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ABSTRACT
An improved closed-loop stability measure is derived for
digital controller structures with finite-word-length (FWL)
implementation, which takes into account the number of
trivial elements in a controller realization. A practical pro-
cedure is presented to design sparse controller realizations
with good FWL closed-loop stability characteristics. A
case study shows that the proposed design procedure yields
computationally efficient controller realizations with en-
hanced FWL closed-loop stability performance.
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1. Introduction

A designed stable control system may achieve a lower than
predicted performance or even become unstable when the
controller is implemented with a finite-precision device.
In real-time applications where computational efficiency
is critical, a digital controller implemented in fixed-point
arithmetic has some advantages. With a fixed-point pro-
cessor, the detrimental FWL effects are markedly increased
due to a reduced precision. It is well-known that FWL ef-
fects on the closed-loop stability depend on the controller
realization structure. This fact can be used to find “opti-
mal” realizations of controllers based on various FWL sta-
bility measures [1]-[7]. However, these design methods
usually yield fully parameterized controller structures.

It is highly desirable that a controller realization has
a sparse structure with many trivial elements of 0, 1 or�1. This is particularly important for real-time applica-
tions with high-order controllers, as it will achieve better
computational efficiency. A canonical controller realiza-
tion has sparse structure but may not have the required
FWL stability robustness. This poses a complex problem
of finding sparse controller realizations with good FWL
closed-loop stability characteristics. In the works [8],[9], a
design procedure has been given to obtain sparse controller�The work was supported by the U.K. Royal Society under a KC Wong
fellowship (RL/ART/CN/XFI/KCW/11949).yOn leave from Institute of Industrial Process Control, Zhejiang Uni-
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realizations based on a FWL pole-sensitivity stability mea-
sure.

This study derives an improved FWL closed-loop sta-
bility measure, which takes into account the number of triv-
ial elements in a controller realization. A practical proce-
dure is proposed, which first maximizes a lower bound of
the proposed stability measure and the resulting controller
realization is then made sparse using an iterative stepwise
algorithm originally developed for filter design [2],[10].
The proposed method has some advantages over the ex-
isting methods [5],[8],[9], as it is more accurate in estimat-
ing the robustness of the FWL closed-loop stability and the
computational complexity is considerably reduced. A de-
sign example is used to test the proposed method.

2. The problem formulation

Consider the discrete-time closed-loop control system with
a linear time-invariant plantP (z) and a digital controllerC(z). The plantP (z) is strictly proper with a state-
space description(AP ;BP ;CP ), whereAP 2 Rm�m,BP 2 Rm�l andCP 2 Rq�m. Let (AC ;BC ;CC ;DC)
be a state-space description of the controllerC(z), withAC 2 Rn�n,BC 2 Rn�q ,CC 2 Rl�n andDC 2 Rl�q .
Given the transfer function matrixC(z), there are infinite
state-space descriptions. In fact, if(A0C ;B0C ;C0C ;D0C) is a
state-space description ofC(z), all the state-space descrip-
tions ofC(z) form arealizationsetSC 4= �(AC ;BC ;CC ;DC) jAC = T�1A0CT;BC = T�1B0C ;CC = C0CT;DC = D0C	 (1)

whereT 2 Rn�n is any non-singular matrix. DenoteX 4= � DC CCBC AC � = 26664 x1 � � � xN�l�n+1x2 � � � xN�l�n+2
... � � � ...xl+n � � � xN 37775

(2)
whereN = (l+n)(q+n). The stability of the closed-loop
control system depends on the eigenvalues of the closed-
loop system matrixA(X) = � AP 00 0 �+ � BP 00 In �X � CP 00 In �



4=M0 +M1XM2 (3)

where0 is the zero matrix of appropriate dimension andIn then � n identity matrix. All the different realizationsX in SC have the same set of closed-loop poles if they are
implemented with infinite precision. Since the closed-loop
system has been designed to be stable, all the eigenvalues�i(A(X)), 1 � i � m+ n, are within the unit disk.

