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ABSTRACT

An improved closed-loop stability measure is derived for
digital controller structures with finite-word-length (F\W
implementation, which takes into account the number of
trivial elements in a controller realization. A practicabp
cedure is presented to design sparse controller realizatio
with good FWL closed-loop stability characteristics. A
case study shows that the proposed design procedure yields
computationally efficient controller realizations with-en
hanced FWL closed-loop stability performance.
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1. Introduction

A designed stable control system may achieve a lower than
predicted performance or even become unstable when the
controller is implemented with a finite-precision device.
In real-time applications where computational efficiency
is critical, a digital controller implemented in fixed-pbin
arithmetic has some advantages. With a fixed-point pro-
cessor, the detrimental FWL effects are markedly increased
due to a reduced precision. It is well-known that FWL ef-
fects on the closed-loop stability depend on the controller
realization structure. This fact can be used to find “opti-
mal” realizations of controllers based on various FWL sta-
bility measures [1]-[7]. However, these design methods
usually yield fully parameterized controller structures.

It is highly desirable that a controller realization has
a sparse structure with many trivial elements of 0, 1 or
—1. This is particularly important for real-time applica-
tions with high-order controllers, as it will achieve bette
computational efficiency. A canonical controller realiza-
tion has sparse structure but may not have the required
FWL stability robustness. This poses a complex problem
of finding sparse controller realizations with good FWL
closed-loop stability characteristics. In the works [8],[a
design procedure has been given to obtain sparse controller
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realizations based on a FWL pole-sensitivity stability mea
sure.

This study derives an improved FWL closed-loop sta-
bility measure, which takes into account the number of triv-
ial elements in a controller realization. A practical proce
dure is proposed, which first maximizes a lower bound of
the proposed stability measure and the resulting controlle
realization is then made sparse using an iterative stepwise
algorithm originally developed for filter design [2],[10].
The proposed method has some advantages over the ex-
isting methods [5],[8],[9], as it is more accurate in estima
ing the robustness of the FWL closed-loop stability and the
computational complexity is considerably reduced. A de-
sign example is used to test the proposed method.

2. The problem formulation

Consider the discrete-time closed-loop control systerh wit
a linear time-invariant planP(z) and a digital controller
C(z). The plantP(z) is strictly proper with a state-
space descriptiofAp, Bp,Cp), whereAp € R™*™,
Bp € Rmxl andCp € R?*™, Let (Ac,Bc,Cc,Dc)
be a state-space description of the controllér), with
Ac e R B € R, Ceo € R*™ andDe € RIX9.
Given the transfer function matri&(z), there are infinite
state-space descriptions. In fact, 4%, B2, C2%,D?)is a
state-space description 6f(z), all the state-space descrip-
tions of C(z) form arealizationset

A _
SO = {(A07BO,CO,DO) | AO =T 1A%T7

Bc =T7'BY,Cc = CLT,Dc =D2} (1)
whereT € R™*" is any non-singular matrix. Denote
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whereN = (I+n)(q+n). The stability of the closed-loop
control system depends on the eigenvalues of the closed-
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where0 is the zero matrix of appropriate dimension and
I, then x n identity matrix. All the different realizations
X in S¢ have the same set of closed-loop poles if they are
implemented with infinite precision. Since the closed-loop
system has been designed to be stable, all the eigenvalues
X(A(X)), 1 <i < m + n, are within the unit disk.

WhenX is implemented with a fixed-point processor
of By bits, itis perturbed t&X + AX due to the FWL effect.
Each element oAX is bounded byte/2, that is,

n(AX) £

max

il <
max |Az;| <</2

(4)

Let B, = B; + By, whereB; ensures that the absolute
value of each element & %X is no larger than 1. Thus,
B; are bits required for the integer part of a number and
By are bits used to implement the fractional part of a num-
ber. It can be shown that= 2—57. With the perturbation
AX, \;(A(X)) is moved to); (A (X + AX)). If a pole of
A(X + AX) is outside the open unit disk, the closed-loop
system becomes unstable wiBh-bit implementedX. An-
other important consideration is the sparsene3&.afhose
elements oX, which have values 0, 1 or -1, amévial pa-
rameters. A trivial parameter requires no operations in the
fixed-pointimplementation and does not cause any compu-
tational error at all. Thudz; = 0 whenz; = 0,1 or —1.

