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System identification of Wiener systems with B-spline functions using De Boor recursion
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In this article a simple and effective algorithm is introduced for the system identification of the Wiener system
using observational input/output data. The nonlinear static function in the Wiener system is modelled using a
B-spline neural network. The Gauss–Newton algorithm is combined with De Boor algorithm (both curve and the
first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter
initialisation scheme. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.

Keywords: B-spline; De Boor recursion; Wiener system; system identification

1. Introduction

A popular approach to nonlinear systems identifica-

tion is to use the so-called block-oriented nonlinear

models which comprise the linear dynamic models and

static or memoryless nonlinear functions (Bai 1998;

Zhu 2002; Schoukens, Nemeth, Crama, Rolain, and

Pintelon 2003; Hsu, Vincent, and Poolla 2006). The

Hammerstein model, comprising a nonlinear static

functional transformation followed by a linear dynam-

ical model, has been applied to nonlinear plant/process

modelling in a wide range of engineering problems

(Balestrino, Landi, Ould-Zmirli, and Sani 2001;

Bloemen, Van Den Boom, and Verbruggen 2001;

Turunen, Tanttu, and Loula 2003). The Hammerstein

model has been widely researched (Billings and

Fakhouri 1979; Stoica and Söderström 1982;

Greblicki and Pawlak 1986; Greblicki 1989, 2002;

Lang 1997; Verhaegen and Westwick 1996; Bai and Fu

2002; Chen 2004; Chaoui, Giri, Rochdi, Haloua, and

Naitali 2005; Hong and Mitchell 2007). Alternatively,

the Wiener model comprises a linear dynamical model

followed by a nonlinear static functional transforma-

tion. This is a reasonable model for any linear systems

with a nonlinear measurement device, or some indus-

trial/biological systems (Hunter and Korenberg 1986;

Kalafatis, Arifinand, Wang, and Cluett 1995;

Kalafatis, Wang, and Cluett 1997; Zhu 1999; Gomez,

Jutan, and Baeyens 2004; Hagenblad, Ljung, and Wills

2008). The model characterization/representation of

the unknown nonlinear static function in the Wiener

model is fundamental to its identification and control.

Various approaches have been developed in order to

capture the a priori unknown nonlinearity including

the nonparametric method (Greblicki 1992), subspace

model identification methods (Westwick 1996; Gomez

et al. 2004), fuzzy modelling (Skrjanc, Blazic, and

Agamennoni 2005) and the parametric method

(Kalafatis et al. 1995, 1997; Bai 1998; Zhu 1999). For

the parametric method, the unknown nonlinear func-

tion is restricted by some parametric representation

with a finite number of parameters. In particular, the

nonlinear subsystem often has a predetermined linear

in the parameters model structure. A nonlinear poly-

nomial function of a known finite degrees is usually

considered to be appropriate in approximating the

unknown function (Verhaegen and Westwick 1996;

Chaoui et al. 2005) based on the Stone–Weierstrass

theorem. Conventional nonlinear optimisation

algorithms can be applied to determine the unknown

parameters.

The spline curves consist of many polynomial

pieces offering versatility. The use of piecewise linearity

(Wigren 1993, 1994) and various spline functions (Zhu

1999; Hughes and Westwick 2005) in the modelling of

the Wiener system have been researched. Given its best

conditioning property, the B-spline curve has been

widely used in computer graphics and computer-aided

geometric design (CAGD) (Farin 1994). The early

work on the construction of B-spline curve is mathe-

matically involved and numerically unstable (De Boor

1978). The De Boor algorithm uses recurrence relations

and is numerically stable (De Boor 1978). The B-spline

basis functions for nonlinear systems modelling have

been widely applied (Kavli 1993; Brown and Harris

*Corresponding author. Email: x.hong@reading.ac.uk

ISSN 0020–7721 print/ISSN 1464–5319 online

� 2013 Taylor & Francis

http://dx.doi.org/10.1080/00207721.2012.669863

http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
ha

m
pt

on
 H

ig
hf

ie
ld

] 
at

 0
4:

