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Probability Density Function Estimation Using
Orthogonal Forward Regression

S. Chen, X. Hong and C.J. Harris

Abstract— Using the classical Parzen window estimate as the the empirical distribution function as the desired resp funst
target function, the kernel density estimation is formulaied as a  |ike the SVM-based density estimation [4]-[6], this teaiun
regression problem and the orthogonal forward regressiondch-  y.agfers the kernel density estimation into a regression
nigue is adopted to construct sparse kernel density estimas. bl d it select K ld it timates b
The proposed algorithm incrementally minimises a leave-oe- problem and It selects sparse em_e ensity es 'mf’:l esibase
out test error score to select a sparse kernel model, and a On an orthogonal forward regression (OFR) algorithm that
local regularisation method is incorporated into the dendy incrementally minimises the training mean square error
construction process to further enforce sparsity. The kerel (MSE). An additional termination criterion based on the
weights are finally updated using the multiplicative nonnegtive minimum descriptive length [9] or Akaike’s information

quadratic programming algorithm, which has the ability to o - .
reduce the model size further. Except for the kernel width, criterion [10] is adopted to stop the kernel density corgstru

the proposed algorithm has no other parameters that need tion procedure. Motivated by our previous work on sparse
tuning, and the user is not required to specify any additiond regression modelling [11],[12], recently we have proposed

criterion to terminate the density construction procedure Two  gn efficient construction algorithm for sparse kernel dgnsi
examples are used to demonstrate the ability of this regre&m- estimation using the OFR based on the leave-one-out (LOO)

based approach to effectively construct a sparse kernel dsity L . .
estimate with comparable accuracy to that of the ful-sampt MSE and local regularisation [13]. This method is capable

optimised Parzen window density estimate. of constructing very sparse kernel density estimates with
comparable accuracy to that of the full-sample optimised PW
[. INTRODUCTION density estimate. Moreover, the process is fully automatic

An effective method of estimating the probability densityand t_he user is not required to specify when to terminate the
function (PDF) based on a realisation sample drawn from tf€nsity construction procedure [13]. _
underlying density is based on a non-parametric approach!n the works [8],[13], the “regressors” are the cumulative
[1]-[3]. The Parzen window (PW) estimate [1] is a remarkdistribution _fun(?tlons of th(_e_corre_sp(_)nd!ng kerngls and th
ably simple and accurate non-parametric density estimati¢arget function is the empirical distribution function cal
technique. Because the PW estimate, also known as tﬁéed.on the training data set. Computing the cumulatlyg dis
kernel density estimate, employs the full data sample Sg;tbutlon_functlons can be inconvenient and.may be dlfflcylt
in defining density estimate for subsequent observatisn, ifOr certain types of kernels. We propose a simple regression
computational cost for testing scales directly with the gem Dased alternative, which directly uses the PW estimate as
size, and this imposes a practical difficulty in employing}he desired response. The same OFR algorithm based on
the PW estimator. It also motivates the research on tH8€ LOO MSE and local regularisation [12] can readily be
so-called sparse kernel density estimation techniques. TRMPIOyed to select a sparse model. Unlike the work [13],
support vector machine (SVM) method has been proposed 4§ USe the multiplicative nonnegative quadratic prograngmi
a promising tool for sparse kernel density estimation gj]-[ (MNQP) algorithm [14] to compute the final weights of the
An interesting sparse kernel density estimation technigue kénel density estimate, which has a desired property uf dri
proposed in [7]. Similar to the SVM methods, this techniqué’d many kernel weights to (near) zero and thus is capable
employs the full data sample set as the kernel set and tries@b further reducing the model size. Our empirical results
make as many kernel weights to (near) zero as possible, a#fPW that this method offers a viable simple alternative to
thus to obtain a sparse representation. The differencetigth the regression-based sparse kernel density estimation.

