Towards Fully Adaptive Deep Neural Networks

Professor Sheng Chen School of Electronics and Computer Science University of Southampton Southampton SO17 1BJ, United Kingdom

Keynote speech at LSMS2021 & ICSEE2021

October 30 - November 1, Hangzhou, China

Joint work with Dr Tong Liu, Department of Computer Science, University of Sheffield, U.K.

Background

- Artificial neural networks have evolved from 'shallow' one-hidden-layer architecture, such as RBF, to 'deep' architecture
 - Deep learning has achieved breakthrough progress in many walks of life
 - Deep neural networks have been applied to modeling of industrial processes
- Deep learning's success coincides with digital big data era
 - With massive historical data, training of deep neural network models becomes practical
 - Enabling the exploitation of deep learning capability to capture complex underlying nonlinear dynamic behavious from data
- Many real-life processes are not only nonlinear but also highly **nonstationary**
 - During online operation, system's nonlinear dynamics can change significantly
 - Deep neural network model must adapt fast to such change

Motivations

- Sampling period of many industrial processes is small, and adaptation must be sufficiently fast to be completed within a sampling period
 - Impossible to adapt structure of deep neural network model, such as SAE, within sampling period
 - Instead, adaptation is taken place only on weights of output regression layer
 - Insufficient for tracking significant and fast changes in system
- We have proposed an adaptive gradient radial basis function network
 - Adapting structure of GRBF is not only optimal but also imposes litter online computation complexity
 - Completely feasible to complete adaptation within a sample period
 - GRBF is a shallow neural network
- Combining deep learning capability of deep neural network, such as SAE, with excellent adaptability of GRBF? ⇒ Motivate this research

System Model

• Nonlinear and nonstationary system

$$y_t = f_{sys}(\boldsymbol{x}_t; t) + \xi_t$$

- **Output** y_t with lag n_y
- Input vector $oldsymbol{u}_t \in \mathbb{R}^m$ with lag n_y
- Noise ξ_t
- Unknown nonlinear and nonstationary system map $f_{\mathrm{sys}}(\cdot;t)$
- System 'input' **embedding** vector with dimension $n = n_y + m \cdot n_u$

$$\boldsymbol{x}_t = [x_{1,t} \cdots x_{n,t}]^{\mathrm{T}} = \begin{bmatrix} y_{t-1} \cdots y_{t-n_y} \ \boldsymbol{u}_{t-1} \cdots \boldsymbol{u}_{t-n_u} \end{bmatrix}^{\mathrm{T}}$$

- This is **one-step** ahead predictor model
 - Extension to multi-step ahead predictor straightforward

GRBF Network

 \mathcal{Y}_t

• Differencing output series to reduce nonstationarity: **GRBF** input

$$oldsymbol{x}_t' = egin{bmatrix} y_{t-1} - y_{t-2} \cdots y_{t-ny} - y_{t-ny-1} \cdots \end{bmatrix}^{ ext{T}}$$

By comparison, **RBF** input

- $oldsymbol{x}_t = ig[y_{t-1}\cdots y_{t-n_y}\cdotsig]^{\mathrm{T}}$
- Hidden node as local predictor of y_t : **GRBF** node

$$arphi_j(oldsymbol{x}_t') = (y_{t-1}\!+\!\delta_j) \cdot e^{-rac{\|oldsymbol{x}_t'\!-\!oldsymbol{c}_j\|^2}{2\sigma^2}}$$

By comparison, **RBF** node

$$arphi_j(oldsymbol{x}_t') = e^{-rac{\|oldsymbol{x}_t'-oldsymbol{c}_j\|^2}{2\sigma^2}}$$

