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Abstract: This paper shows that the BER performance using
linear equalizer for channel equalization problem is signifi-
cantly dependent on delay order. To obtain optimum per-
formance, the equalizer output should be derived from the
equalizer with delay order having the best BER performance.
An efficient method to evaluate the upper bound BER perfor-
mance of a linear equalizer to find the optimum delay is pro-
posed. The method is novel as the evaluation is performed
using only the channel statistics and the equalizer’s weights.
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1 Introduction
The transmission of digital signal across a communication
channel is subjected to noise and Inter Symbol Interference
(ISI). At the receiver, these effects must be compensated by
an equalizer to achieve reliable data communications [1, 2].
We consider a linear discrete-time communication channel
depicted in Fig. 1, whose output is given by

x(k) =
M∑

i=0

his(k − i) + n(k) (1)

wherek denotes sample index,n(k) is a white Gaussian
noise with varianceσ2, hi are the taps of the Channel Im-
pulse Response (CIR) which has a memoryM , ands(k) is
a binary input drawn from the symbol set{±1}. Although
the analysis presented assumes the case of binary transmit
symbols, the results can be generalized to more complicated
transmit signal sets.
The purpose of the equalizer is to use a vector of noisy obser-
vationx(k) = [x(k) x(k − 1) · · ·x(k −N + 1)]T ∈ RN×1

to estimates(k − d), whereN denotes the equalizer input
length andd the decision delay order. The vectorx(k) is
given by

x(k) = Hs(k) + n(k) = x̂(k) + n(k) (2)

wherex̂(k) ∈ RN×1 is the vector of noise-free input signal
known as the channel state,n(k) ∈ RN×1 is the noise vector,

s(k) = [s(k) s(k−1) · · · s(k−L+1)]T ∈ RL×1 is the vector
of L = M +N transmitted digital symbols, andH ∈ RN×L

is the channel convolution matrix given by

H =




h0 h1 · · · hm 0 · · · 0

0 h0 h1 · · · hm 0 · · · ...
...

. ..
. ..

. .. 0
0 0 h0 h1 · · · hm




(3)

It is obvious from Eqn.(2) thatx(k) depends only onL sym-
bols in s(k) and hence the valid range of delay order is
d ∈ D = {0, 1, · · · , L− 1}. It is well known that the choice
of d can affect BER performance significantly [3, 4].

This paper focuses on the effect of delay order on BER per-
formance and presents an efficient scheme to evaluate the up-
per bound BER performance for a given set of equalizers to
select the optimal delay.
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Figure 1. Model of the channel equalization problem

2 The set of Linear Equalizers
The output of a linear equalizer with weightsw ∈ RN×1 is

y(k) = wT x(k) (4)

For each delay order, the weight vectorw can be evaluated
with respect to some criteria, e.g. the MMSE solution or
the MBER solution [7, 8]. We define the set of weights for
equalizers as

W = [w1w2 . . .wL] ∈ RN×L (5)

where the weights for delayd ∈ D equalizer iswd+1 ∈
RN×1.



2.1 Linear or nonlinear separability
Not all the delay order will result in the equalization problem
being linearly separable [3, 6]. For a nonlinearly separable
problem, the corresponding solution in Eqn.(5) is ineffective
and a nonlinear approach [6] should be used.

Let us examine Eqn.(2) as a matrix operation,

X̂ = HS +N (6)

where X̂ ∈ RN×Ns has Ns = 2L columns of channel
state vectors, specificallyX = [x̂1, x̂2, · · · , x̂Ns

], andS ∈
RL×Ns with correspondingNs columns of distinct trans-
mission sequence, specificallyS = [s1, s2, · · · , sNs ] and
N̂ ∈ RN×Ns is the noise matrix. For the noiseless case,
i.e.N = 0, the estimate ofS givenW is

Ŝ = WT X̂ (7)

To verify if the equalization problem for delayd is linearly
separable, one can evaluate ford ∈ D