SVM approach is that it adopts the criterion of the integtate || RecrRESSIONBASED APPROACH FORK ERNEL
squared error between the unknown underlying density and DENSITY ESTIMATION
the kernel density estimate, calculated on the trainingoéam

Based on a data sample t= {x;}¥_, drawn from a
&?nsityp(x), wherex; € R™, the task is to estimate the
6mknown densityp(x) using the kernel density estimate

set.
A regression-based sparse kernel density estimati
method was reported in [8]. By converting the kernels int

the associated cumulative distribution functions and gisin N
P B,p) = D BrK (%, xx) @)
S. Chen and C.J. Harris are with School of Electronics and fitoen h—1
Science, University of Southampton, Southampton SO17 WRJ E-mails: . .
{sqc,cji @ecs.soton.ac.uk with the constraints
X. Hong is with School of Systems Engineering, UniversityRefading,
Reading RG6 6AY, UK, E-mail: x.hong@reading.ac.uk Or>0,1<k<N, (2)

1-4244-1380-X/07/$25.00 ©2007 IEEE



and [K11 Ko KyiT. Note thate, is the kth column of
BT =1, (3) @, while ¢” (k) is the kth row of ®.

) ) Let an orthogonal decomposition of the regression matrix
where3 = [3; B2---Bn]|T is the kernel weight vecton d be & = WA, where W = [w; ws-- wy] with
denotes the vector of ones with an appropriate dimensio, isfvinarlw . — () if 7 £ 4
and K, (e, ) is a chosen kernel function with the kernel&'thogonélI columns satistying; w; =0, i # j, and

width p. In this study, we use the Gaussian kernel of the L az -+ an
form ) o 1 - :
1 I ESEA _ : )
Kp(X7 Xk) — 726 2p2’c . (4) A : . . (10)
(27Tp2)m/ : : + OGN-1,N
o --- 0 1
Many other types of kernel functions can also be used in the ) )
density estimate (1). The regression model (9) can alternatively be expressed as
The v_vell-known PW estimatg(x; Bp,,, Prar) iS obta_ined y=Wegte (11)
by setting all the elements oBp,, to % The optimal _ _ _
kernel widthpp,, is typically determined via cross validation where the weight vectog = [g1 g2 - ~gn]" defined in

[15],[16]. The PW estimate in fact can be derived as théhe orthogonal model space satisfidg3 = g. The space
maximum likelihood estimator using the divergence-base@Panned by the original model basgg, 1 < i < N, is
criterion [17]. The negative cross-entropy or divergencilentical to the space spanned by the orthogonal model bases
between the true density(x) and the estimatg(x;3,p) Wi, 1 <i <N, and the modej is equivalently expressed

is defined as by .
o =w' (k)g (12)

N
. 1 .
/ p(u)log p(u; B, p) du = N Zlogp(xk;ﬁvp) wherew” (k) = [wy1 wy.o - wy.n] is the kth row of W.
" k=1

IIl. ORTHOGONAL FORWARD REGRESSION FORSPARSE

N N
1 DENSITY ESTIMATION
=N E log E Bn K p(Xk,Xn) | - %) o o
P — Our aim is to seek a sparse representationpfer; 3, p)

. o i , and yet maintaining a comparable test performance to that
Minimising this dlvlergence subject K_) the constramtg @ a of the PW estimate. Since this density construction problem
(3) leads tog, - N forl<n<N, 1.€. the PW estlmate. is formulated as a standard regression problem, the OFR
Because of this property, we can view the PW estimate agqjthm based on the LOO MSE and local regularisation
the “observation” of the true density contaminated by SOM@ 51 ¢ readily be applied to select a sparse model represen
observation noise”, namely tation. For the completeness, this OFR-LOO-LR algorithm is

B(X: Bpars prar) = P(X) + E(x). () summarsed. .
The local regularisation aided least squares solution for
Thus the generic kernel density estimation problem (1) cahe weight parameter vectgris obtained by minimising the
be viewed as the following regression problem with the PWegularised error criterion [18]
estimate as the desired response

N
N Jr(g,A) = eTe—i-Z)\igf (13)
(% Bpars ppar) = Y BiK,(x,x1) +e(x)  (7) i=1
k=1 where A = [A\; \2---An]7 is the regularisation parameter
subject to the constraints (2) and (3), whef) is the vector, which is optimised based on the evidence procedure
modelling error atx. Defineyy, = p(xx; Bpars prar), @(k) =  [19] with the iterative updating formulas [11],[12],[18]