49
 3

0 
M

ay
 2

01
3 



1994; Harris, Hong, and Gan 2002). In this article we

model the nonlinear static function in the Wiener

system using a B-spline neural network. We point out

that there are clear differences between the proposed

approach to other spline functions-based methods

(Zhu 1999; Hughes and Westwick 2005). It is shown

that by minimising the mean square error (MSE)

between the model output and the system output, the

Gauss–Newton algorithm is readily applicable for

the parameter estimation in the proposed model. The

Gauss–Newton algorithm is combined with the De

Boor algorithm (both curve and the first-order deriv-

ative) for the parameter estimation of the Wiener

model, following a parameter initialisation scheme.

The proposed model based on B-spline functions with

the De Boor recursion has several advantages over

many existent Wiener system modelling paradigms.

First, unlike B-spline functions, the spline functions

used in the Wiener system modelling (Zhu 1999;

Hughes and Westwick 2005) do not have the property

of partition of unity (convexity), which is a desirable

property in achieving numerical stability. Second, the

proposed algorithm based on the De Boor recursion

enables stable and efficient evaluations of functional

and derivative values, as required in nonlinear optimi-

sation algorithms, e.g. the Gauss–Newton algorithm

used in this article. Final, rather than just using the

most commonly used cubic splines, the modeller has

the freedom/flexibility to cope with different model

setting such as the number of knots and polynomial

order.

2. The Wiener system and B-spline neural network

2.1. The Wiener system

The Wiener system consists of a cascade of two

subsystems, a linear filter as the first subsystem,

followed by a nonlinear memoryless function �(.):

R!R as the second subsystem. The system can be

represented by

vðtÞ ¼
z�dBðzÞ

AðzÞ
uðtÞ ¼ b0uðt� d Þ þ b1uðt� d� 1Þ

þ � � � þ bnbuðt� d� nbÞ

� a1vðt� 1Þ � a2vðt� 2Þ � � � � � anavðt� naÞ, b0 ¼ 1

ð1Þ

yðtÞ ¼ � vðtÞð Þ þ CðzÞ�ðtÞ

¼ � vðtÞð Þ þ c1�ðt� 1Þ þ c2�ðt� 2Þ

þ � � � þ cnc�ðt� ncÞ þ �ðtÞ ð2Þ

with z transfer functions A(z), B(z) and C(z) which are

defined by

AðzÞ ¼
Xna

j¼0

ajz
�j, a0 ¼ 1 ð3Þ

BðzÞ ¼
Xnb

j¼0

bjz
�j, b0 ¼ 1 ð4Þ

CðzÞ ¼
Xnc

j¼0

cjz
�j, c0 ¼ 1 ð5Þ

u(t)2R is the system input and y(t)2R is the system

output. �(t) is assumed to be a white noise sequence

independent of u(t), with zero mean and variance �
2.

v(t)2R is the output of the linear filter subsystem and

the input to the nonlinear subsystem. aj, bj are the

coefficients of the linear filter. d� 1 is an assumed

known positive integer representing the delay of the

system. cj are the coefficients of the linear filter to the

noise. na, nb and nc are assumed known positive

integers. We denote a ¼ ½a1, . . . , ana �
T 2 Rna ,

b ¼ ½b1, . . . , bnb �
T 2 Rnb and c ¼ ½c1, . . . , cnc �

T 2 Rnc .

The objective of system identification for the above

Wiener model is that, given an observational input/

output data set DN ¼ fyðtÞ, uðtÞgNt¼1, to identify �(.)

and to estimate the parameters aj, bj in the linear

subsystems and cj in the noise filter. Note that this

model is a special case of the general Wiener systems

(Hagenblad et al. 2008).

Without significant loss of generality, the following

assumptions are initially made about the problem.

