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Abstract— An importance sampling (IS) simulation method is pre-
sented for evaluating the lower-bound symbol error rate (SER) of the
Bayesian decision feedback equalizer (DFE) withM -PAM symbols,
under the assumption of correct decision feedback. By exploiting an
asymptotic property of the Bayesian DFE, a design procedureis devel-
oped, which chooses appropriate bias vectors for the simulation density
to ensure asymptotic efficiency (AE) of the IS simulation.

I. I NTRODUCTION

As the complexity of the Bayesian DFE [1]-[3] increases
exponentially with the channel impulse response (CIR)
lengthnh and the symbol sizeM , SER evaluation under high
signal-to-noise-ratio (SNR) conditions becomes impossible
using a conventional Monte Carlo simulation. This paper
considers SER evaluation of the Bayesian DFE using an IS
simulation method. The idea of IS is that certain values of
the input variables have more impact on the error rate than
others and, by sampling these “important” values more fre-
quently, the estimator variance can be reduced [4]. The issue
is then how to choose a biased distribution to encourage the
important regions of the input variables. One of the most
effective IS techniques is the mean translation approach [5]–
[7], where the distribution is moved toward the error region.

For binary symbols, Iltis [8] developed a randomized bias
technique for the IS simulation of Bayesian equalizers. This
IS simulation method was extended to evaluate the lower-
bound (assuming correct decision feedback) bit error rate of
the Bayesian DFE with binary symbols [9],[10]. For theM -
PAM case, the asymptotic Bayesian decision boundary for
separating any two neighbouring signal classes can be de-
duced [11]. By exploiting a symmetric distribution within
each signal subset, the SER of the Bayesian DFE for theM -
PAM case can be shown to be a scaled error rate of the equiv-
alent “binary” Bayesian DFE evaluated on two neighbouring
signal subsets. These two properties enable an extension of
the IS simulation technique to theM -PAM case.

II. T HE BAYESIAN DECISION FEEDBACK EQUALIZER

Consider the real-valued channel generates the received
signal samples of:y(k) = nh�1Xi=0 his(k � i) + n(k) (1)

wherehi are the CIR taps, the Gaussian white noisen(k) has
zero mean and variance�2n, ands(k) takes the value from
the symbol setS = fsi = 2i �M � 1; 1 � i � Mg. The
DFE uses the observed vectory(k) = [y(k) � � � y(k �m +1)℄T and the past detected symbol vectorŝb(k) = [ŝ(k �d � 1) � � � ŝ(k � d � nb)℄T to produce an estimatês(k �d) of s(k � d), whered, m andnb are the decision delay,
feedforward and feedback orders, respectively. The choice
of d = nh � 1, m = nh andnb = nh � 1 will be used,
as this choice guarantees a linear separability for different
signal classes [12]. Letsf (k) = [s(k) � � � s(k � d)℄T andsb(k) = [s(k � d� 1) � � � s(k � d� nb)℄T . Expressy(k) asy(k) =H1 sf (k) +H2 sb(k) + n(k) (2)

where H1 = 266664 h0 h1 � � � hnh�10 h0 . . .
...

...
. . .

. . . h10 � � � 0 h0 377775 (3)

H2 = 266664 0 � � � 0hnh�1 . . .
...

...
. . . 0h1 � � � hnh�1 377775 (4)

are them� (d+ 1) andm� nb CIR matrices, respectively.
Assuming correct past decisions, we havey(k) = H1 sf (k) +H2 ŝb(k) + n(k) : (5)

Thus the decision feedback translatey(k) into a new space:r(k) = y(k)�H2 ŝb(k) : (6)

Let theNf = Md+1 combinations ofsf (k) be sf;j , 1 �j � Nf . The set of the noiseless channel states, namely,R = frj = H1 sf;j ; 1 � j � Nfg can be partitioned intoM subsets conditioned ons(k � d):R(i) = frj 2 R : s(k � d) = sig; 1 � i �M : (7)

The optimal Bayesian DFE [3] involves computing theM
decision variables for1 � i �M�i(r(k)) = Xrj2R(i) exp �kr(k)� rjk22�2n !