ψ(d) =
Ns∑

i=1

|sgn(ŝd+1,i)− sgn(sd+1,i)| (8)

where| • | is the absolute value operator, andŝh,i andsh,i

are the elements athth row andith column ofŜ andS, re-
spectively. Ifψ(d) = 0, the equalization problem for delay
d resulted in the correct classification of all the transmitted
symbols in the noise free case, otherwise it did not.
Eqn.(8) shows a direct way to examine linear separability
which involves evaluatinĝS and comparing all its elements
to S. This procedure is inefficient as it is computationally
intensive while only yielding information regarding linear or
nonlinear separability. To extract more quantitative informa-
tion, the following subsection examines an efficient method
to evaluate the upper bound BER performance of the equal-
izer using only the matrixH andW.

3 Bit error rate and Delay order
Given the equalizer’s weight vectorw, the BER of the equal-
izer for a fixed delay orderd can be evaluated by [7, 8]

BER(d,w) =
1

Ns

Ns∑

i=1

pe(x̂i; d,w) (9)

wherepe(x̂i; d,w) denotes the probability of error due to the
received channel state beingx̂i, and is evaluated by

pe(x̂i; d,w) =





Q
(
|ζi,w|

σ

)
, x̂i correctly classified

1−Q
(
|ζi,w|

σ

)
, otherwise

(10)
whereQ(•) is the Gaussian error function [2],ζi,w is the
distance of the channel statex̂i to the decision boundary and
is given by

ζi,w =
|wT x̂i|
‖w‖ (11)

The vector multiplicationwT x̂i is the response of the linear
equalizer and‖w‖ =

√
wT w. For the channel statêxi to be

classified correctly, the output of the equalizer must satisfy

sgn(wT x̂i) = sgn(sd+1,i) (12)

Eqn.9 shows that the BER performance is the average prob-
ability of error for all the channel states. However, since the
functionQ(•) decays exponentially, the BER performance is
dominated by the largestpe(x̂i; d,w) whenσ → 0. Hence,
an upper bound for the BER performance is

BERUB(d,w) = max
1≤i≤Ns

{pe(x̂i; d,w)} (13)

Therefore the evaluation of BERUB(d,wd+1) will indicate
which delay will result in the best BER performance.

3.1 Distance of channel state to decision
boundary

When the equalization problem is linearly separable, all the
channel states can be classified correctly. In this case, the
probability of error is most affected by the channel state near-
est to the decision boundary, i.e. the channel state with the
minimumζi,w, and hence the largest{pe(x̂i; d,w)}.
To find this nearest distance, the direct approach is to evalu-
ate all the distance and find its minimum, i.e.

{ζi,w}Ns
i=1 =

1
‖w‖w

T X̂ =
{

1
‖w‖w

T x̂i

}Ns

i=1

(14)

An alternative approach is this:
SubstitutingX̂ = HS and lettingpT = [p1 p2 · · · pL] =
wTH in Eqn.14 yields

{ζi,w}Ns
i=1 =

1
‖w‖p

TS =
{

1
‖w‖p

T si

}Ns

i=1

(15)

The correct classification criterion in Eqn.12 also implies

sgn(ζi,w) = sgn(sd+1,i) (16)

For the above condition to be satisfied, Eqn.15 shows that

|pd+1| >
∑

j 6= d + 1
j = 1, · · · , L

|pj | (17)

and the minimum distance of{ζi,w}Ns
i=1 for delay orderd is

therefore

λ(d,w) = min
1≤i≤Ns

{ζi,w}

=
1
‖w‖


|pd+1| −

∑
j 6= d + 1

j = 1, · · · , L

|pj |


(18)

A positive value ofλ(d,w) indicates that the equalization
problem is linearly separable and its magnitude is the dis-
tance of the nearest channel state to the decision boundary.