WhenX is implemented with a fixed-point processor
ofBs bits, it is perturbed toX+�X due to the FWL effect.
Each element of�X is bounded by�"=2, that is,�(�X) 4= maxj2f1;���;Ng j�xj j � "=2 (4)

Let Bs = Bi + Bf , whereBi ensures that the absolute
value of each element of2�BiX is no larger than 1. Thus,Bi are bits required for the integer part of a number andBf are bits used to implement the fractional part of a num-
ber. It can be shown that" = 2�Bf . With the perturbation�X, �i(A(X)) is moved to�i(A(X+�X)). If a pole ofA(X+�X) is outside the open unit disk, the closed-loop
system becomes unstable withBs-bit implementedX. An-
other important consideration is the sparseness ofX. Those
elements ofX, which have values 0, 1 or -1, aretrivial pa-
rameters. A trivial parameter requires no operations in the
fixed-point implementation and does not cause any compu-
tational error at all. Thus�xj = 0 whenxj = 0; 1 or�1.
Let we define an indicator function asÆ(x) = � 0; if x = 0; 1 or � 11; otherwise

(5)

When the FWL error�X is small,� j�ij 4= ���i(A(X+�X))��� ���i(A(X))��� NXj=1 � j�ij�xj �xjÆ(xj); 8i 2 f1; � � � ;m+ ng (6)

where�j�ij�xj is evaluated atX. It follows from the Cauchy
inequality thatj�j�ijj �vuutNs NXj=1 ����� j�ij�xj ����2 j�xj j2 Æ(xj)� �(�X)vuutNs NXj=1 ����� j�ij�xj ����2 Æ(xj); 8i (7)

whereNs is the number of the nontrivial elements inX.
This leads to the following stability measure�1(X) = mini2f1;���;m+ng 1� ���i(A(X))��sNs NPj=1 Æ(xj) ����j�ij�xj ���2 (8)

If �(�X) < �1(X), it follows from (7) and (8) thatj�j�ijj < 1� ���i(A(X))��. Therefore���i(A(X+�X))�� � j�j�ijj+ ���i(A(X))�� < 1 (9)

which means that the closed-loop system remains stable
under the FWL error�X. The larger�1(X) is, the larger
FWL errors the closed-loop system can tolerate. Hence,�1(X) is a stability measure describing the FWL closed-
loop stability robustness of a controller realizationX.

Noting the result of how to calculate��i�X [5],[7] and
the following relationship�j�ij�X = 1j�ijRe

���i ��i�X� (10)

leads to the following proposition, which shows that, given
aX, the value of�1(X) can easily be calculated.

Proposition 1 Let A(X) = M0 + M1XM2 given in
(3) be diagonalisable, and have eigenvaluesf�ig =f�i(A(X))g. Denotepi a right eigenvector ofA(X) re-

lated to the eigenvalue�i. DefineMp 4= [p1 p2 � � �pm+n℄
andMy 4= [y1 y2 � � �ym+n℄ = M�Hp , whereyi is the
reciprocal left eigenvector related to�i. Then�j�ij�X = 2664 �j�ij�x1 � � � �j�ij�xN�l�n+1

... � � � ...�j�ij�xl+n � � � �j�ij�xN 3775= 1j�ijMT1 Re
���i y�i pTi �MT2 (11)

By considering the sensitivity of eigenvalue moduli
rather than the sensitivity of eigenvalues, the stability mea-
sure (8) is different from the existing measure [5],[8],[9],
and it generally provides a more accurate estimate for the
robustness of FWL closed-loop stability. It is also worth
pointing out that this improved measure has considerable
computational advantages over the existing one. This is
because�j�ij�X is real-valued while��i�X is complex-valued.
Thus the optimization process and sparse transformation
procedure, discussed in the next section, require much less
computation than the previous approach [5],[8],[9], unless
all the system eigenvalues are real-valued in which case�1(X) and the existing measure become identical.

3. The design procedure

The optimal sparse controller realization with a maximum
tolerance to FWL perturbation in principle is the solution
of the following optimization problem:� 4= maxX2SC �1(X) (12)

However, it is difficult to solve for the above optimization
problem because�1(X) includesÆ(xj) and is not a con-
tinuous function with respect to controller parametersxj .



