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Abstract— Using the classical Parzen window estimate as the
target function, the kernel density estimation is formulated as a
regression problem and the orthogonal forward regression tech-
nique is adopted to construct sparse kernel density estimates.
The proposed algorithm incrementally minimises a leave-one-
out test error score to select a sparse kernel model, and a
local regularisation method is incorporated into the density
construction process to further enforce sparsity. The kernel
weights are finally updated using the multiplicative nonnegative
quadratic programming algorithm, which has the ability to
reduce the model size further. Except for the kernel width,
the proposed algorithm has no other parameters that need
tuning, and the user is not required to specify any additional
criterion to terminate the density construction procedure. Two
examples are used to demonstrate the ability of this regression-
based approach to effectively construct a sparse kernel density
estimate with comparable accuracy to that of the full-sample
optimised Parzen window density estimate.

I. I NTRODUCTION

An effective method of estimating the probability density
function (PDF) based on a realisation sample drawn from the
underlying density is based on a non-parametric approach
[1]-[3]. The Parzen window (PW) estimate [1] is a remark-
ably simple and accurate non-parametric density estimation
technique. Because the PW estimate, also known as the
kernel density estimate, employs the full data sample set
in defining density estimate for subsequent observation, its
computational cost for testing scales directly with the sample
size, and this imposes a practical difficulty in employing
the PW estimator. It also motivates the research on the
so-called sparse kernel density estimation techniques. The
support vector machine (SVM) method has been proposed as
a promising tool for sparse kernel density estimation [4]-[6].
An interesting sparse kernel density estimation techniqueis
proposed in [7]. Similar to the SVM methods, this technique
employs the full data sample set as the kernel set and tries to
make as many kernel weights to (near) zero as possible, and
thus to obtain a sparse representation. The difference withthe
SVM approach is that it adopts the criterion of the integrated
squared error between the unknown underlying density and
the kernel density estimate, calculated on the training sample
set.

A regression-based sparse kernel density estimation
method was reported in [8]. By converting the kernels into
the associated cumulative distribution functions and using
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the empirical distribution function as the desired respone, just
like the SVM-based density estimation [4]-[6], this technique
transfers the kernel density estimation into a regression
problem and it selects sparse kernel density estimates based
on an orthogonal forward regression (OFR) algorithm that
incrementally minimises the training mean square error
(MSE). An additional termination criterion based on the
minimum descriptive length [9] or Akaike’s information
criterion [10] is adopted to stop the kernel density construc-
tion procedure. Motivated by our previous work on sparse
regression modelling [11],[12], recently we have proposed
an efficient construction algorithm for sparse kernel density
estimation using the OFR based on the leave-one-out (LOO)
MSE and local regularisation [13]. This method is capable
of constructing very sparse kernel density estimates with
comparable accuracy to that of the full-sample optimised PW
density estimate. Moreover, the process is fully automatic
and the user is not required to specify when to terminate the
density construction procedure [13].

In the works [8],[13], the “regressors” are the cumulative
distribution functions of the corresponding kernels and the
target function is the empirical distribution function calcu-
lated on the training data set. Computing the cumulative dis-
tribution functions can be inconvenient and may be difficult
for certain types of kernels. We propose a simple regression-
based alternative, which directly uses the PW estimate as
the desired response. The same OFR algorithm based on
the LOO MSE and local regularisation [12] can readily be
employed to select a sparse model. Unlike the work [13],
we use the multiplicative nonnegative quadratic programming
(MNQP) algorithm [14] to compute the final weights of the
kernel density estimate, which has a desired property of driv-
ing many kernel weights to (near) zero and thus is capable
of further reducing the model size. Our empirical results
show that this method offers a viable simple alternative to
the regression-based sparse kernel density estimation.

II. REGRESSION-BASED APPROACH FORKERNEL

DENSITY ESTIMATION

Based on a data sample setD = {xk}N
k=1 drawn from a

densityp(x), wherexk ∈ Rm, the task is to estimate the
unknown densityp(x) using the kernel density estimate

p̂(x; β, ρ) =
N
∑

k=1

βkKρ(x,xk) (1)

with the constraints

βk ≥ 0, 1 ≤ k ≤ N, (2)

1-4244-1380-X/07/$25.00 ©2007 IEEE

Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007 



and
βT 1 = 1, (3)

whereβ = [β1 β2 · · ·βN ]T is the kernel weight vector,1
denotes the vector of ones with an appropriate dimension,
and Kρ(•, •) is a chosen kernel function with the kernel
width ρ. In this study, we use the Gaussian kernel of the
form

Kρ(x,xk) =
1

(2πρ2)
m/2

e
−

‖x−xk‖2

2ρ2 . (4)

Many other types of kernel functions can also be used in the
density estimate (1).

