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Abstract— An importance sampling (IS) simulation method is pre- ~ whereh; are the CIR taps, the Gaussian white neigk) has

sented for evaluating the lower-bound symbol error rate (SR) of the  zaro mean and variane:% ands(k) takes the value from
Bayesian decision feedback equalizer (DFE) with\/-PAM symbols, _ o . .

under the assumption of correct decision feedback. By expiting an the symbol se = {Sl =2-M-1,1<:i< M} The
asymptotic property of the Bayesian DFE, a design procedurés devel- DFE uses the observed vectofk) = [y(k)---y(k —m +

oped, which chooses appropriate bias vectors for the simuian density 1)]T and the past detected symbol veciptk) = [$(k —

to ensure asymptotic efficiency (AE) of the IS simulation. d— 1) . §(k _d— nb)]T to produce an estimaté(k _
d) of s(k — d), whered, m andn, are the decision delay,
|. INTRODUCTION feedforward and feedback orders, respectively. The choice

ofd = ny — 1, m = n, andn, = n;, — 1 will be used,
As the complexity of the Bayesian DFE [1]-[3] increasess this choice guarantees a linear separability for differe
exponentially with the channel impulse response (CIRgignal classes [12]. Lets(k) = [s(k)---s(k — d)]” and
lengthn,, and the symbol siz&/, SER evaluation under high sy(k) = [s(k —d — 1) --- s(k — d — ny)]". Expresy (k) as
signal-to-noise-ratio (SNR) conditions becomes impdesib

using a conventional Monte Carlo simulation. This paper y(k) = Hu s¢(k) + Ho sy (k) + n(k) (2)
considers SER evaluation of the Bayesian DFE using an lghere
simulation method. The idea of IS is that certain values of ho hi - hpya
the input variables have more impact on the error rate than 0 h )
. “: ” 0 . .
others and, by sampling these “important” values more fre- H, = Q)
quently, the estimator variance can be reduced [4]. Theissu S hy
is then how to choose a biased distribution to encourage the o .-+ 0 ho
important regions of the input variables. One of the most 0 0
effective IS techniques is the mean translation approdeh [5
[7], where the distribution is moved toward the error region H, — hn, 1 : @)
For binary symbols, lltis [8] developed a randomized bias : 0
technique for the IS simulation of Bayesian equalizerssThi hy R

o et v o hon ¢ (1) a7, O e, especively
; o ssuming correct past decisions, we have

the Bayesian DFE with binary symbols [9],[10]. For the& g P

PAM case, the asymptotic Bayesian decision boundary for y(k) = Hy sp(k) + Ho 85 (k) + n(k) . (5)
separating any two neighbouring signal classes can be
duced [11]. By exploiting a symmetric distribution within
each signal subset, the SER of the Bayesian DFE foifhe _ r(k) = y(k) — Hy 8 (k) . (6)
PAM case can be shown to be a scaled error rate of the equiv- i o

alent “binary” Bayesian DFE evaluated on two neighbouring®t the Ny = M®"" combinations o (k) besys;, 1 <
signal subsets. These two properties enable an extension/of Vy. The set of the noiseless channel states, namely,

dﬁw_us the decision feedback translgig) into a new space:

the IS simulation technique to tHe'-PAM case. R ={rj =Hy sy, 1 <j < Ny} canbe partitioned into
M subsets conditioned o1tk — d):
Il. THE BAYESIAN DECISION FEEDBACK EQUALIZER RO = {rjeR: s(k—d)=s;},1<i<M. (7)
Consider the real-valued channel generates the receivéfie optimal Bayesian DFE [3] involves computing the
signal samples of: decision variables fot < i < M
= e (k) —v511°
y(k) = " his(k —i) + n(k) (1) pi(r(k)) = Y exp (—Tg (8)
i=0 r;eR() n



and making the decision according to r(k) — ;|
OIS mq>(—”—i%;5;ﬂt>
§(k —d) = s+ with i* = arglin%%{pi(r(k))}. 9) r; ER(M/2)+1) n

A geometric translation property [11] is re-iterated here. _ Z exp [ — e (k) — 1“z||2 (16)
Forl < i < M — 1, RU+D is a translation ofR(® = o 202
by the amount2h,.,: RUTY) = R(® 4 2h.,, where TER _
heev = [hny,—1 - h1 ho]T. This shifting property implies and the decision rule defined by
that, asymptotically when the SNR tends to infinity, the de-
cision boundanB;; for separating?’+!) and R(+?) is a sk —d) = { _}’ zgﬁ}%ggggg i 8’ (17)
shift of B; by an amoun®h,.,. Without the loss of gen- > SO '
erality, consider the two neighbouring subs&<//2 and  Denote the error probability of this “binary” Bayesian DFE
R(M/2+1) A pair of opposite-class channel state§"”) € as p,. Taking into account of the shifting and symmetric
RIM/2+1) (=) e R(M/2) is said to beGabriel neighbours  properties discussed previously, it is straightforwandeofy
if vr; € RM/2 [ RUM/DHD) p; £ ¢(H) andr; # r(): thatPg = vP,, with y = 2(M — 1)/M.