Consider a lower bound of�1(X) defined by�1(X) = mini2f1;���;m+ng 1� ���i(A(X))��sN NPj=1 ����j�ij�xj ���2 (13)

Obviously,�1(X) � �1(X) and�1(X) is a continuous
function of controller parameters. It is relatively easy to
optimize�1(X) (e.g. [7]). Let the “optimal” controller re-
alizationXopt be the solution of the optimization problem! 4= maxX2SC �1(X) (14)Xopt is generally not the optimal solution of (12) and does
not have a sparse structure. However, it can readily be at-
tempted by the following optimization procedure.

3.1 Optimization of the lower-bound mea-
sure

Assume that an initial realization has been obtained by
some design procedure and is denoted asX0. According
to (1)–(3), a similarity transformation ofX0 byT isX = X(T) = � Il 00 T�1 �X0 � Iq 00 T �

(15)

wheredet(T) 6= 0. The closed-loop system matrix for the
realizationX isA(X) = � Im 00 T�1 �A(X0) � Im 00 T �

(16)

Obviously A(X) has the same set of eigenvalues asA(X0), denoted asf�0i g. Applying proposition 1 to (16)
results in�j�ij�X ����X(T) = � Il 00 TT � �j�ij�X ����X0 � Iq 00 T�T �

(17)
For a complex-valued matrixM 2 C(l+n)�(q+n) with ele-
mentsmsk, denote the Frobenius normkMkF 4=vuutl+nXs=1 q+nXk=1m�skmsk (18)

Then the lower-bound measure (13) can be rewritten as�1(X) =mini2f1;���;m+ng 1� ���0i ��pN � Il 00 TT � �j�ij�X ���X0 � Iq 00 T�T �F= mini2f1;���;m+ng 1pN � Il 00 TT ��i � Iq 00 T�T �F
(19)

where �i 4= �j�ij�X ���X01� j�0i j (20)

If we introduce the cost functionf(T) = �1(X)= mini2f1;���;m+ng 1pN � Il 00 TT ��i � Iq 00 T�T �F
(21)

the optimal similarity transformationTopt can be obtained
by solving for the unconstrained optimization problem:! = maxT2Rn�n f(T) (22)

with a measure of monitoring the singular values ofT to
make sure thatdet(T) 6= 0. The unconstrained optimiza-
tion problem (22) can be solved, for example, using the
adaptive simulated annealing (ASA) algorithm [11]. WithTopt, the corresponding optimal realizationXopt that is
the solution of (14) can readily be computed.

3.2 Stepwise transformation for sparse real-
izations

As the optimal sparse realization that maximizes�1 is dif-
ficult if not impossible to obtain, we search for a subop-
timal solution of (12). SinceXopt maximizes�1 and�1
is a lower-bound of�1, Xopt will produce a satisfactory
large value of�1, although it usually contains no trivial el-
ements. We makeXopt sparse by changing one nontrivial
element ofXopt into a trivial one at a step, under the con-
dition that the value of�1 does not reduce too much. This
process produces a sparse realizationXspa with a satisfac-
tory value of�1. ClearlyXspa is not a true optimal solution
of (12). Notice that, even though�1(Xspa) � �1(Xopt),
it is possible that�1(Xspa) � �1(Xopt). In other words,Xspa may actually have better FWL stability performance
thanXopt. The stepwise procedure for obtainingXspa is:

Step 1: Set � to a very small positive real number (e.g.10�5). The transformation matrixT 2 Rn�n is ini-
tially set toTopt so thatX(T) = Xopt.

Step 2: Find out all the trivial elementsf�1; � � � ; �rg inX(T) (a parameter is considered to be trivial if its dis-
tance to 0, 1 or -1 is less than a tolerance, say10�8).
Denote� the nontrivial element inX(T) that is the
nearest to 0, 1 or -1.

Step 3: ChooseS 2 Rn�n such that

i) �1(X(T+ �S)) is close to�1(X(T)).
ii) f�1; � � � ; �rg inX(T) remain unchanged inX(T+�S).
iii) � inX(T) is changed as nearer as possible to 0, 1
or -1 inX(T + �S).



iv) kSkF = 1.

If S does not exist,Tspa = T and terminate the algo-
rithm.

Step 4: T = T+�S. If � inX(T) is nontrivial, go to step
3. If � becomes trivial, go to step 2.