The well-known PW estimatêp(x; βPar, ρPar) is obtained
by setting all the elements ofβPar to 1

N . The optimal
kernel widthρPar is typically determined via cross validation
[15],[16]. The PW estimate in fact can be derived as the
maximum likelihood estimator using the divergence-based
criterion [17]. The negative cross-entropy or divergence
between the true densityp(x) and the estimatêp(x; β, ρ)
is defined as

∫

Rm

p(u) log p̂(u; β, ρ) du ≈ 1

N

N
∑

k=1

log p̂(xk; β, ρ)

=
1

N

N
∑

k=1

log

(

N
∑

n=1

βnKρ(xk,xn)

)

. (5)

Minimising this divergence subject to the constraints (2) and
(3) leads toβn = 1

N for 1 ≤ n ≤ N , i.e. the PW estimate.
Because of this property, we can view the PW estimate as
the “observation” of the true density contaminated by some
“observation noise”, namely

p̂(x; βPar, ρPar) = p(x) + ǫ̃(x). (6)

Thus the generic kernel density estimation problem (1) can
be viewed as the following regression problem with the PW
estimate as the desired response

p̂(x; βPar, ρPar) =
N
∑

k=1

βkKρ(x,xk) + ǫ(x) (7)

subject to the constraints (2) and (3), whereǫ(x) is the
modelling error atx. Defineyk = p̂(xk; βPar, ρPar), φ(k) =
[Kk,1 Kk,2 · · ·Kk,N ]T with Kk,i = Kρ(xk,xi), andǫ(k) =
ǫ(xk). Then the model (7) at the data pointxk ∈ D can be
expressed as

yk = ŷk + ǫ(k) = φ
T (k)β + ǫ(k). (8)

The model (8) is a standard regression model, and over the
training data setD it can be written in the matrix form

y = Φβ + ǫ (9)

with the following additional notationsΦ = [Ki,k] ∈
RN×N , 1 ≤ i, k ≤ N , ǫ = [ǫ(1) ǫ(2) · · · ǫ(N)]T , and
y = [y1 y2 · · · yN ]T . For convenience, we will denote
the regression matrixΦ = [φ1 φ2 · · ·φN ] with φk =

[K1,k K2,k · · ·KN,k]
T . Note thatφk is the kth column of

Φ, while φT (k) is thekth row of Φ.
Let an orthogonal decomposition of the regression matrix

Φ be Φ = WA, where W = [w1 w2 · · ·wN ] with
orthogonal columns satisfyingwT

i wj = 0, if i 6= j, and

A =













1 a1,2 · · · a1,N

0 1
. . .

...
...

. . .
. . . aN−1,N

0 · · · 0 1













. (10)

The regression model (9) can alternatively be expressed as

y = Wg + ǫ (11)

where the weight vectorg = [g1 g2 · · · gN ]T defined in
the orthogonal model space satisfiesAβ = g. The space
spanned by the original model basesφi, 1 ≤ i ≤ N , is
identical to the space spanned by the orthogonal model bases
wi, 1 ≤ i ≤ N , and the model̂yk is equivalently expressed
by

ŷk = wT (k)g (12)

wherewT (k) = [wk,1 wk,2 · · ·wk,N ] is thekth row of W.

III. O RTHOGONAL FORWARD REGRESSION FORSPARSE

DENSITY ESTIMATION

Our aim is to seek a sparse representation forp̂(x; β, ρ)
and yet maintaining a comparable test performance to that
of the PW estimate. Since this density construction problem
is formulated as a standard regression problem, the OFR
algorithm based on the LOO MSE and local regularisation
[12] can readily be applied to select a sparse model represen-
tation. For the completeness, this OFR-LOO-LR algorithm is
summarised.