[Kk,l Kio--- Kk_’N]T with Ky = Kp(xk,xi), ande(k) = "ypld eTe
e(xx). Then the model (7) at the data poit € D can be APV = ﬁ—g, 1<i<N, (14)
expressed as LD
- where
v = i+ e(k) = T (R)B + e(k). (8) wlw, Al
) ) RL s s — and = Z%‘- (15)
The model (8) is a standard regression model, and over the i T Wi Wy im1

training data seD it can be written in the matrix form Typically a few iterations are sufficient to find a (near) epti

_ mal A. The use of multiple-regularisers or local regularisation
y=®8+e¢ (C)N. - .
is capable of providing very sparse solutions [18],[20].
with the following additional notations® = [K,;] € It is highly desired to select a sparse model by directly
RNXN 1 < ik < N, e = [e(1) €2)---¢(N)]T, and optimising the model generalisation capability, rathearth
y = [y1 y2---yn|¥. For convenience, we will denote minimising the training MSE. The algorithm achieves this

the regression matrbx® = [¢p; ¢, --dx] With ¢, = objective by incrementally minimising the LOO MSE, which



is a measure of the model's generalisation performaneehich is known to be capable of driving many kernel weights
[16],[21]-[23]. At the nth stage of the OFR procedure, anto (near) zero and thus further reducing the size of the kerne
n-term model is selected. It can be shown that the LOO tedensity estimate. Denote the design matrix of the selected

error, denoted as,,,_;(k), for the selectech-term model is sparse model a8 = @fﬁ@ns = [b;;] and the vector
[12],[23] v ==&}y =[vv,]". The MNQP algorithm updates
en alk) = enillg (16) the kernel weights according to
Tn 1

wheree, (k) is the n-term modelling error and,, (k) is the
associated LOO error weighting. The LOO MSE for the
model with a sizen is defined by

N N
1 9 1 €2 (k)
J, N kEZI f'n,7 k( ) N ];:1: n%(k)

V=" [P bs | S1<isn, (@22
Jj=1

Ng -1 Ng
(17) B — (Z c§t>> (1 = cg%l) : (23)
i=1 i=1

J, can be computed efficiently due to the fact thattherm (t+1) () 10
model errore, (k) and the associated LOO error weighting G —c (vi + ) ’
nn (k) can be calculated recursively according to [12],[23]

i (24)
where the superinde¥) denotes the iteration index. The
en(k) = €n_1(k) — Wi ngn (18) initial condition can be set as§0) = nL 1 <i<n,.

and V. Two NUMERICAL EXAMPLES

2
wk,n
1 (k) = 1n—1(k) (19) Two examples were used in the simulation to test the

Th . . . V\Pr_oposed algorithm for constructing sparse kernel density

e subset model selection procedure is carried as follo KD) estimate and to compare its performance with the

fT[ the nth stage of the selegtlpn procedure,_ a mo‘?'e' B\ estimator. The value of the kernel widthused was

IS sel_ected among the remainingto NV candidates if the determined by test performance via cross validation. Folnea

resultlngn-j[erm model pro_duces .the smallest LOO M3E example, a data set ¢f randomly drawn samples was used

The selection procedure is terminated when to construct kernel density estimates, and a separateatst d
Jnos1 > I, (20) set of N;ess = 10,000 samples was used to calculate the

test error for the resulting estimate according to

wlw, + Ay,

yielding a n,-term sparse model. It is known thaf, is

at least locally convex with respect to the model size 1 N R
[23]. That is, there exists an “optimal” model sizg such L= Nyoor Z IpGer) = B(xk3 B, )| (25)
k=1

that forn < ng J, decreases as increases while the
condition (20) holds. This property enables the selectiomhe experiment was repeated B¥.,,, random runs.
procedure to be automatically terminated with aprterm  Example 1 This was a one-dimensional example, and the
model, without the need for the user to specify a separatiensity to be estimated was the mixture of Gaussian and
termination criterion. The sparse model selection prooeduLaplacian given by

is summarised as follows.