(8)



and making the decision according toŝ(k � d) = si� with i� = arg max1�i�Mf�i(r(k))g : (9)

A geometric translation property [11] is re-iterated here.
For 1 � i � M � 1, R(i+1) is a translation ofR(i)
by the amount2hrev: R(i+1) = R(i) + 2hrev, wherehrev = [hnh�1 � � �h1 h0℄T . This shifting property implies
that, asymptotically when the SNR tends to infinity, the de-
cision boundaryBi+1 for separatingR(i+1) andR(i+2) is a
shift of Bi by an amount2hrev. Without the loss of gen-
erality, consider the two neighbouring subsetsR(M=2) andR((M=2)+1). A pair of opposite-class channel states(r(+) 2R((M=2)+1); r(�) 2 R(M=2) is said to beGabriel neighbours
if 8rj 2 R(M=2)SR((M=2)+1), rj 6= r(+) andrj 6= r(�):krj � r0k2 > kr(+) � r0k2 (10)

wherer0 = (r(+) + r(�))=2. The following lemma [11]
describes the asymptotic decision boundaryBM=2.

Lemma 1:Asymptotically, the optimal decision boundaryBM=2 separatingR(M=2) andR((M=2)+1) is piecewise linear
and made up ofL hyperplanes. Each of these hyperplanes
is defined by a pair of Gabriel neighbours, the hyperplane is
orthogonal to the line connecting the pair of Gabriel neigh-
bours and passes through the midpoint of the line.

Consequently, a necessary condition forrB 2 BM=2 isrB = r(+) + r(�)2 + �r(+) � r(�)2 �?
(11)

wherex? denotes an arbitrary vector in the subspace orthog-
onal tox, r(+) andr(�) are a pair of Gabriel neighbours; and
the sufficient conditions forrB 2 BM=2 arekrB � r(+)k2 < krB � rlk2; 8rl 2 R((M=2)+1); rl 6= r(+) ;

(12)krB � r(�)k2 < krB � rjk2; 8rj 2 R(M=2); rj 6= r(�) ;
(13)krB � r(+)k2 = krB � r(�)k2 : (14)

A simple algorithm can be used to select the set of allL pairs
of Gabriel neighboursfr(+)l ; r(�)l gLl=1 [8],[11].

Due to the symmetric distribution ofS, the states ofR(i)
are distributedsymmetricallyaround the mass center ofR(i).
In particular, if a pointrj 2 R(i) has a distancex to the
decision boundaryBi�1, then there is another pointrl 2 R(i)
with the same distance to the other decision boundaryBi.
Now consider the lower-bound SER for the Bayesian DFEPE = Probfŝ(k � d) 6= s(k � d)g (15)

First create a “binary” Bayesian DFE defined onR(M=2) andR((M=2)+1) with the decision function given by

fb(r(k)) = Xrj2R((M=2)+1) exp �kr(k)� rjk22�2n !
� Xrl2R(M=2) exp �kr(k)� rlk22�2n !

(16)

and the decision rule defined byŝ(k � d) = � 1; sgn(fb(r(k))) � 0 ;�1; sgn(fb(r(k))) < 0 : (17)

Denote the error probability of this “binary” Bayesian DFE
asPe. Taking into account of the shifting and symmetric
properties discussed previously, it is straightforward toverify
thatPE = Pe, with  = 2(M � 1)=M .

