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Abstract—This paper proposes a multiple local model learning
approach for nonlinear and nonstationary microwave heating
process (MHP). The proposed local learning framework performs
model adaption at two levels: (1) adaptation of the local linear
model set, which adaptively partitions the process’s data into
multiple process states, each fitted with a local linear model;
(2) online adaptation of model prediction, which selects a subset
of candidate local linear models and linearly combines them to
produce the model prediction. Adaptive process state partition
and fitting a new local linear model to the newly emerging
process state is based on statistical hypothesis testing, and
the optimal combining coefficients of the selected subset linear
models are obtained by minimizing the mean square error with
the constraint that the sum of these coefficients is unity. A
case study involving a real-world industrial MHP is used to
demonstrate the superior performance of the proposed multiple
local model learning approach, in terms of online modeling
accuracy and computational efficiency.

I. INTRODUCTION

Microwave heating technology has found wide-ranging ap-

plications in industry due to its many advantages over conven-

tional heating methods, which include selective and volumetric

heating, rapid heat transfer and pollution-free environment

[1]. However, a major drawback associated with microwave

heating is the temperature runaway, caused by properties of

material and the inner electromagnetic field distribution [2],

which may lead to unwanted combustion and destruction

in industrial processes. To improve the safety of microwave

heating technology in industrial applications, an accurate

model is required for the purpose of temperature prediction

and control. From the underlying physics, microwave heating

process (MHP) can be modeled by several partial differential

equations (PDEs) [3]. These PDEs describe the characteristics

of thermodynamics and model the conversion of microwave

energy, which are highly complex. Although numerical tech-

niques can be adopted to solve these PDEs, they impose heavy

computational burden. Furthermore, the model so obtained is

very difficult to be adopted in online control of the MHP.

Modeling MHP from data offers a practical alternative.
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For industrial processes exhibiting both nonlinear and time-

varying characteristics, batch global nonlinear modeling ap-

proaches, such as [4]–[6], cannot be applied. Adaptive global

nonlinear modeling of nonstationary processes is a challenging

task, since both the model parameter values and the model

structure must be adapted sufficiently fast in order to timely

capture the changing characteristics of the underlying process.

However, most of the existing adaptive nonlinear modeling

approaches do not perform online model structure updating

and they only use the recursive least squares (RLS) algorithm

to adapt the model parameter values [7]–[10]. In particular,

the extreme learning machine (ELM) for single-hidden-layer

neural networks places sufficiently dense number of fixed

nodes in the input space and only sequentially updates the

model weights using the RLS algorithm. Because the size of

the nonlinear model has to be very large for ELM, online

adaptation of the model weights is computationally costly

and, moreover, it takes time to sufficiently change the model

weights to match the changing nonlinear characteristics of

the underlying process. Therefore, the online sequential ELM

(OS-ELM) approach only works well for relatively slow time

varying nonlinear industrial processes.

An alternative to global nonlinear modeling is to adopt

the multiple local models, which are capable of capture

severe nonlinearity too [11]–[13]. Based on this principle, a

multiple local modeling framework is proposed in [14], [15]

for nonlinear and nonstationary processes, which comprises a

set of radial basis function (RBF) sub-models. Each local RBF

model tracks the incoming data independently by updating

its weights online, and a subset of these local RBF models

are selected to produce the output by a linear combiner of

the selected sub-models. However, the model structures of

the candidate local RBF models are fixed during the initial

training, and they do not change during online operation. In a

sense, this multiple local modeling framework is similar to the

OS-ELM, and suffers from the same drawback. Specifically,

the performance of this approach depends on the coverage of

the initially fixed candidate sub-models. The difference with

the OS-ELM is basically that the ELM approach employs a

large number of hidden nodes to cover the entire model input

space, while this multiple local modeling approach ‘partitions’

the model input space into multiple ‘regions’, each covered



by a local model. However, during the online operation of

a time-varying industrial process, the process dynamics can

vary significantly and the process may enter an operating

region which is completely outside the initial modeling space,

which will degrade the performance of both this adaptive local

modeling approach and the OS-ELM.

