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ABSTRACT
An improved closed-loop stability measure is derived for
digital controller structures with finite-word-length (FWL)
implementation, which takes into account the number of
trivial elements in a controller realization. A practical pro-
cedure is presented to design sparse controller realizations
with good FWL closed-loop stability characteristics. A
case study shows that the proposed design procedure yields
computationally efficient controller realizations with en-
hanced FWL closed-loop stability performance.
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1. Introduction

A designed stable control system may achieve a lower than
predicted performance or even become unstable when the
controller is implemented with a finite-precision device.
In real-time applications where computational efficiency
is critical, a digital controller implemented in fixed-point
arithmetic has some advantages. With a fixed-point pro-
cessor, the detrimental FWL effects are markedly increased
due to a reduced precision. It is well-known that FWL ef-
fects on the closed-loop stability depend on the controller
realization structure. This fact can be used to find “opti-
mal” realizations of controllers based on various FWL sta-
bility measures [1]-[7]. However, these design methods
usually yield fully parameterized controller structures.

It is highly desirable that a controller realization has
a sparse structure with many trivial elements of 0, 1 or�1. This is particularly important for real-time applica-
tions with high-order controllers, as it will achieve better
computational efficiency. A canonical controller realiza-
tion has sparse structure but may not have the required
FWL stability robustness. This poses a complex problem
of finding sparse controller realizations with good FWL
closed-loop stability characteristics. In the works [8],[9], a
design procedure has been given to obtain sparse controller�The work was supported by the U.K. Royal Society under a KC Wong
fellowship (RL/ART/CN/XFI/KCW/11949).yOn leave from Institute of Industrial Process Control, Zhejiang Uni-
versity, Hangzhou, 310027, P. R. China

realizations based on a FWL pole-sensitivity stability mea-
sure.

This study derives an improved FWL closed-loop sta-
bility measure, which takes into account the number of triv-
ial elements in a controller realization. A practical proce-
dure is proposed, which first maximizes a lower bound of
the proposed stability measure and the resulting controller
realization is then made sparse using an iterative stepwise
algorithm originally developed for filter design [2],[10].
The proposed method has some advantages over the ex-
isting methods [5],[8],[9], as it is more accurate in estimat-
ing the robustness of the FWL closed-loop stability and the
computational complexity is considerably reduced. A de-
sign example is used to test the proposed method.

2. The problem formulation

Consider the discrete-time closed-loop control system with
a linear time-invariant plantP (z) and a digital controllerC(z). The plantP (z) is strictly proper with a state-
space description(AP ;BP ;CP ), whereAP 2 Rm�m,BP 2 Rm�l andCP 2 Rq�m. Let (AC ;BC ;CC ;DC)
be a state-space description of the controllerC(z), withAC 2 Rn�n,BC 2 Rn�q ,CC 2 Rl�n andDC 2 Rl�q .
Given the transfer function matrixC(z), there are infinite
state-space descriptions. In fact, if(A0C ;B0C ;C0C ;D0C) is a
state-space description ofC(z), all the state-space descrip-
tions ofC(z) form arealizationsetSC 4= �(AC ;BC ;CC ;DC) jAC = T�1A0CT;BC = T�1B0C ;CC = C0CT;DC = D0C	 (1)

whereT 2 Rn�n is any non-singular matrix. DenoteX 4= � DC CCBC AC � = 26664 x1 � � � xN�l�n+1x2 � � � xN�l�n+2
... � � � ...xl+n � � � xN 37775

(2)
whereN = (l+n)(q+n). The stability of the closed-loop
control system depends on the eigenvalues of the closed-
loop system matrixA(X) = � AP 00 0 �+ � BP 00 In �X � CP 00 In �



4=M0 +M1XM2 (3)

where0 is the zero matrix of appropriate dimension andIn then � n identity matrix. All the different realizationsX in SC have the same set of closed-loop poles if they are
implemented with infinite precision. Since the closed-loop
system has been designed to be stable, all the eigenvalues�i(A(X)), 1 � i � m+ n, are within the unit disk.