L 2 (+) _ 2
[lrj = xol[” > |l il (10) [11. 1S SIMULATION FOR THE M-PAM CASE

wherery = (r(t) 4 r(=))/2. The following lemma [11]

describes the asymptotic decision boundagy;. To evaluate the SERPs, of the Bayesian DFE with/-

_ _ . PAM symbols, it is only needed to evaluate the error prob-
Lemma 1: Asymptotically, the optimal decision boundary ability, P., of the equivalent binary Bayesian DFE defined

B> separating?M/2) and RUM/2+1) is piecewise linear on R(M/2) and R((M/>+1) . The IS simulation technique

and made up of hyperplanes. Each of these hyperplanef®],[10] can readily be used to evaluak as follows:

is defined by a pair of Gabriel neighbours, the hyperplane is

orthogonal to the line connecting the pair of Gabriel neigh- . 101 s M p(r; (k)|r;)
idpoi i P =+ Ip(rj(k) o (18)
bours and passes through the midpoint of the line. N, N ]; ; T o (e (k) |rj)

Consequently, a necessary conditionifgre By, is
wherelg(r(k)) = 1if r(k) causes an error, adgh(r(k)) =
rH) 4 () r) ot 0 otherwisep(r;(k)|r;) is the true conditional density given
5 [ 5 } (1)  r; € RM/2+1) ‘andN, = M% = N¢/M is the number of
states inR((M/2)+1); the sample; (k) is generated using the
wherex denotes an arbitrary vector in the subspace orthogimulation density*(r; (k)|r;) chosen to be
onal tox, r(*) andr(~) are a pair of Gabriel neighbours; and

rp =

L;

the sufficient conditions forg € B/, are . Drj lIr; (k) — vi 57
M/ p*(rj(k)[r;) = Z m exp | ——L—5—L— 952 ! .
llen _r(+)||2 <|lrn —1‘1||27 Vr, € R((M/2)+1), r # rH) , =1 n n (19)
(12) In the simulation density (19Y,; is the number of the bias
Ies — e |2 < |jep — 12, Vr; € RM/2) ¢ £ r(_()1,3) vectorsey; = —t; + vi s for r; e R/ p 5 g
_ for1 <1< L; L p; = 1. An esti f th
les — £ = Jep — |2 (1) forl < | < Lj,andy",” pij n estimate of the

_ _ _ IS gain for P,, which is defined as the ratio of the numbers
A simple algorithm can be used to select the set oL.glairs  of trials required for the same estimate variance using the

of Gabriel neighbour$r§+) , r,H},Lzl [8].[11]. Monte Carlo and IS methods, is given as [6],[8]:

Due to the symmetric distribution o, the states oR?(?) Pl — P
are distributesymmetricallyaround the mass center Bf?). r=-—%- A; (20)
In particular, if a pointr; € R has a distance to the n—Fe

decision boundari;_1, then there is another pointe R i
with the same distance to the other decision boundary
Now consider the lower-bound SER for the Bayesian DFE 101 e M p(r;(k)|r;) \>
i= e 23 Il ) (B
N; N, ZZ ! p*(r;(k)|r;)
First create a “binary” Bayesian DFE definedBh"/? and The IS simulated’r is simply Pr, = vP., and the estimated
R((M/2)+1) with the decision function given by IS gain for P, will be used as the estimated IS gain .

Pp = Prob{é(k — d) # s(k —d)} (15)



A design procedure is given for constructing the simulasufficient, provided that every opposite-class statgif{/?)
tion densityp*(r;(k)|r;) that meets the conditions for AE can sufficiently be separated by at least one hyperplanein th

[6]. Let {r! ") x{ )}L_ be the set of Gabriel neighbours se-subset. If this can be done, the error regfosatisfies
lected fromrR(M/2) andR(M/2+1) | Each pairgr| ™ x| ) —

(+) _ -
defines a hyperpland,(r) = w/r + b, = 0 that is part of ECR; = U 7-[51 ) (26)
the asymptotic decision boundaBy; /», with geGiH
4 (o) with the half-space%ig_) = {r : Hy(r) < 0}. Obviously,
_ 2 (rl N ) 22) all the hyperplanes defined @) are reachable from!"