In order to accurately model nonlinear and nonstationary

processes, a multiple local model approach must be able to

adaptively generate a new local model timely and efficiently

for the newly emerging operating environment. In the online

soft sensor design, this capability has been demonstrated to

be vital to achieve excellent performance [16], [17]. This

motivates our work. In this paper, we propose a multiple

local model learning approach for nonlinear and time-varying

industrial processes, in which the set of local linear models are

self adapted to capture the newly emerging process state, and

the prediction of the process output is also adapted based on

an optimally selected ensemble of subset linear local models.

Similar to [16], [17], which consider a different application of

soft sensor design, our proposed multiple local model learning

approach performs the model adaptation at two levels. At the

level of local model development, a newly emerging process

state in the incoming data is automatically identified and a new

local linear model is fitted to this newly emerged process state.

At the level of modeling update or online prediction, a subset

of candidate local linear models are optimally selected and the

prediction of the process output is computed as an optimal

linear combiner of the selected subset local linear models. A

case study involving MHP demonstrates the effectiveness of

our multiple local model learning approach, in terms of online

prediction accuracy and computational efficiency.

II. PROPOSED MULTIPLE LOCAL MODEL LEARNING

A. Adaptation of local linear models

Given the data sample set {x(t), y(t)}N
t=1, where x(t) ∈

R
m and y(t) ∈ R are the system’s input vector and output,

respectively, the task is to construct the local linear models

{fl}L
l=1 that are valid in their corresponding process states

represented by their respective sub-datasets {Xl,yl}L
l=1.

Without loss of generality, let a data window Wini ={
Xini ∈ R

W×m,yini ∈ R
W

}
with W consecutive time

samples {x(t), y(t)}tini+W
t=tini

be initially set, and a local linear

model fini is built on it as

ŷini =fini

(
Xini

)
= Φβ (1)

where Φ =
[
1W Xini

]
∈ R

W×(1+m) and 1W denotes the

W -dimensional vector whose elements are all one, while the

model parameter vector β ∈ R
(1+m) is solved by the least

square (LS) algorithm as

β =
(
Φ

T
Φ

)−1
Φ

Tyini. (2)

The predicted error or residual vector of this local model is

eini =yini − fini

(
Xini

)
∈ R

W . (3)

After an initial local model fini is built, a shifted window

Wsft =
{
Xsft,ysft

}
is sequentially obtained by moving the

window one step ahead, that is, Wsft contains the samples

{x(t), y(t)}tini+1+W
t=tini+1 . If the two local regions Wini and Wsft

are not significantly different, it can be considered that the

process data within Wsft follow the same distribution as in

Wini and the window is continued to be shifted forward.

Otherwise, Wsft is considered to represent a new operating

mode different from the previous mode, and a new local linear

model fnew should be developed based on Wsft. Let the

estimation error vector produced by fini on Wsft be

esft =ysft − fini

(
Xsft

)
. (4)

Whether Wini and Wsft are similar or not can then be turned

into the equivalent testing that tests whether eini and esft are

significantly different or not. Since fini is a linear model, eini

and esft are considered not significantly different when both

their means, µini and µsft, and variances, σ2
ini and σ2

sft, are

the same. Therefore, the two null hypotheses can be set to

H
µ
0 : µini = µsft, (5)

Hσ2

0 : σ2
sft = σ2

ini. (6)

The mean µini and variance σ2
ini are estimated based on

eini, while µsft and σ2
sft are estimated based on esft.

Since fini is an unbiased estimator, we have µini = 0 and

σ2
ini = 1

W−1eT
inieini. Assuming that eini and esft follow

normal distribution, the T and χ2 statistics are constructed as

T =
√

W
(
µsft − µini

)/
σsft, (7)

χ2 =(W − 1)σ2
sft

/
σ2

ini. (8)

According to the statistical theory, if the hypotheses H
µ
0 and

Hσ2

0 are both valid, the T statistic (7) and χ2 statistic (8)

follow the t distribution and χ2 distribution with the degree

of freedom W − 1, respectively. Thus, the t-test and χ2-test

can be utilized to test the above two hypotheses. Specifically,

the conditions of accepting H
µ
0 and Hσ2

0 are

|T | < λt and χ2 < λχ, (9)

where λt is the threshold of the T statistic for the given

significance level αt which satisfies Pr{|T | < λt} = 1 − αt,

while λχ is the threshold of the χ2 statistic for the given

significance level αχ, which satisfies Pr{χ2 < λχ} = 1−αχ.