2
Initialisation: Set all\; to 10~¢ and iteration index td = 1. p(z) = L et 07 0rara (26)
Step 1 Given the current and the initial conditions 2v2m
. . The number of data points for density estimation wWas=
So(li) T indl 770(%) B 21’ Lsksh, (21)  100. The optimal kernel widths were found to pe= 0.54
0=NY Y= w21 Yk and p = 1.1 empirically for the PW estimate and the

use the procedure described in Appendix to select a subSKD estimate, respectively. The experiment was repeated
model withn; terms. Nyun = 200 times. Table | compares the performance of

Step 2 Update A using (14) and (15) withV = n;. If a the two kernel density estimates, in terms of the test
pre-set maximum iteration number (e.g. 10) is reached; stogrror and the number of kernels required. Fig. 1 (a) plots
otherwise setff+ = 1 and go toStep 1 a PW estimate obtained while Fig. 1 (b) illustrate a SKD

In the work [13], the nonnegative constraint (2) is guaranestimate obtained, in comparison with the true distributio
teed by modifying the selection procedure as follows. In thi can be seen that the accuracy of the SKD estimate was
nth stage, a candidate that causes the weight vegioto comparable to that of the PW estimate for this example, and
have negative elements, if included, will not be considereithe combined OFR-LOO-LR and MNQP algorithm achieved
at all. The unit length condition (3) is met by normalisingsparse estimates with an average kernel number less than 6%
the final ns-term model weights. We adopt an alternativeof the data samples. The maximum and minimum numbers
means of meeting constraints (2) and (3) by updating thef kernels over 200 runs were 9 and 2, respectively, for the
weights of the sparse model using MNQP algorithm [14]SKD estimate.



TABLE |

0.25 ! ! PERFORMANCE OF THEPARZEN WINDOW ESTIMATE AND THE SPARSE
true PDF - . KERNEL DENSITY ESTIMATE IN TERMS OFL1 TEST ERROR AND NUMBER
0.2 Parzen OF KERNELS REQUIRED FOR THE ONEDIMENSIONAL EXAMPLE OF
4 ‘;"’ GAUSSIAN AND LAPLACIAN MIXTURE , QUOTED AS MEAN £ STANDARD
0.15 A DEVIATION OVER 200RUNS.
o j ]
0.1 I method L test error kernel number
/ \, j PW estimate | (1.9503 £ 0.5881) x 10~ 2 100 £ 0
SKD estimate| (1.9436 & 0.6208) x 10~ 2 51+1.3
0.05
o b = = were 25 and 8, respectively, for the SKD estimate.
-10 -5 0
X V. CONCLUSIONS
(@) An simple kernel density estimation method has been pro-
posed based on a regression approach with the Parzen win-
0.25 , , dow estimate as the target function. The orthogonal forward
regression algorithm has been employed to select sparse ker
02 | ””%EBE - nel density estimates, by incrementally minimising a leave
' one-out mean square error coupled with local regularisatio
to further enforce the sparseness of density estimates. The
015 kernel weights are then updated using the MNQP algorithm.
z The proposed method is simple to implement, and except
0.1 for the kernel width the algorithm contains no other free
parameters that require tuning. The ability of the proposed
0.05 method to construct a sparse kernel density estimate with
a comparable accuracy to that of the full-sample optimised
g - Parzen window estimate has been demonstrated using two
-10 5 0 examples. The results obtained have shown that the proposed
X method offers a viable alternative for sparse kernel dgnsit
) estimation.
Fig. 1. (a) true density (dashed) and a Parzen window esirfsatid), APPENDIX THE OFR-LOO-LR ALGORITHM

and (b) true density (dashed) and a sparse kernel densitgadst(solid),

for the one-dimensional example of Gaussian and Laplaciature. The modified Gram-Schmidt orthogonalisation procedure

[24] calculates theA matrix row by row and orthogonalises

Example 2 The density to be estimated for this two-® as follows: at thdth stage make the columms;, [+ 1 <

dimensional example was defined by the mixture of Gaussian< V', orthogonal to théth column and repeat the operation

and Laplacian given as follows for 1 <1 < N — 1. Specifically, denotingp§0) =¢;, 1<
j <N, thenforl=1,2,---,N —1,

.0) I e2? -2?

z, = —e € -

p(z,y ir =,
+0.35670_7|I+2|€70.5\y+2\. (27)

a; =wlel ™"/ (whw), 1+1<j <N, (28)