The local regularisation aided least squares solution for
the weight parameter vectorg is obtained by minimising the
regularised error criterion [18]

JR(g, λ) = ǫT ǫ +

N
∑

i=1

λig
2
i (13)

whereλ = [λ1 λ2 · · ·λN ]T is the regularisation parameter
vector, which is optimised based on the evidence procedure
[19] with the iterative updating formulas [11],[12],[18]

λnew
i =

γold
i

N − γold

ǫT ǫ

g2
i

, 1 ≤ i ≤ N, (14)

where

γi =
wT

i wi

λi + wT
i wi

and γ =

N
∑

i=1

γi. (15)

Typically a few iterations are sufficient to find a (near) opti-
malλ. The use of multiple-regularisers or local regularisation
is capable of providing very sparse solutions [18],[20].

It is highly desired to select a sparse model by directly
optimising the model generalisation capability, rather than
minimising the training MSE. The algorithm achieves this
objective by incrementally minimising the LOO MSE, which



is a measure of the model’s generalisation performance
[16],[21]-[23]. At the nth stage of the OFR procedure, an
n-term model is selected. It can be shown that the LOO test
error, denoted asǫn,−k(k), for the selectedn-term model is
[12],[23]

ǫn,−k(k) =
ǫn(k)

ηn(k)
(16)

whereǫn(k) is then-term modelling error andηn(k) is the
associated LOO error weighting. The LOO MSE for the
model with a sizen is defined by

Jn =
1

N

N
∑

k=1

ǫ2n,−k(k) =
1

N

N
∑

k=1

ǫ2n(k)

η2
n(k)

. (17)

Jn can be computed efficiently due to the fact that then-term
model errorǫn(k) and the associated LOO error weighting
ηn(k) can be calculated recursively according to [12],[23]

ǫn(k) = ǫn−1(k) − wk,ngn (18)

and

ηn(k) = ηn−1(k) −
w2

k,n

wT
n wn + λn

. (19)

The subset model selection procedure is carried as follows:
at the nth stage of the selection procedure, a model term
is selected among the remainingn to N candidates if the
resultingn-term model produces the smallest LOO MSEJn.
The selection procedure is terminated when

Jns+1 ≥ Jns
, (20)

yielding a ns-term sparse model. It is known thatJn is
at least locally convex with respect to the model sizen
[23]. That is, there exists an “optimal” model sizens such
that for n ≤ ns Jn decreases asn increases while the
condition (20) holds. This property enables the selection
procedure to be automatically terminated with anns-term
model, without the need for the user to specify a separate
termination criterion. The sparse model selection procedure
is summarised as follows.
Initialisation: Set allλi to 10−6 and iteration index toI = 1.
Step 1: Given the currentλ and the initial conditions

ǫ0(k) = yk and η0(k) = 1, 1 ≤ k ≤ N,

J0 = 1
N yT y = 1

N

∑N
k=1 y2

k,
(21)

use the procedure described in Appendix to select a subset
model withnI terms.
Step 2: Updateλ using (14) and (15) withN = nI . If a
pre-set maximum iteration number (e.g. 10) is reached, stop;
otherwise setI+ = 1 and go toStep 1.

In the work [13], the nonnegative constraint (2) is guaran-
teed by modifying the selection procedure as follows. In the
nth stage, a candidate that causes the weight vectorβn to
have negative elements, if included, will not be considered
at all. The unit length condition (3) is met by normalising
the final ns-term model weights. We adopt an alternative
means of meeting constraints (2) and (3) by updating the
weights of the sparse model using MNQP algorithm [14],

which is known to be capable of driving many kernel weights
to (near) zero and thus further reducing the size of the kernel
density estimate. Denote the design matrix of the selected
sparse model asB = ΦT

ns
Φns

= [bi,j ] and the vector
v = ΦT

ns
y = [v1 · · · vns

]T . The MNQP algorithm updates
the kernel weights according to

c
(t)
i = β

(t)
i





ns
∑

j=1

bi,jβ
(t)
j





−1

, 1 ≤ i ≤ ns, (22)

h(t) =

(

ns
∑

i=1

c
(t)
i

)−1(

1 −
ns
∑

i=1

c
(t)
i vi

)

, (23)

β
(t+1)
i = c

(t)
i

(

vi + h(t)
)

, (24)

where the superindex(t) denotes the iteration index. The
initial condition can be set asβ(0)

i = 1
ns

, 1 ≤ i ≤ ns.