Efficient Training

- Like RBF network, efficient training is achieved with OLS algorithm Training data $\{x_t, d_t = y_t - y_{t-1}; y_t\}_{t=1}^N \underset{\text{OLS selects subset model}}{\Longrightarrow} \{c_{t_j}, \delta_{t_j}\}_{j=1}^M$
- Geometric interpretation of GRBF hidden node: each center encodes an independent system state and each node acts as a local predictor of system output y_t
- (a) In training, if x_t selected as jth center, set $\delta_j = d_t \rightarrow j$ th node is perfect predictor of y_t
- (b) In prediction, if x_t is close to *j*th center $\rightarrow j$ th node is very good predictor of y_t

6

Online Adaptation

- During online operation, system's underlying dynamics can change significantly
 - A model must adapt to changing operation environment in real time
 - Optimizing structure of neural networks, both shallow and deep ones, online is computationally prohibitive
- Typically, when observation/measurement of y_t becomes available, RLS is used for online adaptation of **weights** of output layer **only**
 - For highly nonstationary process, this is insufficient
- Online learning or adaptive modeling principle: balance 'stability' and 'plasticity'
 - Online leaner should have ability to retain acquired knowledge (stability)
 - At same time, has ability to forget out-of-the-date past knowledge so as to learn new one as quickly as possible (plasticity)
- Adaptive GRBF achieves **balanced** or optimal trade-off of stability and plasticity

Adaptive GRBF

• During online operation, when current modeling \hat{y}_t is insufficient:

$$(y_t - \widehat{y}_t)^2 / y_t^2 \ge \mathsf{thresold}$$

Worst node (smallest squared weighted node output) replaced with a new node:

node center $c_r \leftarrow x'_t$ node scalar $\delta_r \leftarrow y_t - y_{t-1}$

- Most nodes do not change nodes encode independent system states acquired from historical data - stability
- Most out-of-date node is replaced plasticity, to encode **newly emerging system** state and new node is **perfect** local predictor of y_t
- Online **complexity**: regularized LS estimation of output layer weights

Liu, Chen, Liang, Du, Harris, "Fast tunable gradient RBF networks for online modeling of nonlinear and nonstationary dynamic processes," *J. Process Control*, 93, 53–65, 2020

Proposed Deep Neural Network: Structure

- **GRBF weak predictor** module, provide preliminary output prediction
- **Output-enhanced stacked autoencoder** module, provide deep output-relevant features
- GRBF adaptive predictor module, provide final output prediction

Proposed Deep Neural Network: Rationale

- **SAE** is a **deep neural network** finding its way to **regression** application
 - Layers of stacked autoencoders extract deep features from input
 - Given information of output y_t , SAE can extract much better-quality features
- Impossible to provide y_t as input to SAE We do next best thing, provide a perdition of y_t as input to SAE by **GRBF weak predictor**
- Instead of usual linear output regression layer on top of SAE to provide prediction of y_t , we replace it by a much stronger **GRBF** adaptive predictor
- Training of proposed deep neural network
 - **OLS** for GRBF weak predictor
 - Standard optimization procedure for SAE
 - **OLS** for GRBF adaptive predictor

Proposed Deep Neural Network: Operation

- Proposed DNN: SAE enhanced by GRBF weak predictor maps process input space onto deep feature space, and GRBF adaptive predictor then maps feature space onto process output space
- During online operation, GRBF weak predictor and SAE are **fixed** (impossible to adapt SAE online anyway)
- GRBF adaptive predictor is **adapted** online to track process's changing dynamics
 - When underlying system dynamics change significant, feature space changes accordingly
 - GRBF adaptive predictor capable of fast adapting to changing process dynamics
 - while imposing very low online computational complexity, capable of meeting real-time constraint of small sampling period
- Proposed deep neural network integrates **deep learning capability** of **SAE** with **excellent adaptability** of **GRBF**

Experiment Setup

- Proposed DNN is compared with following benchmarks
 - Long short-term memory (LSTM): during online operation, LSTM is fixed
 - Stacked autoencoder (SAE): during online operation, SAE is **fixed**
 - Adaptive SAE: during online operation, only weights of output regression layer is adapted by RLS
 - Adaptive GRBF (AGRBF)
- Performance measure: test mean square error (MSE)
- Online computational complexity: measured by averaged computation time per sample (ACTpS) in [ms]