Fig. 2 shows this density distribution and its contour plot. ¢§,l> — ¢,§l*1> —aw, l+1<j<N.
The estimation data set containdd = 500 samples, and ' '
the empirically found optimal kernel widths wepe= 0.42
for the PW estimate ang = 1.1 for the SKD estimate,
respectively. The experiment was repeatdd,, = 100
times. Table Il lists thel; test errors and the numbers of
kernels required for the two density estimates. A typical PW
estimate and a typical SKD estimate are depicted in Figs. %AUSSAAN AND LAPLACIAN MIXTURE , QUOTED AS MEAN £ STANDARD
and 4, respectively. Again, for this example, the two dgnsit DEVIATION OVER 100RUNS.

estimates had comparable accuracies, but the SKD estimate

TABLE Il
PERFORMANCE OF THEPARZEN WINDOW ESTIMATE AND THE SPARSE
KERNEL DENSITY ESTIMATE IN TERMS OFL71 TEST ERROR AND NUMBER
OF KERNELS REQUIRED FOR THE TWEDIMENSIONAL EXAMPLE OF

method achieved sparse estimates with an average number—_ method L testerror | kemel number
f ired k Is less than 4% of the data samples. The —epe amae (8.2453 + 0.8042) x 10 00 20
Or required kerne 0 ples. SKD estimate| (3.8379 & 0.7797) x 10 ° 15.3 £3.9

maximum and minimum numbers of kernels over 100 runs



The last stage of the procedure is simplyy = ¢§§V—1>.
The elements of are computed by transforming®) =y
in a similar way

g =wly=Y/ (wlw + ),

(1]
(2]

(3]
(4]

1<I<N. (29)

y(l) — y(lil) — glvvl7
At the beginning of thdth stage of the OFR procedure, the
[ — 1 regressors have been selected and the regression matrix
can be expressed as (5]

U1 — [Wl W ¢l(l—1) ) ..¢§\l[—1> . (30)

6]
Let a very small positive numbé@t, be given, which specifies

the zero threshold and is used to automatically avoiding
any ill-conditioning or singular problem. With the initial [7]
conditions as specified in (21), tlith stage of the selection
procedure is given as follows.

[8]
Step 1Forl <j < N:

« Test —  Conditioning number  check. If
a-\T -1 , , : el
(qu ) P, < T,, the jth candidate is not
considered. [10]
« Compute
) a-\T -1 a-\T -1 o]
g9 = (¢j ) y(=1 ((ij ) o +/\j> ,
El(j)(k) _ yl(cl_l) _ (b;l—l)(k)gl(j) [12]
- o'V w)”
B E) = (k) - )

(@) ) @) e [13]
fork=1,---,N, and

N
[14]

7
gL q” (k)
N k=1 m(”(k)

_ _ 15
where 3" and ¢{'"" (k) are thekth elements of (3]

y=1 and ¢§l_1), respectively. Let the index sef; 116
be

J ={l <j < N andj passeslest} [17]

(18]
Step 2 Find

Ji=J7 =min{J?, jeT}

Then thej;th column of @~ is interchanged with th&h
column of &Y the j;th column ofA is interchanged with
the ith column of A up to the(l — 1)th row, and thej;th
element of) is interchanged with thé&h element of\. This
effectively selects thg;th candidate as th&h regressor in
the subset model.

Step 3 The selection procedure is terminated witfi & 1)-
term model, ifJ; > J;_;. Otherwise, perform the orthogo- [24]
nalisation as indicated in (28) to derive the¢h row of A

and to transform®~ 1) into ®; calculateg, and update
y(=1 into y® in the way shown in (29); update the LOO
error weightings

[19]
[20]
[21]
[22]

[23]

2
Wi 1

- k=12,---,N
WlTWl-l-/\l

m(k) = m-1(k)

and go toStep 1
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Fig. 2. True density (a) and contour plot (b) for the two-disienal example of Gaussian and Laplacian mixture.
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Fig. 3. A Parzen window estimate (a) and contour plot (b) Far two-dimensional example of Gaussian and Laplacian mextu
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Fig. 4. A sparse kernel density estimate (a) and contour (plofor the two-dimensional example of Gaussian and Laatachixture.
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