(k)) −

1

2
p−(x(k)), (7)

the optimal Bayesian detection rule (6) is equivalent to
b̂1(k) = sgn(yBay(k)). The decision variable (7) of the
optimal Bayesian detector is readily expressed as [27],[28]

yBay(k) =

Nb
∑

q=1

sgn(bq,1)βqe
−

‖x(k)−x̄q‖2

2σ2
n (8)

whereβq denotes the a priori probability of̄xq. Since in our
case, all thēxq are equiprobable, we haveβq = β > 0.

It can readily be shown that the two subsetsX (+) and
X (−) are symmetric with respect to each other [29]. That is,
for any signal statēx(+)

i ∈ X (+) there exists a signal state
x̄

(−)
i ∈ X (−) so thatx̄(−)

i = −x̄
(+)
i . Given this symmetry,

the optimal Bayesian detector (8) can be rewritten as

yBay(k) =

Nsb
∑

q=1

βq

(

e
−

‖x(k)−x̄
(+)
q ‖2

2σ2
n − e

−
‖x(k)+x̄

(+)
q ‖2

2σ2
n

)

, (9)

wherex̄
(+)
q ∈ X (+). The Bayesian detector has odd symme-

try, asfBay(−x(k)) = −fBay(x(k)).
If the system matrixP is known, the signal state subset

X (+) can be computed and the Bayesian detection solution
is specified. For the multiple-antenna aided beamformer,
however, the receiver only has access to the training data
DK = {x(k), b1(k)}K

k=1, whereK is the number of training
symbols and{b1(k)} are the desired user’s data. But the
receiver does not have access to the interfering users’ data
{bi(k)}, i 6= 1. Thus, estimating the system matrixP is
a challenging task. In our previous work [27],[28], standard
kernel-based classifiers or detectors were constructed directly
using the noisy training data setDK to approximate the opti-
mal Bayesian solution. It is clear that the inherent symmetry
of the Bayesian detector in (9) is hard to learn by a black-
box kernel classifier. We propose a novel symmetric kernel
classifier which renders realisation of the symmetric Baysian
detection solution easier.

III. T HE SYMMETRIC KERNEL CLASSIFIER

The problem is to train a two-class kernel classifier
yKer(x) : CL → {1,−1} based on a training data setDK =
{x(k), d(k)}K

k=1, whered(k) ∈ {1,−1} denotes the class
type for each complex-valued data samplex(k) ∈ CL. We



adopt the kernel classifier of the form̂d(k) = sgn(yKer(k))
with

yKer(k) = fKer(x(k))
△
=

M
∑

i=1

θiφi(x(k)), (10)

where d̂(k) is the estimated class label forx(k), φi(•) de-
notes the classifier’s kernels,θi are the classifier’s coefficients
and M is the number of kernels. We propose to adopt the
following symmetric kernel

φi(x)
△
= ϕ(x; ci, ρ

2) − ϕ(x;−ci, ρ
2), (11)

where ci is the kernel centre,ρ2 the kernel variance, and
ϕ(•) the classic kernel function. In this study we adopt the
Gaussian kernel function of

ϕ(x; ci, ρ
2) = e

−
‖x−ci‖

2

2ρ2 . (12)

Other kernel functions can also be used here. It is worth
emphasising that, although we derive the symmetric kernel
formulation directly through the observation of the under-
lying symmetric Bayesian detection solution, the proposed
symmetric kernel detector can also be derived analytically
by imposing the odd symmetry constraint on the standard
kernel formulation, just as in the regression case [18].

Because the symmetric kernel formulation (10) has the
same form to the standard kernel formulation, most of
the existing sparse kernel techniques can be applied. Our
previous experience with standard sparse kernel modelling
suggests that the OFS procedure based on the FRCSM
[27],[28] compares favourably with many other existing
sparse kernel methods, such as the SVM techniques, in terms
of efficiency of the construction process and the sparsity of
the constructed model. For practical purpose, it is critical
to derive a kernel detector as sparse as possible, because
the detection complexity scales with the size of the kernel
classifier. We apply the OFS procedure based on the FRCSM
to construct a sparse symmetric kernel classifier using the
training data setDK . Note that the objective of training a
classifier is to achieve maximum classification discriminative
power, and Fisher ratio is a measure of discriminative power
or class separability [35].