III. IS SIMULATION FOR THEM -PAM CASE

To evaluate the SER,PE , of the Bayesian DFE withM -
PAM symbols, it is only needed to evaluate the error prob-
ability, Pe, of the equivalent binary Bayesian DFE defined
on R(M=2) andR((M=2)+1). The IS simulation technique
[9],[10] can readily be used to evaluatePe as follows:P̂e = 1Ns 1Nk NsXj=1 NkXk=1 IE(rj(k)) p(rj(k)jrj)p�(rj(k)jrj) (18)

whereIE(r(k)) = 1 if r(k) causes an error, andIE(r(k)) =0 otherwise;p(rj(k)jrj) is the true conditional density givenrj 2 R((M=2)+1), andNs = Md = Nf=M is the number of
states inR((M=2)+1); the samplerj(k) is generated using the
simulation densityp�(rj(k)jrj) chosen to bep�(rj(k)jrj) = LjXl=1 pl;j(2��2n)m2 exp��krj(k)� vl;jk22�2n � :

(19)
In the simulation density (19),Lj is the number of the bias
vectorsl;j = �rj + vl;j for rj 2 R((M=2)+1), pl;j � 0
for 1 � l � Lj , and

PLjl=1 pl;j = 1. An estimate of the
IS gain forP̂e, which is defined as the ratio of the numbers
of trials required for the same estimate variance using the
Monte Carlo and IS methods, is given as [6],[8]:� = P̂e(1� P̂e)�̂ � P̂ 2e (20)

with�̂ = 1Ns 1Nk NsXj=1 NkXk=1 IE(rj(k))� p(rj(k)jrj)p�(rj(k)jrj)�2 : (21)

The IS simulatedPE is simplyP̂E = P̂e, and the estimated
IS gain forP̂e will be used as the estimated IS gain forP̂E .



A design procedure is given for constructing the simula-
tion densityp�(rj(k)jrj) that meets the conditions for AE

[6]. Let fr(+)l ; r(�)l gLl=1 be the set of Gabriel neighbours se-

lected fromR(M=2) andR((M=2)+1). Each pairs(r(+)l ; r(�)l )
defines a hyperplaneHl(r) = wTl r + bl = 0 that is part of
the asymptotic decision boundaryBM=2, withwl = 2�r(+)l � r(�)l �kr(+)l � r(�)l k2 ; (22)bl = � (r(+)l � r(�)l )T (r(+)l + r(�)l )kr(+)l � r(�)l k2 : (23)

Note thatHl is a canonicalhyperplane withHl(r(+)l ) = 1
andHl(r(�)l ) = �1. A stater(�)j 2 R(M=2) is sufficiently

separableby the hyperplaneHl if wTl r(�)j + bl � �1.

Similarly, r(+)j 2 R((M=2)+1) is sufficiently separable byHl if wTl r(+)j + bl � 1. The hyperplaneHl is reachable

from r(+)j 2 R((M=2)+1) if the projection ofr(+)j ontoHl
is on BM=2. For eachr(�)j 2 R(M=2), its separability in-

dex forHl is �(�)l;j = 1 if r(�)j is sufficiently separable byHl; otherwise�(�)l;j = 0. The separability index�(+)l;j forr(+)j 2 R((M=2)+1) is similarly defined. The reachability ofHl from r(+)j 2 R((M=2)+1) can be tested by computingl;j = �0:5�wTl r(+)j + bl��r(+)l � r(�)l � : (24)

If vl;j = r(+)j +l;j 2 BM=2 (i.e. fb(vl;j) = 0),Hl is reach-

able fromr(+)j (l;j is then a bias vector), and the reachabil-
ity index isl;j = 1; otherwisel;j = 0. The whole process
produces the following separability and reachability table:r(�)1 � � � r(�)Ns r(+)1 � � � r(+)NsH1 �(�)1;1 � � � �(�)1;Ns �(+)1;1 (1;1) � � � �(+)1;Ns (1;Ns )

.

.

.

.

.

. � � � .
.
.

.

.