N ||rl(+) _ rl(—)Hz ’ and at least one dfv, ;} is the minimum rate point (as de-
fined in [6]). If G exists for eactr(") € R(M/2+1), the
simulation density constructed with the bias vectfxg; },

(rl(+) . r(*))T(rl(H + rl(*))
qe€ G§+), for all j will guarantee AE.

b= — L
lef) =72

23

Note thatH; is acanonicalhyperplane WithHl(rl(+)) =1 IV. SIMULATION EXAMPLES
andH;(r!™”) = —1. A staterg._) € RM/?) js sufficiently .
separableby the hyperplaned; if wlqu§_) th o< -l Example 1L A g-tap channeh = [0.3 1.0]" with 8-PAM
o ) (M/2)41) | o symbols was simulated, given = 2, d = 1 andn; = 1.
Similarly, r;™" € R is sufficiently separable by The setk had64 states. Nine pairs of Gabriel neighbours
H if w,TrgﬁL) +b; > 1. The hyperplanéi; is reachable were selected fron®') andR(*, leading to the separability
from r;ﬂ e R((M/2)+1) if the projection 0fr§+) onto H, and reachability table from WhICh an AE S|mulat|0_n d_en_5|ty
] ) (M)2) o was constructed. The simulation density constructiofis-l
is on Byyy,. For eachr; © € R , its separability in- trated in Fig. 1. The bias vectors were selected with uniform
dex for H; is al(;) = 11if rg.’) is sufficiently separable by probability in the simulationg ; = 1/L;). For each SNR,
, 5 5
Hy: otherwiseal(;) — 0. The separability indexyl(? 10° iterations were used for each stateRff). ;I'hus, the to-
(+) ((M/2)+’1) L . o tal samples used for a given SNR we&e 10°. Fig. 2 (a)
r; €R is similarly defined. The reachability of gjows the lower-bound SERs obtained using the IS and con-
H; from r§+) e R(M/2)+1) can be tested by computing  ventional sampling (CS) simulations, respectively. It ban
seen that the conventional Monte Carlo results for low SNR
ey =—0.5 (wlTrgjL) + bz) (rl(+) _ rl(’)) _ (24) conditions based directly on the Bayesian DFE of (8) and
(9) agreed with those of the IS simulation. The estimated
IS gains, depicted in Fig. 2 (b), indicate that exponengal |
gains were obtained with increasing SNRs.

Example 2 A 3-tap channeh = [0.3 1.0 — 0.3]7 with 8-
PAM symbols was tested, given = 3, d = 2 andn, = 2.
The setR had512 states. Nineteen pairs of Gabriel neigh-
G o bours were found fronR(*) and R(®, leading to the sep-

) for

) +c5 € Buya (ie. fy(vi;) = 0), Hy is reach-

able fromrg.*) (cy,; is then a bias vector), and the reachabil
ity index isv;,; = 1; otherwisey; ; = 0. The whole process
produces the following separability and reachability ¢abl

If Vij =T

r(_
N,

(=)

) :15—1) ) aﬁ*}lm,n IR . R grability gnd reachability table frorr_l which an AE simula-
‘ e ‘ e tion density was constructed. Again the bias vectors were
o < . R selected with uniform probability in the simulation. Focha

frol erna LN | T p) ey (LN SNR, 10* samples were used for each stateRiff), result-

ing in a total of6.4 x 10° samples for a given SNR. Fig. 3
For eachrg.“ € RIM/2)+1) 'select those hyperplanes that(a) depicts the lower-bound SERs obtained using the IS and
can sufficiently separate™) and are reachable from{™  CS simulations, respectively. Again, the conventional kéon
with the aid of the above table. This yields the integer set; Carloresults forlow SNR conditions agreed with those of the

G§-+) ={q: ag';) =1land~,; =1}. (25)
The convex regioﬁzg.*) coveringrg.ﬂ is the intersection of
all the half-spaces(;” = {r: H,(r) > 0} with ¢ € G\
In fact, it is not necessary to use every hyperplanes define 1 jiustration of the simulation density construtitor the channel
in G;Jr) to form R§.+). A subset of these hyperplanes willbe  h = [0.3 1.0]” with 8-PAM symbols.
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Fig. 2. The lower-bound SERs (a) and the estimated IS gairf(the Fig. 3. The lower-bound SERs (a) and the estimated IS gairf(the
Bayesian DFE foh = [0.3 1.0]7 with 8-PAM symbols. Bayesian DFE foh = [0.3 1.0 — 0.3]7 with 8-PAM symbols.

IS simulation. It can be seen from Fig. 3 (b) that exponential
IS gains were obtained with increasing SNRs. 4]

V. CONCLUSIONS [5]

An IS simulation has been extended to evaluate the Iowe[g-]
bound SER of the Bayesian DFE witli-PAM symbols. It
has been noted that the Bayesian decision boundary sePa-
rating any two neighbouring signal classes is asymptdyical 7]
piecewise linear. Furthermore, the SER of the Bayesian DFE
for the M -PAM case is a scaled error rate of the equivalerigl
binary Bayesian DFE evaluated on any two neighbouring sig-
nal subsets. A design procedure has been presented for cpn-
structing the simulation density that meets the asympédtic
ficiency conditions. [10]
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