Consider every training data pointx(i) as a candidate
kernel centre. Hence we haveM = K in the kernel model of
(10) andci = x(i) for 1 ≤ i ≤ K, and the kernel variance
is set toρ2. Let us now defineε(i) = d(i) − yKer(i) as the
modelling residual sequence. Then the model (10) defined
over the training data setDK can be written in matrix form
as

d = Φθ + ε (13)

where we haved = [d(1) d(2) · · · d(K)]T , ε =
[ε(1) ε(2) · · · ε(K)]T , θ = [θ1 θ2 · · · θM ]T , and

Φ = [φ1 φ2 · · ·φM ] ∈ RK×M (14)

is the regression matrix with the column vectorsφi =
[φi(x(1)) φi(x(2)) · · · φi(x(K))]T , 1 ≤ i ≤ M . Let an

orthogonal decomposition ofΦ beΦ = ΩA, where we have

A =













1 α1,2 · · · α1,M

0 1
. . .

...
...

. . .
. . . αM−1,M

0 · · · 0 1













(15)

and

Ω = [ω1 ω2 · · ·ωM ]

=











ω1,1 ω1,2 · · · ω1,M

ω2,1 ω2,2 · · · ω2,M

...
...

...
...

ωK,1 ωK,2 · · · ωK,M











(16)

with orthogonal columns that satisfyωT
i ωl = 0, if i 6= l.

The model (13) can alternatively be expressed as

d = Ωγ + ε, (17)

whereγ = [γ1 γ2 · · · γM ]T = Aθ is the weight vector in
the orthogonal space defined byΩ.

A sparseMspa-term classifier can be selected by incremen-
tally maximising the FRCSM using the OFS procedure, as
is in [13],[27],[28]. Define the two class setsX± = {x(k) :
d(k) = ±1}, and let the number of points inX± be K±,
respectively, withK+ + K− = K. The means and variances
of the training samples belonging to classX+ and classX−

in the direction of the basisωl are given by

m+,l =
1

K+

K
∑

k=1

δ(d(k) − 1)ωk,l, (18)

σ2
+,l =

1

K+

K
∑

k=1

δ(d(k) − 1) (ωk,l − m+,l)
2
, (19)

and

m−,l =
1

K−

K
∑

k=1

δ(d(k) + 1)ωk,l, (20)

σ2
−,l =

1

K−

K
∑

k=1

δ(d(k) + 1) (ωk,l − m−,l)
2
, (21)

respectively, whereδ(x) = 1 if x = 0 and δ(x) = 0
if x 6= 0. The Fisher ratio is defined as the ratio of the
interclass difference and the intraclass spread encountered in
the direction ofωl, which is given by [35]

Fl =
(m+,l − m−,l)

2

σ2
+,l + σ2

−,l

. (22)

Based on this FRCSM, significant kernel terms can be
selected with the aid of an OFS procedure. At thel-th
stage, a candidate term is chosen as thel-th kernel term in
the selected model, if it produces the largestFl among the
M − l + 1 candidate termsωi. The procedure is terminated
with a sparseMspa-term model, when we have

FMspa

∑Mspa

l=1 Fl

< ξ, (23)



where the thresholdξ determines the sparsity level of the
model selected. The appropriate value forξ depends on
the application concerned, and it must be determined em-
pirically. The least squares solution for the corresponding
sparse model weight vectorθMspa = [θ1 θ2 · · · θMspa ]

T is
readily available, given the least squares solution ofγMspa

=

[γ1 γ2 · · · γMspa ]
T . The detailed construction algorithm based

on the Gram-Schmidt orthogonalisation [9] is summarised
below.
OFS based on the FRCSM:

1) At the lth step wherel ≥ 1, for 1 ≤ q ≤ M , q 6=
q1, · · · , q 6= ql−1, compute