IV. T WO NUMERICAL EXAMPLES

Two examples were used in the simulation to test the
proposed algorithm for constructing sparse kernel density
(SKD) estimate and to compare its performance with the
PW estimator. The value of the kernel widthρ used was
determined by test performance via cross validation. For each
example, a data set ofN randomly drawn samples was used
to construct kernel density estimates, and a separate test data
set ofNtest = 10, 000 samples was used to calculate theL1

test error for the resulting estimate according to

L1 =
1

Ntest

Ntest
∑

k=1

|p(xk) − p̂(xk; β, ρ)| . (25)

The experiment was repeated byNrun random runs.
Example 1. This was a one-dimensional example, and the
density to be estimated was the mixture of Gaussian and
Laplacian given by

p(x) =
1

2
√

2π
e−

(x−2)2

2 +
0.7

4
e−0.7|x+2|. (26)

The number of data points for density estimation wasN =
100. The optimal kernel widths were found to beρ = 0.54
and ρ = 1.1 empirically for the PW estimate and the
SKD estimate, respectively. The experiment was repeated
Nrun = 200 times. Table I compares the performance of
the two kernel density estimates, in terms of theL1 test
error and the number of kernels required. Fig. 1 (a) plots
a PW estimate obtained while Fig. 1 (b) illustrate a SKD
estimate obtained, in comparison with the true distribution.
It can be seen that the accuracy of the SKD estimate was
comparable to that of the PW estimate for this example, and
the combined OFR-LOO-LR and MNQP algorithm achieved
sparse estimates with an average kernel number less than 6%
of the data samples. The maximum and minimum numbers
of kernels over 200 runs were 9 and 2, respectively, for the
SKD estimate.
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Fig. 1. (a) true density (dashed) and a Parzen window estimate (solid),
and (b) true density (dashed) and a sparse kernel density estimate (solid),
for the one-dimensional example of Gaussian and Laplacian mixture.

Example 2. The density to be estimated for this two-
dimensional example was defined by the mixture of Gaussian
and Laplacian given as follows

p(x, y) =
1

4π
e−

(x−2)2

2 e−
(y−2)2

2

+
0.35

8
e−0.7|x+2|e−0.5|y+2|. (27)

Fig. 2 shows this density distribution and its contour plot.
The estimation data set containedN = 500 samples, and
the empirically found optimal kernel widths wereρ = 0.42
for the PW estimate andρ = 1.1 for the SKD estimate,
respectively. The experiment was repeatedNrun = 100
times. Table II lists theL1 test errors and the numbers of
kernels required for the two density estimates. A typical PW
estimate and a typical SKD estimate are depicted in Figs. 3
and 4, respectively. Again, for this example, the two density
estimates had comparable accuracies, but the SKD estimate
method achieved sparse estimates with an average number
of required kernels less than 4% of the data samples. The
maximum and minimum numbers of kernels over 100 runs

TABLE I

PERFORMANCE OF THEPARZEN WINDOW ESTIMATE AND THE SPARSE

KERNEL DENSITY ESTIMATE IN TERMS OFL1 TEST ERROR AND NUMBER

OF KERNELS REQUIRED FOR THE ONE-DIMENSIONAL EXAMPLE OF

GAUSSIAN AND LAPLACIAN MIXTURE , QUOTED AS MEAN± STANDARD

DEVIATION OVER 200 RUNS.

method L1 test error kernel number
PW estimate (1.9503 ± 0.5881) × 10−2 100 ± 0
SKD estimate (1.9436 ± 0.6208) × 10−2 5.1 ± 1.3

were 25 and 8, respectively, for the SKD estimate.

V. CONCLUSIONS

An simple kernel density estimation method has been pro-
posed based on a regression approach with the Parzen win-
dow estimate as the target function. The orthogonal forward
regression algorithm has been employed to select sparse ker-
nel density estimates, by incrementally minimising a leave-
one-out mean square error coupled with local regularisation
to further enforce the sparseness of density estimates. The
kernel weights are then updated using the MNQP algorithm.
The proposed method is simple to implement, and except
for the kernel width the algorithm contains no other free
parameters that require tuning. The ability of the proposed
method to construct a sparse kernel density estimate with
a comparable accuracy to that of the full-sample optimised
Parzen window estimate has been demonstrated using two
examples. The results obtained have shown that the proposed
method offers a viable alternative for sparse kernel density
estimation.