TheStep 3 guarantees thatX(Tspa) has good performance
as measured by�1 and contains many trivial parameters.
The key is how to obtainS. DenoteVe(�) the column
stacking operator. With a very small� , condition i) means
that �Ve�d�1dT ��T Ve (S) = 0 (23)

and condition ii) means that8>>>><>>>>: �Ve�d�1dT ��T Ve (S) = 0
...�Ve�d�rdT ��T Ve (S) = 0 (24)

Denote the matrixE 4= 266666664 �Ve�d�1dT ��T�Ve�d�1dT ��T
...�Ve�d�rdT ��T

377777775 2 R(r+1)�n2 (25)Ve(S) must belong to the null spaceN (E) of E. IfN (E) is empty,Ve(S) does not exist and the algorithm
is terminated. IfN (E) is not empty, it must have basisfb1; � � � ;btg, assuming that the dimension ofN (E) is t.
Condition iii) requires moving� to its desired value (0, 1
or -1) as fast as possible, and we should chooseVe(S) as

the orthogonal projection ofVe� d�dT� ontoN (E). Noting

condition iv), we can computeVe(S) as follows:ai = bTi Ve� d�dT� 2 R; 8i 2 f1; � � � ; tg (26)v = tXi=1 aibi 2 Rn2 (27)Ve(S) = � vpvTv 2 Rn2 (28)

The sign in (28) is chosen in the following way. If� is
larger than its nearest desired value, the minus sign is taken;
otherwise, the plus sign is used.

For calculating the required derivatives
d�1dT , d�dT ,d�1dT ; � � � ; d�rdT , the following well-known fact is useful.

Given any elementyij in a nonsingularY 2 Rn�n withi 2 f1; � � � ; ng andj 2 f1; � � � ; ng,�Y�yij = eieTj and
�Y�1�yij = �Y�1eieTj Y�1 (29)

whereei denotes theith coordinate vector. In (15), defineU1 = � Il 00 T � and U2 = � Iq 00 T � (30)

For any elementxks in X = U�11 X0U2, wherek 2f1; � � � ; l + ng ands 2 f1; � � � ; q + ng, and anytij in T,
wherei 2 f1; � � � ; ng andj 2 f1; � � � ; ng,�xks�tij = eTk �U�11�tij X0U2es + eTkU�11 X0 �U2�tij es= �eTkU�11 el+ieTl+jU�11 X0U2es+eTkU�11 X0eq+ieTq+jes= �eTkU�11 el+ieTl+jXes + eTkU�11 X0eq+ieTq+jes (31)

That is, dxksdT = 264 eTkU�11
. . . eTkU�11 375�0B�264X0eq+1eTq+1 � � � X0eq+1eTq+n

... � � � ...X0eq+neTq+1 � � � X0eq+neTq+n 375�264 el+1eTl+1X � � � el+1eTl+nX
... � � � ...el+neTl+1X � � � el+neTl+nX3751CA24 es . . . es 35

(32)
Thus, we can readily calculated�dT , d�1dT ; � � � ; d�rdT . Leti0 = arg mini2f1;���;m+ng 1pN � Il 00 TT ��i � Iq 00 T�T �F

(33)
Similar to the derivation ofdxksdT , for any elementwks inW = UT1�i0U�T2 , wherek 2 f1; � � � ; l + ng ands 2f1; � � � ; q + ng, we havedwksdT = 264 eTk . . . eTk 375�0B�264 el+1eTl+1�i0 � � � el+neTl+1�i0

... � � � ...el+1eTl+n�i0 � � � el+neTl+n�i0 375�264Weq+1eTq+1 � � � Weq+neTq+1
... � � � ...Weq+1eTq+n � � � Weq+neTq+n 3751CA�264U�T2 es

. . . U�T2 es 375 (34)

Since �1 = 1pNqPl+nk=1Pq+ns=1 w�kswks (35)



We can calculated�1dT = � 1pN kWk3F Re

"l+nXk=1 q+nXs=1 w�ks dwksdT #
(36)

As in [6],[7], an estimated minimum bit length for
guaranteeing closed-loop stability based on�1(X) isB̂s;min = Bi + Int[� log2(�1(X))℄� 1 (37)

where the integer Int[x℄ � x.