α
(q)
i,l =

{

ωT
i φ

q

ωT
i
ωi

, 1 ≤ i < l,

1, i = l,

ω
(q)
l =

{

φq, l = 1,

φq −
∑l−1

i=1 α
(q)
i,l ωi, l > 1,

m
(q)
+,l =

1

K+

K
∑

k=1

δ(d(k) − 1)ω
(q)
k,l ,

(

σ
(q)
+,l

)2

=
1

K+

K
∑

k=1

δ(d(k) − 1)
(

ω
(q)
k,l − m

(q)
+,l

)2

,

m
(q)
−,l =

1

K−

K
∑

k=1

δ(d(k) + 1)ω
(q)
k,l ,

(

σ
(q)
−,l

)2

=
1

K−

K
∑

k=1

δ(d(k) + 1)
(

ω
(q)
k,l − m

(q)
−,l

)2

,

F
(q)
l =

(

m
(q)
+,l − m

(q)
−,l

)2

(

σ
(q)
+,l

)2

+
(

σ
(q)
−,l

)2 .

2) Find

ql = arg[max{F
(q)
l , l ≤ q ≤ M, q 6= q1, · · · , q 6= ql−1}],

and selectFl = F
(ql)
l , αi,l = α

(ql)
i,l for 1 ≤ i ≤ l and

ωl = ω
(ql)
l =

{

φql
, l = 1,

φql
−
∑l−1

i=1 αi,lωi, l > 1.

3) The procedure is monitored and terminated at the index
value l = Mspa, when for example the condition (23)
is satisfied. Otherwise, setl = l + 1, and go to step 1.

A simple and yet effective mechanism can be built into the
selection procedure to automatically avoid any numerical ill-
conditioning. If a candidateω(q)

l has too low energy, i.e.
(

ω
(q)
l

)T

ω
(q)
l is near zero, it will not be considered. The

least squares solution for the weightγl is simply

γl =
ωT

l d

ωT
l ωl

. (24)

Instead of using the condition (23) to terminate the OFS
procedure, which requires us to specify the threshold valueξ,
the so-called cross validation procedure can be used to decide
when to stop the selection procedure. Automatic termination

/2λ

α

Fig. 1. Geometric structure of the three-element linear array havingλ/2

spacing, whereλ is the wavelength andα the angle of arrival of a user.

criteria such as the information based criteria and optimal
experimental design criteria of [14] may also be used.
The kernel varianceρ2 is not provided by the construction
algorithm, but it may be estimated based on cross validation.
Our experience suggests that the symmetric kernel classifier
is not sensitive to the value ofρ2 used, and there exists a large
range ofρ2 values which enables the sparse symmetric kernel
classifier to approach the optimal Bayesian performance.
This will be further illustrated in our simulation study. This
robustness to the value ofρ2 inherently is a consequence
of the Bayesian detector’s robustness to the noise variance
σ2

n used. It has been shown [36] that the performance of
the Bayesian detectors using0.2σ2

n and5σ2
n to substitute the

noise varianceσ2
n is indistinguishable from that of the exact

Bayesian solution.

IV. SIMULATION STUDY

The example consisted of a three-element antenna array
supporting five BPSK users. Fig. 1 shows the antenna array
geometric structure and Table I lists the angular locationsof
the five users with respect to the antenna array. The simulated
channel conditions wereAi = 1 + j0, 1 ≤ i ≤ 5. The
desired user and all the four interfering users had equal
signal power, and therefore SIRi = 0 dB for i = 2, 3, 4.
Fig. 2 portrays the BER performance of both the theoretical
L-MBER beamformer and the Bayesian detector for the
desired user 1. For each SNR value,K = 600 training
samplesDK = {x(k), b1(k)}K

k=1 were used to construct
the symmetric kernel classifier employing the FRCSM-based
OFS algorithm as outlined in the previous section. The kernel
variance was chosen to beρ2 = 3σ2

n. As the size of the
Bayesian detector wasNsb = 16, we terminated the kernel
classifier construction atMspa = 16. The BER performance
of the 16-term symmetric kernel detector is also depicted
in Fig. 2. It can be seen from Fig. 2 that the symmetric
kernel detector is capable of closely approaching the opti-
mal Bayesian performance when the number of symmetric

TABLE I

LOCATIONS OF USERS IN TERMS OF ANGLE OF ARRIVAL(AOA) FOR THE

THREE-ELEMENT ANTENNA ARRAY SYSTEM SUPPORTING FIVE USERS.