Let the local model set contain L > 1 independent local

linear models {fl}L
l=1, and fini = fL. When one or both

conditions of (9) are violated, Wini and Wsft are significantly

different, and the new local linear model fnew = fsft is

identified, which is different from fL. We need to test whether

fnew is different from the other models fl for 1 ≤ l ≤ L− 1.

This task can also be fulfilled based on the similar statistic

hypothesis testing. Let the predicted errors of
{
Xsft,ysft

}

based on fnew and fl be defined respectively by

enew =ysft − fnew

(
Xsft

)
, (10)

el =ysft − fl

(
Xsft

)
, 1 ≤ l ≤ L − 1. (11)



With the assumption that enew and el follow normal distribu-

tion, the T and χ2 statistics are constructed according to

Tl =
√

W
(
µl − µnew

)/
σl, (12)

χ2
l =(W − 1)σ2

l

/
σ2

new, (13)

where µnew and σ2
new are the mean and variance of enew,

which can be estimated using enew, while µl and σ2
l are the

mean and variance of el, which can be estimated in the same

way. Based on the statistical theory, if the null hypotheses

H
µ
l : µl = µnew, (14)

Hσ2

l : σ2
l = σ2

new, (15)

are both valid, the Tl statistic in (12) and χ2
l statistic in (13)

follow the t distribution and χ2 distribution with the degree

of freedom W − 1, respectively. Therefore, if there exist an

l ∈ {1, 2 . . . L − 1} such that

|Tl| < λt and χ2
l < λχ, (16)

the hypotheses (14) and (15) are both valid, and enew and el

are regarded to be identical. Consequently, fnew and fl are the

same model, and one of them should be removed. Since fl is

‘older’ than fnew, we keep the local model fnew and delete

fl. On the other hand, if one or both conditions are violated

∀l ∈ {1, 2 . . . L− 1}, fnew is different from fl for 1 ≤ l ≤ L.

Thus, we have identified a new process state, and we add fnew

to the local model set by setting L = L + 1 and fL = fnew.

The proposed adaptive local model set development proce-

dure is summarized in Algorithm 1. A small widow size W

may lead to large number of local models, which will increase

online operating time, but it may result in better nonstationary

adaptation capability. A large W has the opposite efforts. The

significance levels in the statistical testings are typically set to

αt = 0.05 and αχ = 0.05.

Remark 1: This local learning strategy can operate both

offline and online.

B. Adaptation of model prediction

After the online operation at time sample t, Algorithm 1

produces the local model set of {fl}L
l=1. At the next time

sample of tnext = t + 1, the task of online modeling update

is to produce the model prediction ŷ(tnext) for the process’s

true output y(tnext), given the process input x(tnext) and

the available local model set {fl}L
l=1. We adopt a selective

ensemble of local linear models from {fl}L
l=1 based on the

p(> 1) latest labeled data {x(t − i), y(t − i)}p−1
i=0 .

Let el(t) = [el(t) el(t−1) · · · el(t−p+1)]T be the modeling

error vector of the lth local linear model fl on the available

data set {x(t − i), y(t − i)}p−1
i=0 , which is given by

el(t − i) =y(t − i) − fl(x(t − i)), 0 ≤ i ≤ p − 1. (17)

The performance metric of the lth local model is defined as

Jl(t) = ‖el(t)‖2
. (18)

Algorithm 1 Adaptive local model set development

1: Initialization

2: Collect Wini with W consecutive samples from historical

data, and construct the LS linear model fini on Wini.

3: Calculate eini, and estimate µini and σ2
ini.

4: Set L = 1, {WL, fL} = {Wini, fini} and Wsft = WL.

5: Step 1: New local model detection

6: When a new data sample is available, shift Wsft one

sample ahead and construct fsft on Wsft.

7: Calculate esft, and estimate µsft and σ2
sft.

8: Construct T and χ2 statistics using (7) and (8).

9: If both conditions of (9) are satisfied

10: Go to Step 1.

11: End if

12: Set Wnew = Wsft, fnew = fsft, enew = esft, as well as

µnew = µsft and σ2
new = σ2

sft.

13: Step 2: Redundant local model deletion

14: For l = 1, 2, . . . , L − 1
15: Compute el, and estimate µl and σ2

l .

16: Construct Tl and χ2
l statistics using (12) and (13).