4. A numerical example

This was a single-input single-output fluid power speed
control system studied in [12],[13]. The plant model was
in the continuous-time form and a continuous-timeH1
optimal controller was designed in [12]. We obtained
a discrete-time plantP (z) and a discrete-time controllerC(z) by sampling the continuous-time plant andH1 con-
troller with a sampling rate of 2 kHz. The discrete-time
plantP (z) was given byAP = 2664 9:9988e� 1 1:9432e� 5 5:9320e� 5�4:9631e� 7 2:3577e� 2 2:3709e� 5�1:5151e� 3 2:3709e� 2 2:3751e� 51:5908e� 3 2:3672e� 2 2:3898e� 5�6:2286e� 52:3672e� 52:3898e� 52:3667e� 5 3775 ; BP = 2664 3:0504e� 03�1:2373e� 02�1:2375e� 02�8:8703e� 02 3775 ;CP = � 1 0 0 0 �
The initial realization of the controllerC(z) given in a con-
trollable canonical form wasX0 = 266664 �8:0843e� 4 �1:6112e� 3 �1:5998e� 31 0 00 1 00 0 10 0 0�1:5885e� 3 �1:5773e� 30 �3:3071e� 10 1:9869e+ 00 �3:9816e+ 01 3:3255e+ 0 377775
The closed-loop transition matrixA(X0) was formed us-
ing (3), from which the eigenvalues and the corresponding
eigenvectors of the ideal (infinite-precision) closed-loop
system were computed. The optimisation problem (22) was
constructed, and the ASA algorithm [11] obtained a solu-
tionTopt. The corresponding controller realization, which
maximises the lower-bound measure�1, wasXopt = 266664 �8:0843e� 4 6:4378e� 2 �1:1974e� 22:7588e� 3 1:0010e+ 0 �1:4054e� 2�2:2776e� 4 �5:8175e� 2 3:3649e� 1�2:5200e� 4 1:0668e� 3 1:6778e� 28:1179e� 3 5:1520e� 3 3:1311e� 2

�1:1493e� 2 �2:2104e� 11:0924e� 3 �8:9552e� 37:5457e� 2 1:3962e� 39:9766e� 1 1:5423e� 3�3:8681e� 3 9:9031e� 1 377775
The stepwise transformation was then applied to makeXopt sparse, which yielded a similarity transformation ma-
trix Tspa and corresponding controller realizationXspa = 266664 �8:0843e� 4 1:6372e� 2 �5:4228e� 40 1 00 �6:8678e� 2 3:3285e� 10 �5:6623e� 6 �7:6002e� 42:3061e� 2 �8:1961e� 6 0�1:8348e� 3 �6:9866e� 20 �1:4073e� 34:2230e� 1 5:8895e� 41 04:5476e� 5 9:9262e� 1 377775

Table 1 compares the FWL closed-loop stability per-
formance and the number of non-trivial elements for the
three controller realizationsX0, Xopt andXspa, respec-
tively. We also exploited the true minimum bit length that
guaranteed closed-loop stability for a controller realizationX using the following computer simulation. Starting with
a large enough bit length, e.g.Bs = 100, we rounded
the controllerX to Bs bits and checked the stability of
the closed-loop system, i.e. observing whether the closed-
loop poles were within the open unit disk. ReducedBs
by 1 and repeated the process until there appeared to be
closed-loop instability atBu bits. ThenBs;min = Bu + 1.
The values ofBs;min for the three realizations are given in
Table 1. Notice that forBs � Bs;min, theBs-bit imple-
mented controller will always guarantee closed-loop sta-
bility. However, there may exist someBs < Bu, which
regains closed-loop stability. For example, for the initial
realizationX0,Bu = 32, i.e. when the bit length is smaller
than 33, the closed-loop becomes unstable. AtBs = 16 or
15, the closed-loop becomes stable again. WithBs < 15
instability is observed again.