Assumption 1: Persistence excitation condition is

given by

rank

uðnbÞ � � � uð1Þ yðnaÞ � � � yð1Þ

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

uðN�1�d Þ � � � uðN�nb�d Þ yðN�1Þ � � � yðN�naÞ

0
BB@

1
CCA

¼ naþnb ð6Þ

Assumption 2: A(z) and C(z) have all zeros inside the

unit circle.

Assumption 3: v(t) is bounded by Vmin� v(t)�Vmax,

where Vmin and Vmax are finite real values.

Remarks:

. Assumption 1 is necessary irrespective of the

model representation and identification algo-

rithm. Persistence excitation is the essential

condition to the input signal for the sake of

the identifiability.

. Assumption 2 represents the conditions on the

stability and the identifiability of the system.
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Note that for the simplest case �(.)¼ 1, the

proposed algorithm reduces to the prediction

error method (Soderström and Stoica 1989),

in which condition on C(z) is required.

. Since only the input–output data are available

and no internal signals are available, we fix

b0¼ 1 so that identification is possible regard-

ing uniqueness of parameter estimators.

Otherwise any pair of f�½b0, . . . , bnb �
T, �(.)/

�}, for � 6¼ 0, provides the identical input–

output measurements. Due to the constraint

b0¼ 1, although the signals between the two

subsystems are unavailable, Assumption 3 is

valid. Vmin and Vmax need not to be known

precisely and they can be set based on an

auxiliary signal fv̂ðtÞg as defined in (21) in the

modelling process. Note that if the nonlinear

subsystem is modelled using other local basis

functions, e.g. piecewise linear models or

radial basis functions (RBF), there is a need

to impose constraints on the range of v(t), and

determine the required parameters for the

associated models (knots or centres).

In this work the B-spline basis functions are

adopted in order to model �(.). Specifically, the

De Boor algorithm (De Boor 1978) is used in the

construction of the B-spline basis functions, as

described below.

2.2. Modelling of W(.) using B-spline function

approximation with De Boor’s algorithm

De Boor’s algorithm is a fast and numerically stable

algorithm for evaluating B-spline spline curves.

Univariate B-spline basis functions are parameterised

by the order of a piecewise polynomial of order (k� 1)

and also by a knot vector which is a set of values

defined on the real line that break it up into a number

of intervals. Suppose that there are M basis functions,

the knot vector is specified by (Mþ k) knot values,

{V1,V2, . . . ,VMþk}. At each end there are k knots

satisfying the condition of being external to the input

region, and as a result the number of internal knots is

(M� k). Specifically

V1 5V2 5Vk 5Vmin 5Vkþ1 5Vkþ2 5 � � � 5VM

5Vmax 5VMþ1 5 � � � 5VMþk: ð7Þ

Given these predetermined knots, a set of M B-spline

basis functions can be formed by using the De Boor

recursion (De Boor 1978), given by

B
ð0Þ
j ðvÞ ¼

1 if Vj � v � Vjþ1

0 otherwise

�
ð8Þ

j ¼ 1, . . . , ðMþ kÞ

B
ðiÞ
j ðvÞ ¼

v�Vj

Viþj�Vj
B
ði�1Þ
j ðvÞ þ

Viþjþ1�v

Viþjþ1�Vjþ1
B
ði�1Þ
jþ1 ðvÞ,

j ¼ 1, . . . , ðMþ k� iÞ

)

i ¼ 1, . . . , k

ð9Þ

Notably the first-order derivatives of the B-spline

function has a similar recursion

d

dv
B
ðkÞ
j ðvÞ ¼

k

Vkþj�Vj

B
ðk�1Þ
j ðvÞ�

k

Vkþjþ1�Vjþ1

B
ðk�1Þ
jþ1 ðvÞ,

j¼ 1, . . . ,M ð10Þ

Note that the early work on the construction of B-

spline curve is mathematically involved. Hence,

another advantage of using De Boor’s recursion is

the flexibility in terms of the evaluations of functional

and derivative values, since it can cope with different

setting such as number of knots, and polynomial order.