Liu, Tian, Chen, Wang, Harris, "Deep cascade gradient RBF networks with output-relevant feature extraction and adaptation for nonlinear and nonstationary processes," submitted to *IEEE Trans. Cybernetics*

Case 1: Debutanizer Column Process

Method	Initial training	Online prediction/modeling	
	MSE (dB)	MSE (dB)	ACTpS [ms]
AGRBF	-41.5539	-38.4860	0.4989
LSTM	$-35.1764{\pm}1.1892$	$-30.3595{\pm}0.7991$	NA
SAE	-51.3509 ± 0.6323	-34.2239±4.4788	NA
Adaptive SAE	-51.0977±0.6402	-36.4189 ± 4.0396	0.0021
Proposed DNN	-42.4724±1.6812	-40.5255±0.8252	0.2477

- SAE, adaptive SAE, LSTM, and proposed DNN depend on initialization
 - Average MSE and standard deviation over 20 independent runs are given
- SAE and adaptive SAE achieve spectacular training performance but online test MSE degrades considerably
 - Adaptive SAE has smallest ACTpS, as it **only** adapts 4 linear weights
- Proposed DNN has **best test MSE** with ACTpS smaller than AGRBF
 - Dimension of deep feature space is much smaller than that of input space

Case 2: Microwave Heating Process

Method	Initial training	Online prediction/modeling	
	MSE (dB)	MSE (dB)	ACTpS (ms)
AGRBF	-30.1656	-41.7033	0.0372
LSTM	-30.0209±2.0842	$-30.3644{\pm}1.5311$	NA
SAE	-42.4144±4.5252	$-44.0824{\pm}4.1411$	NA
Adaptive SAE	-40.6789±9.8211	-44.2089±4.5475	0.0020
Proposed DNN	-43.9761±1.2653	-46.0683±1.1564	0.0121

- Nonstationaity of this process is not severe
- Proposed DNN has **best test MSE** with ACTpS smaller than AGRBF
 - Dimension of deep feature space is much smaller than that of input space
- Adaptive SAE has second best test MSE
 - Adaptive SAE has smallest ACTpS, as it **only** adapts 3 linear weights

Case 2: Test MSE Learning Curves

Case 3: Penicillin Fermentation Process

Method	Initial training	Online prediction/modeling	
	MSE (dB)	MSE (dB)	ACTpS (ms)
AGRBF	-33.5760	-40.3049	0.0600
LSTM	-32.6484±4.7905	-26.1942 ± 4.4434	NA
SAE	-89.0346±9.7129	-45.9289 ± 6.4825	NA
Adaptive SAE	-73.4173±10.2068	-48.7861±5.2173	0.0033
Proposed DNN	-37.6025±1.1217	-51.7963±1.9480	0.0498

- SAE and adaptive SAE achieve spectacular training performance but online test MSE degrades considerably
- Proposed DNN has **best test MSE** with ACTpS smaller than AGRBF
 - Dimension of deep feature space is much smaller than that of input space
- Adaptive SAE has second best test MSE, and smallest ACTpS as it **only** adapts 4 linear weights

University

of Southampton

S Chen

Case 3: Test MSE Learning Curves

Conclusions

- **Deep neural networks**, such as stacked autoencoder, has **deep nonlinear learning** capability, but it is **impossible to adapt** network structure online in real time
- Shallow gradient RBF network has excellent adaptability
- We have shown how to **integrate deep nonlinear learning** capability of SAE with **excellent adaptability** of adaptive GRBF
- Proposed deep neural network architecture is capable of adapting to changing underlying system dynamics in **real-time**
 - Particularly suitable for online modeling of highly nonlinear and nonstationary industrial processes

S Chen