17: If both conditions of (16) are satisfied

18: Delete fl, set fi = fi+1 for i = l, l + 1, · · · , L − 1,

set L = L − 1, then go to Step 3.

19: End if

20: End for

21: Step 3: Add new local model

22: Set L = L + 1, WL = Wnew and fL = fnew.

23: Return to Step 1.

By defining

Jlmax
(t) = max

1≤l≤L
Jl(t), (19)

we can normalize the performance metrics of (18) to

J̄l(t) =
Jl(t)

Jlmax
(t)

, 1 ≤ l ≤ L. (20)

Obviously, J̄l(t) ∈ (0, 1]. Clearly, the best local model, whose

index l1 = lmin is given by

lmin = arg min
1≤l≤L

J̄l(t), (21)

should be selected. Moreover, other local models whose per-

formance metrics (20) are below a given threshold 0 < ε ≤ 1
are also selected. Note that if ε = 1, all the L local models are

selected, while if ε ≤ Jlmin
(t), only the best local model fl1

is selected. Assume that M(≥ 1) local models are selected

at time t, and the indexes of the selected local models are

represented by the index set Γ as

Γ ={l1, lm|2 ≤ m ≤ M,Jlm(t) ≤ ε, 2 ≤ lm ≤ L}. (22)

This selection procedure yields the M local model outputs

ŷlm(t − i) =flm(x(t − i)), 1 ≤ m ≤ M, (23)

for 0 ≤ i ≤ p− 1. The estimate ŷ(t− i) of the process output



y(t−i) is given as the weighted summation of the M selected

subset models, which is computed by

ŷ(t − i) =

M∑

m=1

θm(t)ŷlm(t − i), 0 ≤ i ≤ p − 1, (24)

where nonnegative θm(t) is the combining coefficient for the

mth selected local model, and the combining coefficients must

satisfy the constraint

M∑

m=1

θm(t) =1. (25)

The estimation errors

e(t − i) =y(t − i) − ŷ(t − i), 0 ≤ i ≤ p − 1, (26)

are utilized to determine the combining coefficients.

Specifically, the optimal combining coefficients can be

obtained by minimizing the LS cost function

V (t) =
1

2

p−1∑

i=0

e2(t − i), (27)

subject to the constraint (25). Because of
∑M

m=1 θm(t) = 1,

V (t) =
1

2

p−1∑

i=0

(
y(t − i) −

M∑

m=1

θm(t)ŷlm(t − i)

)2

=
1

2

p−1∑

i=0

( M∑

m=1

θm(t)y(t − i) −
M∑

m=1

θm(t)ŷlm(t − i)

)2

=
1

2

p−1∑

i=0

( M∑

m=1

θm(t)elm(t − i)

)2

=
1

2
θT(t)Ē(t)θ(t), (28)

where θ(t) =
[
θ1(t) · · · θM (t)

]T
and Ē(t) is the estimated

error covariance matrix which is given as

Ē(t) =

p−1∑

i=0




e2
l1

(t − i) · · · el1(t − i)elM (t − i)
...

. . .
...

el1(t − i)eLM
(t − i) · · · e2

lM
(t − i)


. (29)

The problem of determining the optimal θ(t) can then be

formulated as the following optimization

min
θ

1
2θT(t)Ē(t)θ(t),

s.t.
M∑

m=1
θm(t) = 1.

(30)

The Lagrangian function for the optimization (30) is given by

L
(
θ(t); γ

)
=

1

2
θT(t)Ē(t)θ(t) + γ

(
1

T
Mθ(t) − 1

)
, (31)

where γ > 0 is Lagrange multiplier, and 1M = [1 · · · 1]T ∈
R

M . Letting ∂
∂θ(t)L = 0M yields

Ē(t)θ(t) + γ1M = 0M , (32)

Algorithm 2 Online prediction and adaptive modeling

1: Initialization

2: At the beginning of online operation, the local model set

{Wl, fl}L
l=1 has been constructed.

3: Set {WL, fL} = {Wini, fini} and Wsft = WL.

4: Step 1: Online prediction

5: Give input x(tnext) at new sample time tnext = t + 1.

6: Calculate the performance metrics J̄l(t) using (20) for 1 ≤
l ≤ L on past p data points.

7: Select the subset models with the index set Γ of (22).