We model �(.) in (2) as

�̂ðvÞ ¼
XM

j¼1

B
ðkÞ
j ðvÞ!j ð11Þ

where ^ denotes the estimate, !j’s are weights to be

determined. We denote x¼ [!1, . . . ,!M]T2RM . Note

that model (11) satisfies the property of partition of

unity (convexity), i.e. (B
ðkÞ
j ðvÞ � 0,

PM
j¼1 B

ðkÞ
j ðvÞ ¼ 1),

which is a desirable property in achieving numerical

stability (Farouki and Goodman 1996).

The optimisation of model output with respect to

the number/location of knots is an intractable mixed

integer problem. With the number of knots and their

location determined, conventional nonlinear optimisa-

tion algorithms are applicable. In practice, the number

of knots are predetermined to produce a model as

small as possible that can still provide good modelling

capability. The model performance is not particularly

sensitive to the location of knots if these are evenly

spread out. If there is severe local nonlinearity, the

location of knots can be empirically set by the user by

inserting more knots at higher density in regions with

high curvatures. These regions can be identified by trial

and error.

Note that due to the piecewise nature of B-spline

functions, there are only k basis functions with non-

zero values, and non-zero first-order derivatives, for

any point v. Hence, the computational cost for the

evaluation of �(v) based on the De Boor algorithm is

to do with k, rather than the number of knots, and this

is in the order of O(k2). The evaluation of the

first-order derivatives can be regarded as a byproduct,

with the additional computational cost in the order

of O(k).

1668 X. Hong et al.
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3. The proposed system identification algorithm

Let the prediction error (Soderström and Stoica 1989)

between the Wiener system output y(t) and ŷ(t), the

model predicted output for y(t), be denoted by

e(t)¼ y(t)� ŷ(t), and e¼ [e(1), e(2), . . . , e(N )]T. With

the B-spline approximation, the model predicted

output ŷ(t) can be written as

ŷðtÞ ¼ �ðvðt, a, bÞ,xÞ þ
Xnc

j¼1

cjeðt� j Þ

¼
XM

j¼1

B
ðkÞ
j ðvðt, a, bÞÞ!j þ

Xnc

j¼1

cjeðt� j Þ ð12Þ

The specific system identification task is to jointly

estimate a, b, c and x. This could be achieved by

minimising

V ¼
XN

t¼1

½eðtÞ�2 ð13Þ

via the Gauss–Newton algorithm. Note that

E

�
V

N

�
! �2 þ approximation error if a, b, c, u

are convergent ð14Þ

Note that, in practice, the approximation error is often

negligible as it is a very small finite term in comparison

to the variance of noise �
2. The solution obtained via

(13) can be interpreted as the maximum likelihood

estimates (MLE) under the condition that �(t) is

Gaussian.

Remarks:

. Considerable work has been conducted on the

convergence issues in the identification of

block-oriented nonlinear models, such as the

Hammerstein and Wiener systems (Greblicki

1992; Zhang, Iouditski, and Ljung 1996; Bai

and Reyland 2008, 2009; Bai and Li 2010).

These are mainly based on the separability of

the linear part, since the nonlinearities can be

subsequently identified. Results have been

established based on additional assumptions

such as the statistical properties on the input

signal (white noise or Gaussian) and/or the

nonlinear part (e.g. monotonicity or different

types of prior information). We point out that

the assumptions used in a convergence proof

should not limit the algorithm’s application to

practical systems, as these additional assump-

tions are sufficient but may not be necessary.

This work could be extended in the further

study of the proposed algorithm, if not

directly applicable. Moreover, there is still

the open problem on what is the least prior

information for the identification of Wiener

systems (Bai and Reyland 2008, 2009).

. For parameter estimation, the mean square

error (MSE) criterion is more often used as it

lends to the ease of implementation, e.g.

MLE estimation and nonlinear least

squares algorithm. Alternatively the normal-

ised mean square error (NMSE), though not

often used for parameter estimation, is

commonly used to demonstrate the modelling

performance.