APPENDIX THE OFR-LOO-LR ALGORITHM

The modified Gram-Schmidt orthogonalisation procedure
[24] calculates theA matrix row by row and orthogonalises
Φ as follows: at thelth stage make the columnsφj , l +1 ≤
j ≤ N , orthogonal to thelth column and repeat the operation
for 1 ≤ l ≤ N − 1. Specifically, denotingφ(0)

j = φj , 1 ≤
j ≤ N , then forl = 1, 2, · · · , N − 1,

wl = φ
(l−1)
l ,

al,j = wT
l φ

(l−1)
j /

(

wT
l wl

)

, l + 1 ≤ j ≤ N,

φ
(l)
j = φ

(l−1)
j − al,jwl, l + 1 ≤ j ≤ N.



















(28)

TABLE II

PERFORMANCE OF THEPARZEN WINDOW ESTIMATE AND THE SPARSE

KERNEL DENSITY ESTIMATE IN TERMS OFL1 TEST ERROR AND NUMBER

OF KERNELS REQUIRED FOR THE TWO-DIMENSIONAL EXAMPLE OF

GAUSSIAN AND LAPLACIAN MIXTURE , QUOTED AS MEAN± STANDARD

DEVIATION OVER 100 RUNS.

method L1 test error kernel number
PW estimate (4.2453 ± 0.8242) × 10−3 500 ± 0
SKD estimate (3.8379 ± 0.7797) × 10−3 15.3 ± 3.9



The last stage of the procedure is simplywN = φ
(N−1)
N .

The elements ofg are computed by transformingy(0) = y

in a similar way

gl = wT
l y(l−1)/

(

wT
l wl + λl

)

,

y(l) = y(l−1) − glwl,

}

1 ≤ l ≤ N. (29)

At the beginning of thelth stage of the OFR procedure, the
l−1 regressors have been selected and the regression matrix
can be expressed as

Φ(l−1) =
[

w1 · · ·wl−1 φ
(l−1)
l · · ·φ(l−1)

N

]

. (30)

Let a very small positive numberTz be given, which specifies
the zero threshold and is used to automatically avoiding
any ill-conditioning or singular problem. With the initial
conditions as specified in (21), thelth stage of the selection
procedure is given as follows.
Step 1. For l ≤ j ≤ N :

• Test – Conditioning number check. If
(

φ
(l−1)
j

)T

φ
(l−1)
j < Tz, the jth candidate is not

considered.
• Compute

g
(j)
l =

(

φ
(l−1)
j

)T

y(l−1)/

(

(

φ
(l−1)
j

)T

φ
(l−1)
j + λj

)

,

ǫ
(j)
l (k) = y

(l−1)
k − φ

(l−1)
j (k)g

(j)
l

η
(j)
l (k) = ηl−1(k) −

(

φ
(l−1)
j

(k)
)2

(

φ(l−1)

j

)T
φ(l−1)

j
+λj















for k = 1, · · · , N , and

J
(j)
l =

1

N

N
∑

k=1

(

ǫ
(j)
l (k)

η
(j)
l (k)

)2

where y
(l−1)
k and φ

(l−1)
j (k) are thekth elements of

y(l−1) and φ
(l−1)
j , respectively. Let the index setJl

be
Jl = {l ≤ j ≤ N andj passesTest}

Step 2. Find

Jl = J
(jl)
l = min{J (j)

l , j ∈ Jl}
Then thejlth column ofΦ(l−1) is interchanged with thelth
column ofΦ(l−1), thejlth column ofA is interchanged with
the lth column ofA up to the(l − 1)th row, and thejlth
element ofλ is interchanged with thelth element ofλ. This
effectively selects thejlth candidate as thelth regressor in
the subset model.
Step 3. The selection procedure is terminated with a(l− 1)-
term model, ifJl ≥ Jl−1. Otherwise, perform the orthogo-
nalisation as indicated in (28) to derive thel-th row of A

and to transformΦ(l−1) into Φ(l); calculategl and update
y(l−1) into y(l) in the way shown in (29); update the LOO
error weightings

ηl(k) = ηl−1(k) −
w2

k,l

wT
l wl + λl

, k = 1, 2, · · · , N

and go toStep 1.
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Fig. 2. True density (a) and contour plot (b) for the two-dimensional example of Gaussian and Laplacian mixture.
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Fig. 3. A Parzen window estimate (a) and contour plot (b) for the two-dimensional example of Gaussian and Laplacian mixture.
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Fig. 4. A sparse kernel density estimate (a) and contour plot(b) for the two-dimensional example of Gaussian and Laplacian mixture.
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