A negative value indicates that the equalization problem is
not linearly separable and its magnitude is the distance of
the nearest wrongly classified channel state to the decision
boundary. Hence,λ(d,w) measures the degree of linear
separability quantitatively. A negativeλ(d,w) with a larger
magnitude means that nonlinear separability is more severe,
and a larger positive value ofλ(d,w) indicates that the chan-
nel states are located further away from the linear decision
boundary which implies better BER performance.

3.2 Selecting optimal delay
The following steps list the operations required to find opti-
mum delay,

1. EvaluateW using MMSE or MBER criteria.

2. Evaluateλ(d,wd).

3. The optimum delay with corresponding weights is

d∗ = arg max
d∈D

{λ(d,wd)} (19)

The output of the equalizer is the decision from the equal-
izer with the optimum delay. Since the optimum delay or-
der could be any value ofD, and variable delay in decision
output is undesirable, each equalizer’s output is delayed by
zL−1−d∗ to produce estimates ofs(k−L+1) simultaneously.
Hence, regardless the value ofd∗, the estimated output is al-
wayss(k − L + 1).
To illustrate the proposal, consider the equalization prob-
lem with the transfer function of the CIR given byH0(z) =
0.5 + 1.0z−1 and an equalizer lengthN = 2. SinceL = 3,
the valid delay orders ared ∈ D = {0, 1, 2}. Fig 2 illus-
trates the implementation. The normalized soft output of
each equalizer with delayd for inputx(k) is

fd(x(k)) =
wT

d x(k)
‖wd‖ (20)

and the output of the optimal delay equalizer ( Fig 2 )is

ŝ(k − L + 1) = sgn(zL−1−d∗fd∗(x(k))) (21)

4 Simulation results
The following two sets of simulation results are presented.

Channel H0(z) = 0.5 + 1.0z−1, N = 2 andd ∈ D =
{0, 1, 2}. The channel convolution matrix is

H =
[

0.5 1.0 0.0
0.0 0.5 1.0

]
(22)

The weights were evaluated using the MMSE criterion. Us-
ing Eqn.(18), the evaluatedλ(d,wd) areλ(0,w0) = −0.65,
λ(1,w1) = 0.43 andλ(2,w2) = 0.65. The results indi-
cate that the delayd = 0 results in a nonlinearly separable
equalization problem andd∗ = 2 will produce the best BER
performance. To confirm these predictions, simulation was
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Figure 2. Schematic of combined linear equalizer for
H0(z) = 0.5 + 1.0z−1, N = 2 andL = 3

conducted to evaluate BER performance using Eqn.(9), and
the results are illustrated in Fig. 3. The results show that
prediction by the value ofλ(d), namelyd = 0 results in a
nonlinearly separable equalization problem andd = 2 is the
optimum delay order.
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Figure 3. Simulation results for ChannelH0(z) = 0.5 +
1.0z−1 with N = 2

Channel H2(z) = 0.6996 + 0.6646z−1 − 0.2623z−2,
N = 6 andd ∈ D = {0, 1, · · · , 7}. Using Eqn.(18), the
evaluatedλ(d,wd) are[λ(0, ,w0) λ(1,w1) · · ·λ(7,w7)] =
[−0.46,−0.24, 0.04, 0.22, 0.32, 0.37, 0.14,−0.87]. The re-
sults indicate thatd = 0, 1, 7 result in nonlinearly separable
equalization problems and the optimal delay order isd∗ = 5.
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Figure 4. Simulation results for channelH2(z) = 0.6996 +
0.6646z−1 − 0.2623z−2 with N = 6

To confirm these predictions, simulation was conducted and
the results illustrated in Fig. 4 agree with the predicted BER
performance. As in the previous example, the MMSE cost
functions was used to evaluateW.

5 Conclusions
A simple and efficient method has been presented to evaluate
quantitatively if a selected delay order will result in a linearly
separable equalization problem. This provides a technique to
determine the optimal delay order for the linear equalizer.
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