As the objective function of (13) is highly nonlinear,

the solution of the Gauss–Newton algorithm is depen-

dent on the initial condition. It is important that a, b, c

and u are properly initialized so that they converge to

an optimal solution. An initialisation scheme is

proposed below.

3.1. Initialisation of parameter vectors a and b

The initialisation of the linear filter is illustrated with

reference to Figure 1. We denote �
�1(.), any of the

inverse functions of �(.), by ’(.). Consider using also

a B-spline neural network for the modelling of ’(.).

For convenience, we still denote the polynomial degree

as k in the modelling of ’(.). The number of basis

functions is denoted as dy. A set of (dyþ k) knots is

predetermined (see (7)) based on the domain of the

system output y(t), so that there are k external knots

outside each side of the boundary of the system output

y(t). The model used for modelling ’(.) is

’̂ yðtÞð Þ ¼
Xdy

j¼1

B
ðkÞ
j yðtÞð Þ�j ð15Þ

where �j2R, ( j¼ 1, . . . , dy) are the associated weights.

Figure 2 shows the error feedback for parameter

optimisation in which v(t) is used as the target for

C(z)

ψ (.) 

ϕ (.)

A(z)

z   B(z)
 −d

ε  (t)

v(t) y(t)

ξ  (t)

+

+

_

u(t)

Figure 1. The initialisation for the linear filter parameter
vector a and b’s.
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’( y(t)). We denote the error between v(t) and ’( y(t))

as �(t) and let n¼ dy� (naþ 1)þ nb. Applying (1),

yields

uðt� d Þ ¼ �
Xnb

i¼1

biuðt� d� iÞ

þ
Xna

i¼0

ai

" Xdy

j¼1

B
ðkÞ
j yðt� iÞð Þ�j

#
þ �ðtÞ

¼ ½pðxðtÞÞ�Tq þ �ðtÞ ð16Þ

where x(t)¼ [�u(t� d� 1), . . . ,�u(t� d� nb), y(t)]T,

q ¼ [#1, . . . ,#n]
T¼ [�b1, . . . ,�bnb,�1, . . . ,�dy ,�1a1, . . . ,

�jai, . . . ,�dyana �
T 2Rn. p(x(t))¼ [p1(x(t)), . . . , pn

(x(t))]T¼[� u(t� d� 1), . . . ,�u(t� d� nb), B
ðkÞ
1 yðtÞð Þ,

. . . ,B
ðkÞ
dy

yðtÞð Þ, B
ðkÞ
1 yðt� 1Þð Þ � � � ,B

ðkÞ
j yðt� iÞð Þ, . . . ,

B
ðkÞ
dy

yðt� naÞð Þ�T 2Rn. Define � ¼ ½�1, . . . , ,�dy �
T.

Over the training data set, (16) can be written in

matrix form as

u ¼ Pq þ � ð17Þ

where u¼ [u(1� d), . . . , u(N� d)]T. e¼ [� (1), . . . ,

�(N )]T, and P is the regression matrix P¼ [p(x(1)),

. . . , p(x(N ))]T. The parameter vector q can be found as

the least squares solution of

q LS ¼ PTP
� ��1

PTu ð18Þ

This procedure produces our initial estimate of

the vector b(0), which is simply taken as the

subvector of the resultant q LS, consisting of its first

nb elements.

In order to produce our initial estimate of the

vector a(0), the singular value decomposition (SVD)

method based on the above q LS (Bai 1998) is used.

We rearrange the last (naþ 1)� dy elements of q LS to

form the matrix given by

? ¼ �½1 aT�T ¼

b�1 d�1a1
.
.

.
d�1ana

b�2 d�2a1
.
.

.
d�2ana

.

.

.
.
.

.
.
.
.

c�dy d�dya1
.
.