For this example, the canonical realizationX0 is the
most sparse with 9 non-trivial parameters, but its FWL
closed-loop stability measure�1(X0) is very poor. The
realizationXopt has a much better FWL stability robust-
ness as indicated by�1(Xopt), but its all 25 elements are
non-trivial. The realizationXspa has the largest�1(Xspa)
Table 1. Comparison of the three controller realizations.

realization X0 Xopt XspaNs 9 25 16�1 2.6045e-12 6.8629e-05 6.1081e-05�1 4.4179e-12 6.8629e-05 1.3489e-04B̂s;min 39 14 13Bs;min 33 11 11
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Figure 1. Comparison of unit impulse response of the
infinite-precision controller implementationXideal with
those of the three 16-bit implemented controller realiza-
tionsX0,Xopt andXspa.
and, moreover, it is sparse with 16 non-trivial parameters.
Although this example only has a pair of complex eigen-
values, comparing with the results given in [8] confirms
that the proposed�1 (�1 respectively) is less conserva-
tive in estimating the robustness of FWL closed-loop sta-
bility than the previous measure (its lower-bound respec-
tively). We also computed the unit impulse response of
the closed-loop control system when the controllers were
the infinite-precision implementedX0 and 16-bit imple-
mented three different controller realizations. Any real-
izationX 2 SC implemented in infinite precision will
achieve the exact performance of the infinite-precision im-
plementedX0, which is thedesignedcontroller perfor-
mance. For this reason, the the infinite-precision imple-
mentedX0 is referred to as theideal controller realizationXideal. Fig. 1 compares the unit impulse response of the
plant outputy(k) for the ideal controllerXideal with those
of the 16-bit implementedX0,Xopt andXspa.
5. Conclusions

We have presented a design procedure for constructing
sparse controller realizations with good FWL closed-loop
stability characteristics, based on an improved stability
measure. This new measure yields a more accurate esti-
mate for the robustness of FWL closed-loop stability. An
example confirms that the proposed design procedure pro-
duces computationally efficient controller structures suit-
able for FWL implementation in real-time applications.

References

[1] P. Moroney, A.S. Willsky and P.K. Houpt, The digital
implementation of control compensators: the coeffi-
cient wordlength issue,IEEE Trans. Automatic Con-
trol, 25(8), 1980, 621–630.

[2] M. Gevers and G. Li,Parameterizations in Control,
Estimation and Filtering Problems: Accuracy As-
pects(London: Springer Verlag, 1993).

[3] I.J. Fialho and T.T. Georgiou, On stability and perfor-
mance of sampled data systems subject to word length
constraint,IEEE Trans. Automatic Control, 39(12),
1994, 2476–2481.

[4] A.G. Madievski, B.D.O. Anderson and M. Gev-
ers, Optimum realizations of sampled data controllers
for FWL sensitivity minimization,Automatica, 31(3),
1995, 367–379.

[5] G. Li, On the structure of digital controllers with fi-
nite word length consideration,IEEE Trans. Auto-
matic Control, 43(5), 1998, 689–693.

[6] R.H. Istepanian, G. Li, J. Wu and J. Chu, Analysis
of sensitivity measures of finite-precision digital con-
troller structures with closed-loop stability bounds,
IEE Proc. Control Theory and Applications, 145(5),
1998, 472–478.

[7] J. Wu, S. Chen, G. Li, R.H. Istepanian and J. Chu,
An improved closed-loop stability related measure for
finite-precision digital controller realizations,IEEE
Trans. Automatic Control, 46(7), 2001, 1162–1166.

[8] J. Wu, S. Chen, G. Li and J. Chu, Digital finite-
precision controller realizations with sparseness con-
siderations,Proc. 3rd Chinese World Cong. Intel-
ligent Control and Intelligent Automation, Hefei,
China, 2000, 2869–2873.

[9] R.H. Istepanian, J. Wu and S. Chen, Sparse real-
izations of optimal finite-precision teleoperation con-
troller structures,Proc. ACC’2000, Chicago, USA,
2000, 687–691.

[10] D.S.K. Chan, Constrained minimization of roundoff
noise in fixed-point digital filters,Proc. ICASSP’79,
1979, 335–339.

[11] S. Chen and B.L. Luk, Adaptive simulated anneal-
ing for optimization in signal processing applications,
Signal Processing, 79(1), 1999, 117–128.

[12] I. Njabeleke, R.F. Pannett, P.K. Chawdhry and C.R.
Burrows,H1 control in fluid power,IEE Colloquium
Robust Control – Theory, Software and Applications,
London, U.K., 1997, 7/1–7/4.

[13] J.F. Whidborne, J. Wu and R.S.H. Istepanian, Finite
word length stability issues in anl1 framework,Int. J.
Control, 73(2), 2000, 166–176.