WhenX is implemented with a fixed-point processor
ofBs bits, it is perturbed toX+�X due to the FWL effect.
Each element of�X is bounded by�"=2, that is,�(�X) 4= maxj2f1;���;Ng j�xj j � "=2 (4)

Let Bs = Bi + Bf , whereBi ensures that the absolute
value of each element of2�BiX is no larger than 1. Thus,Bi are bits required for the integer part of a number andBf are bits used to implement the fractional part of a num-
ber. It can be shown that" = 2�Bf . With the perturbation�X, �i(A(X)) is moved to�i(A(X+�X)). If a pole ofA(X+�X) is outside the open unit disk, the closed-loop
system becomes unstable withBs-bit implementedX. An-
other important consideration is the sparseness ofX. Those
elements ofX, which have values 0, 1 or -1, aretrivial pa-
rameters. A trivial parameter requires no operations in the
fixed-point implementation and does not cause any compu-
tational error at all. Thus�xj = 0 whenxj = 0; 1 or�1.
Let we define an indicator function asÆ(x) = � 0; if x = 0; 1 or � 11; otherwise

(5)

When the FWL error�X is small,� j�ij 4= ���i(A(X+�X))��� ���i(A(X))��� NXj=1 � j�ij�xj �xjÆ(xj); 8i 2 f1; � � � ;m+ ng (6)

where�j�ij�xj is evaluated atX. It follows from the Cauchy
inequality thatj�j�ijj �vuutNs NXj=1 ����� j�ij�xj ����2 j�xj j2 Æ(xj)� �(�X)vuutNs NXj=1 ����� j�ij�xj ����2 Æ(xj); 8i (7)

whereNs is the number of the nontrivial elements inX.
This leads to the following stability measure�1(X) = mini2f1;���;m+ng 1� ���i(A(X))��sNs NPj=1 Æ(xj) ����j�ij�xj ���2 (8)

If �(�X) < �1(X), it follows from (7) and (8) thatj�j�ijj < 1� ���i(A(X))��. Therefore���i(A(X+�X))�� � j�j�ijj+ ���i(A(X))�� < 1 (9)

which means that the closed-loop system remains stable
under the FWL error�X. The larger�1(X) is, the larger
FWL errors the closed-loop system can tolerate. Hence,�1(X) is a stability measure describing the FWL closed-
loop stability robustness of a controller realizationX.

Noting the result of how to calculate��i�X [5],[7] and
the following relationship�j�ij�X = 1j�ijRe

���i ��i�X� (10)

leads to the following proposition, which shows that, given
aX, the value of�1(X) can easily be calculated.

Proposition 1 Let A(X) = M0 + M1XM2 given in
(3) be diagonalisable, and have eigenvaluesf�ig =f�i(A(X))g. Denotepi a right eigenvector ofA(X) re-

lated to the eigenvalue�i. DefineMp 4= [p1 p2 � � �pm+n℄
andMy 4= [y1 y2 � � �ym+n℄ = M�Hp , whereyi is the
reciprocal left eigenvector related to�i. Then�j�ij�X = 2664 �j�ij�x1 � � � �j�ij�xN�l�n+1

... � � � ...�j�ij�xl+n � � � �j�ij�xN 3775= 1j�ijMT1 Re
���i y�i pTi �MT2 (11)

By considering the sensitivity of eigenvalue moduli
rather than the sensitivity of eigenvalues, the stability mea-
sure (8) is different from the existing measure [5],[8],[9],
and it generally provides a more accurate estimate for the
robustness of FWL closed-loop stability. It is also worth
pointing out that this improved measure has considerable
computational advantages over the existing one. This is
because�j�ij�X is real-valued while��i�X is complex-valued.
Thus the optimization process and sparse transformation
procedure, discussed in the next section, require much less
computation than the previous approach [5],[8],[9], unless
all the system eigenvalues are real-valued in which case�1(X) and the existing measure become identical.

3. The design procedure

The optimal sparse controller realization with a maximum
tolerance to FWL perturbation in principle is the solution
of the following optimization problem:� 4= maxX2SC �1(X) (12)

However, it is difficult to solve for the above optimization
problem because�1(X) includesÆ(xj) and is not a con-
tinuous function with respect to controller parametersxj .



Consider a lower bound of�1(X) defined by�1(X) = mini2f1;���;m+ng 1� ���i(A(X))��sN NPj=1 ����j�ij�xj ���2 (13)

Obviously,�1(X) � �1(X) and�1(X) is a continuous
function of controller parameters. It is relatively easy to
optimize�1(X) (e.g. [7]). Let the “optimal” controller re-
alizationXopt be the solution of the optimization problem! 4= maxX2SC �1(X) (14)Xopt is generally not the optimal solution of (12) and does
not have a sparse structure. However, it can readily be at-
tempted by the following optimization procedure.