.
d�dyana

0
BBBBBBB@

1
CCCCCCCA

2 <dy�ðnaþ1Þ

ð19Þ

The idea in Bai (1998) is to determine a and a from an

overparameterised vector ? by minimising

k?� �½1 aT�Tk2F:

Construct the SVD of ? ¼
Pminðdy,naþ1Þ

i¼1 �ilimi
T, where

li(i¼ 1, . . . , dy) and mi(i¼ 1, . . . , (naþ 1)) are orthonor-

mal vectors. Let m1 ¼ ½�1,1, �2,1, . . . , , �naþ1, 1�
T. Using

the fact that ? has rank one, we obtain

að0Þ ¼ ½�2,1, . . . , , �naþ1, 1�
T=�1,1: ð20Þ

We can also obtain a¼ �1�1,1l1, but it is no longer

used in the remainder of our algorithm. Note that we

used the constraint a0¼ 1 to get the unique solution

that is different from Bai (1998) due to the different

constraints.

3.2. The initialisation of parameter vectors

and c and x

Consider initially generating an auxiliary signal

fv̂ðtÞgNt¼1 over training data set fuðtÞ, yðtÞgNt¼1, based

on the initialised parameter estimates b̂
ð0Þ

and â
ð0Þ
, as

v̂ðtÞ ¼ uðt� d Þ þ b̂
ð0Þ
1 uðt� d Þ þ � � � þ b̂ð0Þnb

uðt� d� nbÞ

� a
ð0Þ
1 v̂ðt� 1Þ � a

ð0Þ
2 v̂ðt� 2Þ � � � � � að0Þna

v̂ðt� naÞ:

ð21Þ

−8 −6 −4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2(a) (b)

v

 

model predictions

Noisy observations

true function

−8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

v

 

model predictions

Noisy observations

true function

Figure 2. The modelling results (high noise) for the nonlinear function �(u): (a) system 1 and (b) system 2.
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Then a block of training data set fv̂ðtÞ, yðtÞgNt¼1 is used

for the initialisation of parameter vectors c and x.

Using model form (2), in which v(t) is replaced by its

estimates v̂ðtÞ, and �(t) replaced by e(t), we have

yðtÞ ¼
XM

j¼1

B
ðkÞ
j v̂ðtÞð Þ!j þ

Xnc

j¼1

cjeðt� j Þ þ eðtÞ

¼ ½qðv̂ðtÞÞ�Txþ ½~eðtÞ�Tcþ eðtÞ ð22Þ

where qðv̂ðtÞÞ ¼ ½q1ðv̂ðtÞÞ, . . . , qMðv̂ðtÞÞ�T ¼ ½B
ðkÞ
1 v̂ðtÞð Þ, . . . ,

B
ðkÞ
M v̂ðtÞð Þ�T 2RM and ~eðtÞ ¼ [e(t� 1), . . . , e(t� nc)]

T

2 <nc . Over the training data set, (22) can be written

in matrix form

y ¼ ½Q ~E�
x

c

� �
þ e ð23Þ

where Q ¼ ½qðv̂ð1ÞÞ, . . . , qðv̂ðNÞÞ�T, ~E ¼ ½~eð1Þ, . . . ,~eðNÞ�T

and y¼ [y(1), . . . , y(N )]T. The least squares solution of

x and c are obtained from the following iterations:

(1) Initialise

x

c

� �

ð0Þ

¼
ðQTQÞ�1QTy

0

" #
ð24Þ

where 0 is a zero vector of size nc. Calculate

~eð0Þ ¼ y�QðQTQÞ�1QTy, and form ~Eð0Þ. Set

the iteration step �¼ 1.

(2) Calculate the least square solution given by

x

c

� �

ð�Þ

¼
QT

~E
T

ð��1Þ

" #
½Q ~Eð��1Þ�

 !�1
QTy

~E
T

ð��1Þy

" #
ð25Þ

(3) Calculate

eð�Þ ¼ y� ½Q ~Eð��1Þ�
x

c

� �

ð�Þ

ð26Þ

and form ~Eð�Þ. Set �¼ �þ 1, repeat steps 1 to 3

until a predetermined iteration number (e.g. 10)

has reached. Our initial value for x(0) and c(0) is

taken from the final value of
�
x
c

�
ð�Þ
.