useri 1 2 3 4 5
AOA α 0

◦
10

◦ −17
◦

15
◦

20
◦
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Fig. 2. The desired-user’s bit error rate performance in thecontext of
four detectors. The symmetric kernel classifier, constructed from 600 noisy
training samples using the FRCSM-based OFS, hasMspa = 16 symmetry
kernels and a kernel varianceρ2

= 3σ2
n

. The standard SVM classifier,
constructed from the same 600 noisy training samples, has the number of
support vectors in the range of 40 to 60 and a kernel variance in the range
of σ2

n
to 6σ2

n
.

kernels is no larger than that of the Baysian detector, and
hence outperforms the black-box kernel methods of [27],[28].
When ignoring the symmetry, a standard kernel detector
would typically require more kernels than the number of
Bayesian kernelsNb and yet there would be a larger per-
formance gap between the kernel detector and the Bayesian
one. To demonstrate this point, the standard SVM detector
was trained using the same 600-sample training data set. The
size of the SVM detector constructed ranged from 40 to 60
support vectors, and the value of the kernel varianceρ2,
determined using cross validation, was in the range ofσ2

n

to 6σ2
n. The BER of the constructed SVM detector is also

shown in Fig. 2.
The properties of the proposed FRCSM-based OFS in-
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Fig. 3. The influence of the classifier’s size on the bit error rate performance
of the symmetric kernel classifier. We used SNR= 5 dB, a training data
length K = 600 and the kernel varianceρ2 was varied depending on the
model size.
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Fig. 4. The influence of the training data length on the bit error rate
performance of the symmetric kernel classifier. We used SNR= 5 dB, a
kernel model sizeMspa = 16 and a kernel varianceρ2 = 3σ2

n
.

voked for constructing the symmetric kernel detector were
studied. First, the influence of the model sizeMspa on
the kernel classifier’s performance was investigated. Given
SNR= 5 dB and a training data length ofK = 600, Fig. 3
shows the performance of the symmetric kernel classifier as a
function of the model sizeMspa. The kernel varianceρ2 was
tuned according to the model sizeMspa, and was in range
of 3σ2

n to 5σ2
n. Next the influence of the training data length

K was investigated. Given SNR= 5 dB, a kernel variance
of ρ2 = 3σ2

n and a kernel model size ofMspa = 16, Fig. 4
plots the performance of the symmetric kernel detector as a
function of the training data lengthK. The influence of the
kernel variance on the performance of the symmetric kernel
classifier was also investigated. Given SNR= 5 dB, a training
data length ofK = 500 and a kernel model sizeMspa = 16,
Fig. 5 illustrates the performance of the symmetric kernel
detector as a function of the kernel variance. The result of
Fig. 5 confirms that there exists a large range of values forρ2,
which allow the spare symmetric kernel detector to approach
the optimal Bayesian performance.

-3

    

-2

    

-1

    

 0

 0.1  1  10  100

lo
g1

0(
B

it 
E

rr
or

 R
at

e)

Kernel variance/noise variance

L-MBER
symm. Ker.

Bayesian

Fig. 5. The influence of the kernel variance on the bit error rate performance
of the symmetric kernel classifier. We used SNR= 5 dB, a training data
lengthK = 600 and a kernel model sizeMspa = 16.



V. CONCLUSIONS

A novel symmetric kernel classifier has been proposed
for nonlinear detection which is capable of substantially
outperforming previous solutions in the extremely challeng-
ing scenario of supporting almost twice as many users, as
the number of antenna elements in multiple-antenna aided
communication systems. The orthogonal forward selection
procedure based on the Fisher ratio of class separability
measure provides a fast and efficient means of constructing
a sparse symmetric kernel detector from the noisy training
data, which is capable of approaching the optimal Bayesian
detection performance. The proposed solution provides a
signal-to-noise ratio gain in excess of 8 dB against the
powerful linear minimum bit error rate benchmark, when
supporting five users with the aid of three receive antennas.
Compared with the standard sparse kernel methods, which
do not exploit the symmetry of the underlying solution, our
proposed method is computationally simpler, results in a
much smaller detector size, and performs better. Although
we have presented this sparse symmetric kernel classifier in
the context of nonlinear detection in wireless communication
systems, it is generically applicable to any classification
problem exhibiting a similar symmetry.
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