3.1 Optimization of the lower-bound mea-
sure

Assume that an initial realization has been obtained by
some design procedure and is denoted asX0. According
to (1)–(3), a similarity transformation ofX0 byT isX = X(T) = � Il 00 T�1 �X0 � Iq 00 T �

(15)

wheredet(T) 6= 0. The closed-loop system matrix for the
realizationX isA(X) = � Im 00 T�1 �A(X0) � Im 00 T �

(16)

Obviously A(X) has the same set of eigenvalues asA(X0), denoted asf�0i g. Applying proposition 1 to (16)
results in�j�ij�X ����X(T) = � Il 00 TT � �j�ij�X ����X0 � Iq 00 T�T �

(17)
For a complex-valued matrixM 2 C(l+n)�(q+n) with ele-
mentsmsk, denote the Frobenius normkMkF 4=vuutl+nXs=1 q+nXk=1m�skmsk (18)

Then the lower-bound measure (13) can be rewritten as�1(X) =mini2f1;���;m+ng 1� ���0i ��pN 



� Il 00 TT � �j�ij�X ���X0 � Iq 00 T�T �



F= mini2f1;���;m+ng 1pN 



� Il 00 TT ��i � Iq 00 T�T �



F
(19)

where �i 4= �j�ij�X ���X01� j�0i j (20)

If we introduce the cost functionf(T) = �1(X)= mini2f1;���;m+ng 1pN 



� Il 00 TT ��i � Iq 00 T�T �



F
(21)

the optimal similarity transformationTopt can be obtained
by solving for the unconstrained optimization problem:! = maxT2Rn�n f(T) (22)

with a measure of monitoring the singular values ofT to
make sure thatdet(T) 6= 0. The unconstrained optimiza-
tion problem (22) can be solved, for example, using the
adaptive simulated annealing (ASA) algorithm [11]. WithTopt, the corresponding optimal realizationXopt that is
the solution of (14) can readily be computed.

3.2 Stepwise transformation for sparse real-
izations

As the optimal sparse realization that maximizes�1 is dif-
ficult if not impossible to obtain, we search for a subop-
timal solution of (12). SinceXopt maximizes�1 and�1
is a lower-bound of�1, Xopt will produce a satisfactory
large value of�1, although it usually contains no trivial el-
ements. We makeXopt sparse by changing one nontrivial
element ofXopt into a trivial one at a step, under the con-
dition that the value of�1 does not reduce too much. This
process produces a sparse realizationXspa with a satisfac-
tory value of�1. ClearlyXspa is not a true optimal solution
of (12). Notice that, even though�1(Xspa) � �1(Xopt),
it is possible that�1(Xspa) � �1(Xopt). In other words,Xspa may actually have better FWL stability performance
thanXopt. The stepwise procedure for obtainingXspa is:

Step 1: Set � to a very small positive real number (e.g.10�5). The transformation matrixT 2 Rn�n is ini-
tially set toTopt so thatX(T) = Xopt.

Step 2: Find out all the trivial elementsf�1; � � � ; �rg inX(T) (a parameter is considered to be trivial if its dis-
tance to 0, 1 or -1 is less than a tolerance, say10�8).
Denote� the nontrivial element inX(T) that is the
nearest to 0, 1 or -1.

Step 3: ChooseS 2 Rn�n such that

i) �1(X(T+ �S)) is close to�1(X(T)).
ii) f�1; � � � ; �rg inX(T) remain unchanged inX(T+�S).
iii) � inX(T) is changed as nearer as possible to 0, 1
or -1 inX(T + �S).



iv) kSkF = 1.

If S does not exist,Tspa = T and terminate the algo-
rithm.

Step 4: T = T+�S. If � inX(T) is nontrivial, go to step
3. If � becomes trivial, go to step 2.

TheStep 3 guarantees thatX(Tspa) has good performance
as measured by�1 and contains many trivial parameters.
The key is how to obtainS. DenoteVe
(�) the column
stacking operator. With a very small� , condition i) means
that �Ve
�d�1dT ��T Ve
 (S) = 0 (23)

and condition ii) means that8>>>><>>>>: �Ve
�d�1dT ��T Ve
 (S) = 0
...�Ve
�d�rdT ��T Ve
 (S) = 0 (24)

Denote the matrixE 4= 266666664 �Ve
�d�1dT ��T�Ve
�d�1dT ��T
...�Ve
�d�rdT ��T

377777775 2 R(r+1)�n2 (25)Ve
(S) must belong to the null spaceN (E) of E. IfN (E) is empty,Ve
(S) does not exist and the algorithm
is terminated. IfN (E) is not empty, it must have basisfb1; � � � ;btg, assuming that the dimension ofN (E) is t.
Condition iii) requires moving� to its desired value (0, 1
or -1) as fast as possible, and we should chooseVe
(S) as

the orthogonal projection ofVe
� d�dT� ontoN (E). Noting

condition iv), we can computeVe
(S) as follows:ai = bTi Ve
� d�dT� 2 R; 8i 2 f1; � � � ; tg (26)v = tXi=1 aibi 2 Rn2 (27)Ve
(S) = � vpvTv 2 Rn2 (28)

The sign in (28) is chosen in the following way. If� is
larger than its nearest desired value, the minus sign is taken;
otherwise, the plus sign is used.