3.3. Gauss–Newton algorithm combined with the

De Boor recursion

Note that the initial parameter estimates obtained so

far are only near to, but not optimal in minimising

(13). This is because the regressors in (15) are subject to

the output noise, which will in general propagate to the

parameter estimates, yielding biased parameters

(Hagenblad et al. 2008). In order to find the optimal

value to minimise (13), the Gauss–Newton algorithm

can be applied. We denote h¼ [xT aT bT cT]T, and an

iteration step variable m by a superscript (m). With an

initial h(0) (Sections 3.1–3.2), the Gauss–Newton algo-

rithm is given by

hðmÞ ¼ hðm�1Þ � �f½JðmÞ�TJðmÞg�1½JðmÞ�Teðhðm�1ÞÞ ð27Þ

where J¼ [Jx Ja Jb Jc] is the Jacobian of e(h), and

Ju ¼ �

B
ðkÞ
1 ðvð1ÞÞ � � � B

ðkÞ
M ðvð1ÞÞ

B
ðkÞ
1 ðvð2ÞÞ � � � B

ðkÞ
M ðvð2ÞÞ

.

.

.
.
.

.
.
.
.

B
ðkÞ
1 ðvðNÞÞ � � � B

ðkÞ
M ðvðNÞÞ

2
666664

3
777775

ð28Þ

Ja ¼

vð0Þ f ð1Þ � � � vð1� naÞ f ð1Þ

vð1Þ f ð2Þ � � � vð2� naÞ f ð2Þ

.

.

.
.
.

.
.
.
.

vðN� 1Þ f ðNÞ � � � vðN� naÞ f ðNÞ

2
66664

3
77775

ð29Þ

Jb ¼ �

uð�d Þ f ð1Þ � � � uð1� d� nbÞ f ð1Þ

uð1� d Þ f ð2Þ � � � uð2� d� nbÞ f ð2Þ

.

.

.
.
.

.
.
.
.

uðN� d Þ f ðNÞ � � � uðN� d� nbÞ f ðNÞ

2
66664

3
77775

ð30Þ

Jc ¼ �

eð0, hðm�1ÞÞ � � � eð1� nc, h
ðm�1ÞÞ

eð1, hðm�1ÞÞ � � � eð2� nc, h
ðm�1ÞÞ

.

.

.
.
.

.
.
.
.

eðN� 1, hðm�1ÞÞ � � � eðN� nc, h
ðm�1ÞÞ

2
66664

3
77775

ð31Þ

where f ðtÞ ¼
PM

j¼1
d
dv
½B

ðkÞ
j ðvðtÞÞÞ�!j, t¼ 1, . . . ,N, �4 0 is

a small positive step size. Note that in calculating

(28)–(31), the De Boor algorithm (8)–(10) is applied in

evaluating all entries. In particular, we point out the

term d
dv
½B

ðkÞ
j ðvðtÞÞÞ� using (10), it gives exact values at

minimum extra computational cost (this is an advan-

tage specific to our B-spline functions with the

De Boor recursion, but not Hughes and Westwick

(2005) and Zhu (1999). Effectively, this enables stable

and efficient evaluations of B-spline functional and

derivative values to be possible, which could be

problematic for many other nonlinear representation

including some spline function-based nonlinear

models. The above iteration can be terminated when

h(m) converges, or by predetermining a sufficiently

large number of iterations.
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3.4. A summary of the system identification

algorithm

The system identification algorithm can be summarised

as follows.

(1) Predetermine a set of (dyþ k) knots that break

the domain of system output y(t) up, with k

knots satisfying the condition of being external

to system output region at each end.

(2) Form P and u, and apply (18). Obtain a(0) and

b(0) using (18)–(20).

(3) Construct an auxiliary signal fv̂ðtÞgNt¼1 based

on (21).