8: Calculate the error covariance matrix Ē(t) using (29).

9: Calculate the optimal combining coefficients θ̂(t) using

(33) and (34).

10: Predict true process output y(tnext) with the selective

ensemble (35).

11: Carry out other unrelated online operations.

12: Step 2: Online model adaptation

13: When the observation y(tnext) is available, add

{x(tnext), y(tnext)} to the dataset with t = t + 1.

14: Shift Wsft one sample ahead, and perform relavent local

model set adaptation.

15: Set tnext = tnext + 1, and go to Step 1.

where 0M = [0 · · · 0]T ∈ R
M . This suggests that the optimal

combining vector θ̂ can be obtained as follows. First, calculate

θ̃(t) = Ē−1(t)1M , (33)

which is followed by the normalization

θ̂m(t) =
1

∑M
j=1 θ̃j(t)

θ̃m(t), 1 ≤ m ≤ M. (34)

The prediction ŷ(tnext) for the process’s true output

y(tnext) is produced as the selected ensemble

ŷ(tnext) =

M∑

m=1

θ̂m(t)flm

(
x(tnext)

)
(35)

Algorithm 2 summarizes the online prediction and adaptive

modeling operations. The choice of p trades off the computa-

tional complexity and the robustness against noise.

III. MICROWAVE HEATING PROCESS CASE STUDY

A. Process description

MHP is a complex thermal process with nonlinear dy-

namics and nonstationary characteristics. Unlike conventional

heat transfer and heat radiation, microwave heating not only

involves thermal dynamic variation but also coupled with con-

version of microwave energy. Temperature of heated material

is a crucial measurement during MHP, as thermal runaway of-

ten occurs due to the time-varying physicochemical properties

of material. With the increase of the material temperature, its

dielectric loss increases dramatically, which conversely poses

a positive feedback to temperature increase [18]. Therefore,



accurate online temperature estimation is vital to detect ther-

mal runaway in advance.

A real-world distributed microwave heating system [19] is

used in this case study, which consists of five microwave

generators and waveguides. Microwave generated by each

microwave generator is transmitted through the corresponding

waveguide, fed into the cavity and absorbed by the heated

material. The material is continuously transported through

cavity by the conveyor belt, whose speed can be adjusted by

a motor driver. Three fiber optical sensors (FOSs), denoted

as FOS1 to FOS3, are placed at three different locations to

online record multiple-points of temperature. During the real-

time operation of this MHP, the control center receives the

measured temperature values from the FOSs, and sends con-

trol commends, including the five microwave powers upi
(t),

1 ≤ i ≤ 5, for the five microwave generators as well as the

conveyor speed v(t) to the cavity. Thus, the control inputs to

this MHP are given by

u(t) =
[
up1

(t) up2
(t) up3

(t) up4
(t) up5

(t) v(t)
]T

. (36)

Each FOS measures the temperature, which is the MHP’s

output y(t) at the FOS’s location. For notational simplification

and without causing ambiguity, we have dropped the index for

the FOS from the output y(t). Because of near instantaneous

response of MHP, the temperature y(t) can be adequately

represented by [18]–[20]

y(t) = fnl−ns(x(t); t), (37)

where fnl−ns(·; t) represents the unknown nonlinear and time-

varying system mapping with the input

x(t) =
[
y(t − 1) uT(t)

]T ∈ R
7. (38)

From large amount of data collected from this distributed

microwave heating system [20], we use three datasets from

the three FOSs, and each data set contains 3,000 data samples.

We first normalize the five microwave power inputs and the

temperature measurement according to

ūpi
(t) =

upi
(t)

1000
, 1 ≤ i ≤ 5, (39)

ȳ(t) =
y(t) − ymin

ymax − ymin
, (40)

where ymin and ymax are the minimum and maximum tem-

peratures for each FOS, respectively. For each FOS’s dataset,

we use the first 1,000 samples for model training, and the last

2,000 samples for online prediction and adaptive modeling.

B. Experimental results

The performance of the proposed multiple local model

learning approach are compared with those of the SO-ELM

with sigmoid hidden nodes (SO-ELM (sigmoid)) and the SO-

ELM with RBF hidden nodes (SO-ELM (RBF)) [8]–[10].

For the dataset of each FOS, the 1,000 training samples are

employed for the initial model training, and the 2,000 testing

samples are used for online prediction and adaptive modeling.