. � � � .
.
.HL �(�)L;1 � � � �(�)L;Ns �(+)L;1 (L;1) � � � �(+)L;Ns (L;Ns )

For eachr(+)j 2 R((M=2)+1), select those hyperplanes that

can sufficiently separater(+)j and are reachable fromr(+)j
with the aid of the above table. This yields the integer set:G(+)j = fq : �(+)q;j = 1 and q;j = 1g : (25)

The convex regionR(+)j coveringr(+)j is the intersection of

all the half-spacesH(+)q = fr : Hq(r) � 0g with q 2 G(+)j .
In fact, it is not necessary to use every hyperplanes defined
in G(+)j to formR(+)j . A subset of these hyperplanes will be

sufficient, provided that every opposite-class state inR(M=2)
can sufficiently be separated by at least one hyperplane in the
subset. If this can be done, the error regionE satisfiesE � R(+)j = [q2G(+)j H(�)q (26)

with the half-spacesH(�)q = fr : Hq(r) < 0g. Obviously,

all the hyperplanes defined inG(+)j are reachable fromr(+)j
and at least one offvq;jg is the minimum rate point (as de-

fined in [6]). If G(+)j exists for eachr(+)j 2 R((M=2)+1), the
simulation density constructed with the bias vectorsfq;jg,q 2 G(+)j , for all j will guarantee AE.

IV. SIMULATION EXAMPLES

Example 1. A 2-tap channelh = [0:3 1:0℄T with 8-PAM
symbols was simulated, givenm = 2, d = 1 andnb = 1.
The setR had64 states. Nine pairs of Gabriel neighbours
were selected fromR(4) andR(5), leading to the separability
and reachability table from which an AE simulation density
was constructed. The simulation density construction is illus-
trated in Fig. 1. The bias vectors were selected with uniform
probability in the simulation (pl;j = 1=Lj). For each SNR,105 iterations were used for each state inR(5). Thus, the to-
tal samples used for a given SNR were8 � 105. Fig. 2 (a)
shows the lower-bound SERs obtained using the IS and con-
ventional sampling (CS) simulations, respectively. It canbe
seen that the conventional Monte Carlo results for low SNR
conditions based directly on the Bayesian DFE of (8) and
(9) agreed with those of the IS simulation. The estimated
IS gains, depicted in Fig. 2 (b), indicate that exponential IS
gains were obtained with increasing SNRs.

Example 2. A 3-tap channelh = [0:3 1:0 � 0:3℄T with 8-
PAM symbols was tested, givenm = 3, d = 2 andnb = 2.
The setR had512 states. Nineteen pairs of Gabriel neigh-
bours were found fromR(4) andR(5), leading to the sep-
arability and reachability table from which an AE simula-
tion density was constructed. Again the bias vectors were
selected with uniform probability in the simulation. For each
SNR,104 samples were used for each state inR(5), result-
ing in a total of6:4 � 105 samples for a given SNR. Fig. 3
(a) depicts the lower-bound SERs obtained using the IS and
CS simulations, respectively. Again, the conventional Monte
Carlo results for low SNR conditions agreed with those of the

R
(4)

R
(5)

Fig. 1. Illustration of the simulation density construction for the channelh = [0:3 1:0℄T with 8-PAM symbols.
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Fig. 2. The lower-bound SERs (a) and the estimated IS gain (b)of the
Bayesian DFE forh = [0:3 1:0℄T with 8-PAM symbols.

IS simulation. It can be seen from Fig. 3 (b) that exponential
IS gains were obtained with increasing SNRs.

V. CONCLUSIONS

An IS simulation has been extended to evaluate the lower-
bound SER of the Bayesian DFE withM -PAM symbols. It
has been noted that the Bayesian decision boundary sepa-
rating any two neighbouring signal classes is asymptotically
piecewise linear. Furthermore, the SER of the Bayesian DFE
for theM -PAM case is a scaled error rate of the equivalent
binary Bayesian DFE evaluated on any two neighbouringsig-
nal subsets. A design procedure has been presented for con-
structing the simulation density that meets the asymptoticef-
ficiency conditions.
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