(4) Predetermine a set of (Mþ k) knots that break

the domain v(t) up, with k knots satisfying the

condition of being external to region of v(t) at

each end.

(5) Obtain x(0) and c(0) using (25)–(26).

(6) Apply the Gauss–Newton algorithm combined

with the De Boor recursion (27)–(31).

4. Numerical examples

Two Wiener systems are simulated, in which the linear

subsystems are the same for both systems, as A(z)¼

1� 1.2z�1þ 0.5z�2, B(z)¼ 1þ 0.3z�1þ 0.8z�2þ

0.07z�3, C(z)¼ 1þ 0.3z�1 and d¼ 2. For the nonlinear

subsystem, �(.) is given by

System 1: �ðvÞ ¼ 0:5 signðvÞ
ffiffiffiffiffi
jvj

p
ð32Þ

System 2: �ðvÞ ¼ 0:1 signðvÞv2 ð33Þ

respectively. For each system, 1000 training data

samples y(t) were generated by using (1) and (2),

where u(t) was uniformly distributed random variable

u(t)2 [�1.5, 1.5]. For system 1, the variances of the

additive noise to the system output are set as 0.012 (low

noise) and 0.12 (high noise), respectively. The low/high

noise cases correspond to a signal/noise ratio at the

output of 37.9329 dB/17.9329 dB, respectively. For

system 2, the variances of the additive noise to the

system output are set as 0.032 (low noise) and 0.32

(high noise), respectively. The low/high noise cases

correspond to a signal/noise ratio at the output of

33.9050 dB/13.9050 dB, respectively. The polynomial

degree of B-spline basis functions was set as two (k¼ 3,

piecewise quadratic). The system identification algo-

rithm outlined in Section 3.4 was carried out for both

systems with the following predetermined knot

sequences.

For system 1, the knot sequence

½�2:5, �2, �1:75, �1:25, �1, �0:5,

�0:25, 00:25, 0:5, 1, 1:25, 1:75, 2, 2:5�

is initially set for y(t) in order to generate basis

functions used in (15). The knot sequence

½�14, �12, �9, �6, �3, �1,

�0:1, 0, 0:1, 1, 3, 6, 9, 12, 14�

is used for v(t) in order to generate basis functions used

in (11).

For system 2, the knot sequence

½�2:5, �2, �1:75, �1:25, �1, �0:5,

�0:25, 00:25, 0:5, 1, 1:25, 1:75, 2, 2:5�

is initially set for y(t) in order to generate basis

functions used in (15). The knot sequence

½�14, �12, �9, �8, �6, �3, �1, 0, 1, 3, 6, 8, 9, 12, 14�

is used for v(t) in order to generate basis functions used

in (11).

The modelling results are shown in Tables 1 and 2

for the two linear subsystems. It is shown that the

proposed system identification method is particularly

effective at high-output noise level for both systems.

Figure 2(a) and (b) show the excellent approximation

results for the nonlinear static functions using the

B-spline models.

5. Conclusions

The system identification system is investigated by

using the B-spline neural network to model the

nonlinear static function in the Wiener system. The

parameter estimation is based on the Gauss–Newton

algorithm combining with the De Boor algorithm for

both curve and the first-order derivatives, following

the use of a proposed parameter initialisation scheme.

The efficacy of the proposed approach have been

demonstrated via numerical examples.

Table 1. Results of linear subsystem parameter estimation
(system 1): Panel A – low noise and Panel B – high noise.

True parameters Initial estimates Final estimates

Panel A
a1 �1.2 �1.1551 �1.2010
a2 0.5 0.5190 0.5003
b1 0.3 0.3068 0.2983
b2 0.8 0.8030 0.7991
b3 0.07 0.0766 0.0678
c1 0.3 0.6177 0.2429

Panel B
a1 �1.2 �0.5081 �1.2027
a2 0.5 �0.2325 0.4997
b1 0.3 0.4361 0.3011
b2 0.8 0.7206 0.7915
b3 0.07 0.2933 0.0634
c1 0.3 0.8041 0.2959
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