Note that our proposed multiple local model learning method

does not really need a large number of training samples, but

the OS-ELM needs such a large number of training samples,

as the ELM model must contain a large number of hidden

nodes. Two performance indexes, the root mean square error

(RMSE)

RMSE(t) =

√√√√1

t

t∑

i=1

(
y(i) − ŷ(i)

)2
, (41)

and the mean absolute error (MAE)

MAE(t) =
1

t

t∑

i=1

∣∣y(i) − ŷ(i)
∣∣, (42)

are used to evaluate the online prediction performance, where

ŷ(i) denotes the model prediction for y(i).
1) Impacts of algorithmic parameters: For our proposed

method, we first investigate the impacts of the window size

W for adaptive local modeling, the number of the latest data

samples p and the threshold ε for selective ensemble.
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Fig. 1. Influence of window size W on number of local models obtained for
three training data sets.

We apply Algorithm 1 to the training data sets of the

three FOSs. Fig. 1 shows the numbers of local linear models

obtained as the functions of the window size W . As expected,

small W leads to large number of local models identified, and

vice versa. For eaxmple, for FOS1, 38 local linear models are

constructed given W = 10 but only 5 local linear models are

identified given W = 30. With the initial local model sets

identified in training, we then apply Algorithm 2 to the three

testing data sets.

With the parameters of selective ensemble set to p = 30 and

ε = 0.01, Fig. 2 (a) and (b) depict the number of total local

models and the prediction RMSE as the functions of window

size W , respectively. As expected, small W results in better

prediction accuracy but leads to large local model set obtained

which has adverse effort on online computation complexity.

It can be seen from Fig. 2 (b) that W ≤ 18 is appropriate.

More specifically, W = 16 for FOS1, W = 18 for FOS2,

and W = 14 for FOS3 are appropriate, in terms of achievable

prediction accuracy. Compared Fig. 2 (a) with Fig. 1, it can

be seen that the proposed learning approach have identified



10 12 14 16 18 20 22 24 26 28 30

Window size (p=30, threshold=0.01)

0

20

40

60

80

100

120

N
u
m

b
e
r 

o
f 
lo

c
a
l 
m

o
d
e
ls

FOS1

FOS2

FOS3

10 12 14 16 18 20 22 24 26 28 30

Window size (p=30, threshold=0.01)

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

T
e
s
t 
R

M
S

E

FOS1

FOS2

FOS3

FOS1: W=16

FOS3: W=14 FOS2: W=18

(a) (b)
Fig. 2. Influence of window size W on online prediction and adaptive modeling given p = 30 and ε = 0.01 for three testing data sets: (a) number of total
local models and (b) online prediction accuracy, both obtained after online adaptation.
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Fig. 3. Influence of number of latest labeled data samples p on online prediction and adaptive modeling given W = 10 and ε = 0.01 for three testing data
sets: (a) online computation time per sample, and (b) online prediction accuracy obtained after online adaptation.
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Fig. 4. Influence of threshold ε on online prediction and adaptive modeling given W = 10 and p = 30 for three testing data sets: (a) Average selected
ensemble size, and (b) online prediction accuracy obtained after online adaptation.

the new process’s states with the associated new local linear

models which occur during the online operation of the process.

Impacts of the number of of latest labeled data samples p

for selective ensemble on the achievable performance of online

prediction and adaptive modeling are investigated in Fig. 3,

given W = 10 and ε = 0.01. As expected, Fig. 3 (a) shows

that online computation complexity increases linearly with p.

It can be seen from Fig. 3 (b) that the prediction RMSEs reach



TABLE I
COMPARISON OF ONLINE PREDICTION AND ADAPTIVE MODELING PERFORMANCE FOR THE SO-ELM AND THE PROPOSED MULTIPLE LOCAL MODEL

LEARNING APPROACH

Sensor Model RMSE MAE
Computation time Models/Nodes

per sample (ms) Initial Final

SO-ELM (sigmoid)

3.0724 0.2014 0.18 100 100

0.2122 0.1236 1.38 300 300

0.2387 0.1652 7.68 500 500

FOS1

SO-ELM (RBF)