For calculating the required derivatives
d�1dT , d�dT ,d�1dT ; � � � ; d�rdT , the following well-known fact is useful.

Given any elementyij in a nonsingularY 2 Rn�n withi 2 f1; � � � ; ng andj 2 f1; � � � ; ng,�Y�yij = eieTj and
�Y�1�yij = �Y�1eieTj Y�1 (29)

whereei denotes theith coordinate vector. In (15), defineU1 = � Il 00 T � and U2 = � Iq 00 T � (30)

For any elementxks in X = U�11 X0U2, wherek 2f1; � � � ; l + ng ands 2 f1; � � � ; q + ng, and anytij in T,
wherei 2 f1; � � � ; ng andj 2 f1; � � � ; ng,�xks�tij = eTk �U�11�tij X0U2es + eTkU�11 X0 �U2�tij es= �eTkU�11 el+ieTl+jU�11 X0U2es+eTkU�11 X0eq+ieTq+jes= �eTkU�11 el+ieTl+jXes + eTkU�11 X0eq+ieTq+jes (31)

That is, dxksdT = 264 eTkU�11
. . . eTkU�11 375�0B�264X0eq+1eTq+1 � � � X0eq+1eTq+n

... � � � ...X0eq+neTq+1 � � � X0eq+neTq+n 375�264 el+1eTl+1X � � � el+1eTl+nX
... � � � ...el+neTl+1X � � � el+neTl+nX3751CA24 es . . . es 35

(32)
Thus, we can readily calculated�dT , d�1dT ; � � � ; d�rdT . Leti0 = arg mini2f1;���;m+ng 1pN 



� Il 00 TT ��i � Iq 00 T�T �



F

(33)
Similar to the derivation ofdxksdT , for any elementwks inW = UT1�i0U�T2 , wherek 2 f1; � � � ; l + ng ands 2f1; � � � ; q + ng, we havedwksdT = 264 eTk . . . eTk 375�0B�264 el+1eTl+1�i0 � � � el+neTl+1�i0

... � � � ...el+1eTl+n�i0 � � � el+neTl+n�i0 375�264Weq+1eTq+1 � � � Weq+neTq+1
... � � � ...Weq+1eTq+n � � � Weq+neTq+n 3751CA�264U�T2 es

. . . U�T2 es 375 (34)

Since �1 = 1pNqPl+nk=1Pq+ns=1 w�kswks (35)



We can calculated�1dT = � 1pN kWk3F Re

"l+nXk=1 q+nXs=1 w�ks dwksdT #
(36)

As in [6],[7], an estimated minimum bit length for
guaranteeing closed-loop stability based on�1(X) isB̂s;min = Bi + Int[� log2(�1(X))℄� 1 (37)

where the integer Int[x℄ � x.

4. A numerical example

This was a single-input single-output fluid power speed
control system studied in [12],[13]. The plant model was
in the continuous-time form and a continuous-timeH1
optimal controller was designed in [12]. We obtained
a discrete-time plantP (z) and a discrete-time controllerC(z) by sampling the continuous-time plant andH1 con-
troller with a sampling rate of 2 kHz. The discrete-time
plantP (z) was given byAP = 2664 9:9988e� 1 1:9432e� 5 5:9320e� 5�4:9631e� 7 2:3577e� 2 2:3709e� 5�1:5151e� 3 2:3709e� 2 2:3751e� 51:5908e� 3 2:3672e� 2 2:3898e� 5�6:2286e� 52:3672e� 52:3898e� 52:3667e� 5 3775 ; BP = 2664 3:0504e� 03�1:2373e� 02�1:2375e� 02�8:8703e� 02 3775 ;CP = � 1 0 0 0 �
The initial realization of the controllerC(z) given in a con-
trollable canonical form wasX0 = 266664 �8:0843e� 4 �1:6112e� 3 �1:5998e� 31 0 00 1 00 0 10 0 0�1:5885e� 3 �1:5773e� 30 �3:3071e� 10 1:9869e+ 00 �3:9816e+ 01 3:3255e+ 0 377775
The closed-loop transition matrixA(X0) was formed us-
ing (3), from which the eigenvalues and the corresponding
eigenvectors of the ideal (infinite-precision) closed-loop
system were computed. The optimisation problem (22) was
constructed, and the ASA algorithm [11] obtained a solu-
tionTopt. The corresponding controller realization, which
maximises the lower-bound measure�1, wasXopt = 266664 �8:0843e� 4 6:4378e� 2 �1:1974e� 22:7588e� 3 1:0010e+ 0 �1:4054e� 2�2:2776e� 4 �5:8175e� 2 3:3649e� 1�2:5200e� 4 1:0668e� 3 1:6778e� 28:1179e� 3 5:1520e� 3 3:1311e� 2

�1:1493e� 2 �2:2104e� 11:0924e� 3 �8:9552e� 37:5457e� 2 1:3962e� 39:9766e� 1 1:5423e� 3�3:8681e� 3 9:9031e� 1 377775
The stepwise transformation was then applied to makeXopt sparse, which yielded a similarity transformation ma-
trix Tspa and corresponding controller realizationXspa = 266664 �8:0843e� 4 1:6372e� 2 �5:4228e� 40 1 00 �6:8678e� 2 3:3285e� 10 �5:6623e� 6 �7:6002e� 42:3061e� 2 �8:1961e� 6 0�1:8348e� 3 �6:9866e� 20 �1:4073e� 34:2230e� 1 5:8895e� 41 04:5476e� 5 9:9262e� 1 377775

Table 1 compares the FWL closed-loop stability per-
formance and the number of non-trivial elements for the
three controller realizationsX0, Xopt andXspa, respec-
tively. We also exploited the true minimum bit length that
guaranteed closed-loop stability for a controller realizationX using the following computer simulation. Starting with
a large enough bit length, e.g.Bs = 100, we rounded
the controllerX to Bs bits and checked the stability of
the closed-loop system, i.e. observing whether the closed-
loop poles were within the open unit disk. ReducedBs
by 1 and repeated the process until there appeared to be
closed-loop instability atBu bits. ThenBs;min = Bu + 1.
The values ofBs;min for the three realizations are given in
Table 1. Notice that forBs � Bs;min, theBs-bit imple-
mented controller will always guarantee closed-loop sta-
bility. However, there may exist someBs < Bu, which
regains closed-loop stability. For example, for the initial
realizationX0,Bu = 32, i.e. when the bit length is smaller
than 33, the closed-loop becomes unstable. AtBs = 16 or
15, the closed-loop becomes stable again. WithBs < 15
instability is observed again.

For this example, the canonical realizationX0 is the
most sparse with 9 non-trivial parameters, but its FWL
closed-loop stability measure�1(X0) is very poor. The
realizationXopt has a much better FWL stability robust-
ness as indicated by�1(Xopt), but its all 25 elements are
non-trivial. The realizationXspa has the largest�1(Xspa)
Table 1. Comparison of the three controller realizations.

realization X0 Xopt XspaNs 9 25 16�1 2.6045e-12 6.8629e-05 6.1081e-05�1 4.4179e-12 6.8629e-05 1.3489e-04B̂s;min 39 14 13Bs;min 33 11 11
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Figure 1. Comparison of unit impulse response of the
infinite-precision controller implementationXideal with
those of the three 16-bit implemented controller realiza-
tionsX0,Xopt andXspa.
and, moreover, it is sparse with 16 non-trivial parameters.
Although this example only has a pair of complex eigen-
values, comparing with the results given in [8] confirms
that the proposed�1 (�1 respectively) is less conserva-
tive in estimating the robustness of FWL closed-loop sta-
bility than the previous measure (its lower-bound respec-
tively). We also computed the unit impulse response of
the closed-loop control system when the controllers were
the infinite-precision implementedX0 and 16-bit imple-
mented three different controller realizations. Any real-
izationX 2 SC implemented in infinite precision will
achieve the exact performance of the infinite-precision im-
plementedX0, which is thedesignedcontroller perfor-
mance. For this reason, the the infinite-precision imple-
mentedX0 is referred to as theideal controller realizationXideal. Fig. 1 compares the unit impulse response of the
plant outputy(k) for the ideal controllerXideal with those
of the 16-bit implementedX0,Xopt andXspa.
5. Conclusions

We have presented a design procedure for constructing
sparse controller realizations with good FWL closed-loop
stability characteristics, based on an improved stability
measure. This new measure yields a more accurate esti-
mate for the robustness of FWL closed-loop stability. An
example confirms that the proposed design procedure pro-
duces computationally efficient controller structures suit-
able for FWL implementation in real-time applications.
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