0.7598 0.2437 0.57 100 100

0.6477 0.1642 3.04 300 300

0.3744 0.2201 12.05 500 500

Proposed (W = 16, ε = 0.01, p = 25) 0.1978 0.1346 0.75 23 55

SO-ELM (sigmoid)

2.9911 0.2058 0.18 100 100

0.2520 0.1427 1.39 300 300

0.2370 0.1427 5.98 500 500

FOS2

SO-ELM (RBF)

1.3952 0.3476 0.56 100 100

0.9209 0.2006 2.98 300 300

0.4353 0.1676 10.69 500 500

Proposed (W = 18, ε = 0.01, p = 25) 0.1953 0.1411 0.66 16 34

SO-ELM (sigmoid)

2.2194 0.2233 0.18 100 100

0.2409 0.1657 1.38 300 300

0.2316 0.1653 6.33 500 500

FOS3

SO-ELM (RBF)

1.4670 0.4087 0.55 100 100

0.7763 0.2135 3.25 300 300

0.3487 0.1932 12.84 500 500

Proposed (W = 14, ε = 0.001, p = 15) 0.2019 0.1476 0.74 20 45

the minimum values when p ≥ 25 for FOS1 and FOS2 as well

as when p ≥ 15 for FOS3.

Fig. 4 shows how the threshold ε impacts on online pre-

diction and adaptive modeling, given W = 10 and p = 30.

Specifically, observe from Fig. 4 (a) that when ε is smaller

than certain value, only one (the best) local linear model is

selected. When ε is larger than this value, the average size of

selected ensemble increases with ε. Also when ε = 1, all the

local models are selected and the size of selected ensemble

reaches the maximum value. Fig. 4 (b) indicates that the best

prediction RMSEs are achieved with ε = 0.01 for FOS1 and

FOS2 as well as with ε = 0.001 for FOS3.

2) Test performance comparison: We now compare the

online prediction and adaptive modeling performance of the

proposed multiple local model learning approach with those

of the SO-ELM (sigmoid) and SO-ELM (RBF) in Table I.

It can be seen that our proposed method not only achieves a

better online prediction accuracy but also imposes significantly

lower average online computation complexity per sample,

compared with the SO-ELM. Specifically, for FOS1, our

proposed method attains the final prediction RMSE of 0.1978

at the cost of 0.75 ms computation time per sample, while

the best SO-ELM with 300 sigmoid hidden nodes achieves

the final prediction RMSE of 0.2122 at the cost of 1.38 ms

computation time per sample. For FOS2, our method achieves

the final prediction RMSE of 0.1953 with the complexity of

0.66 ms computation time per sample, compared with the final

prediction RMSE of 0.2370 and the complexity of 5.98 ms

computation time per sample attained by the best SO-ELM

having 500 sigmoid hidden nodes. Similar performance gains

of our proposed method over the SO-ELM can be observed for

FOS3, in terms of prediction accuracy and online computation

complexity. Finally, Fig. 5 (a) to (c) compare the online

prediction RMSE(t) performance of our proposed method and

the SO-ELM for the three FOSs. The results of Fig. 5 further

demonstrate that our multiple local model learning approach

can much better track the nonlinear and fast time-varying

characteristics of the underlying system.

IV. CONCLUSIONS

Industrial microwave heating processes are highly nonlinear

and nonstationary. In this paper, a novel online modeling

approach has been proposed. Our proposed multiple local

model learning approach automatically identifies the newly

emerging process state during online operation and fits a local

linear model to the newly identified process state. Adaptive

modeling is achieved by a selective ensemble strategy which

selects a number of best local linear models from the local

model set and optimally combines them to produce the online

prediction. In the application to a real-world distributed mi-

crowave heating system, our proposed multiple local model

learning approach has been demonstrated to be capable of

fast tracking the nonlinear and time-varying characteristics

of the underlying system. In particular, it has been shown

that our proposed method not only achieves better online

prediction accuracy but also imposes significantly lower online
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Fig. 5. Comparison of online prediction performance for the proposed
multiple local model learning approach and the SO-ELM: (a) FOS1, (b) FOS2,
and (c) FOS3.

computation complexity per sample, compared with the SO-

ELM for for nonlinear and nonstationary modeling. Although

we derive this adaptive multiple local model learning in the

context of industrial microwave heating processes, it is self-

evident that our approach is applicable to generic nonlinear

and nonstationary systems.
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