Let we define an indicator function as

0, fz=0,1or —1
0(z) = { 1, otherwise (5)
When the FWL erroAX is small,
A 2 AX + AX))| - M AX)))|
N
8|>\Z| .
3 e Awid(e), Vi€ {1 mtn} (6)

j=1

wherea‘)‘ is evaluated aK. It follows from the Cauchy
mequallty that

N
AN < s ]| 6(z;)
N 2
s 6(zj), Vi (7)
where N, is the number of the nontrivial elements Xa.

This leads to the following stability measure
. 1- |A- A(X))|
min
i€{l,---,m+n}
N, Z 6(z5)
Jj=

1

m (X) =

9|\l
81:]

If u(AX) < “1@) it follows from (7) and (8) that
IAIN|] < 1= |Ai(A(X))|. Therefore
N <1

IX(A(X + AX))| < AN+ (AKX (9)

which means that the closed-loop system remains stable
under the FWL erroAX. The largen, (X) is, the larger
FWL errors the closed-loop system can tolerate. Hence,
w1 (X) is a stability measure describing the FWL closed-
loop stability robustness of a controller realizatin

Noting the result of how to calculal%*,% [5],[7] and
the following relationship

on| 1

X |\
leads to the following proposition, which shows that, given
aX, the value ofu; (X) can easily be calculated.

Proposition 1 Let A(X) = M, + M; XM, given in
(3) be diagonalisable, and have eigenvalyes} =
{Ai(A(X))}. Denotep; a right eigenvector oA (X) re-
lated to the eigenvaluk;. DefineM,, 2 [P1 P2 Pmtn]
and M, = [y1y2 - Ymen] = M7, wherey; is the
reciprocal left eigenvector related 3. Then

—Re {A; g;] (10)

O] ZIpN|
8$1 8xN—l—n+1
o\ .
oXxX - . .
O\i] |
8Il+n Oz N

MTRe [\yipi M3 (11)

By conS|der|ng the sensitivity of eigenvalue moduli
rather than the sensitivity of eigenvalues, the stabiligam
sure (8) is different from the existing measure [5],[8],[9]
and it generally provides a more accurate estimate for the
robustness of FWL closed-loop stability. It is also worth
pointing out that this improved measure has considerable
computational advantages over the existing one. This is
becauseg% is real-valued While‘% is complex-valued.
Thus the optimization process and sparse transformation
procedure, discussed in the next section, require much less
computation than the previous approach [5],[8],[9], usles
all the system eigenvalues are real-valued in which case
11 (X) and the existing measure become identical.

3. Thedesign procedure

The optimal sparse controller realization with a maximum
tolerance to FWL perturbation in principle is the solution
of the following optimization problem:

v 2 max w1 (X) (12)

XeSc
However, it is difficult to solve for the above optimization
problem becausg; (X) includeséd(z;) and is not a con-
tinuous function with respect to controller parameteys



Consider a lower bound ¢f; (X) defined by
1- |>\- (A( x>)|
Z 3|>\ 1§

i (X) = (13)

i€{l,---,m+n}

Obviously, i1 (X) < u1(X) and uy(X) is a continuous

function of controller parameters. It is relatively easy to

optimizeu, (X) (e.g. [7]). Let the “optimal” controller re-

alization)Topt be the solution of the optimization problem
A

w = max p (X)

14
XeSec — ( )

Xopt IS generally not the optimal solution of (12) and does
not have a sparse structure. However, it can readily be at-
tempted by the following optimization procedure.

3.1 Optimization of the lower-bound mea-
sure

Assume that an initial realization has been obtained by
some design procedure and is denote&Xas According
to (1)—(3), a similarity transformation &, by T is

]XOH fr’] (15)

wheredet(T) # 0. The closed-loop system matrix for the
realizationX is

I, O

X=X(T)=| ¢ o

I, O
0 T!

5 9] s

Obviously A(X) has the same set of eigenvalues as
A(Xy), denoted ag\)}. Applying proposition 1 to (16)

AX) = [ ] A (Xo) [

results in
|\l . |: I, O :| |: I, 0 :|
- T -T
o0X X(T) 0 T o0X Xo 0o T

17)
For a complex-valued matriI € C(*+)*(4+7) with ele-
mentsmg;,, denote the Frobenius norm

(18)

m(X)
. 1|7

i {1m1n+ } I; dAi| I 0
1€l,---,m+n i q

\/NH{O } ox Xo{o TT:|F
_ 1
_ze{l, 7m—i—n} ] Iq 0

SRS
(19)

where
9|
A X |x
P, = —30 20
TN (20)
If we introduce the cost function
f(T) = m(X)
1

- 16{1, . ,m+n} \/— H |:

I, 0
'I”[o T—T]

the optimal similarity transformatioif,,; can be obtained
by solving for the unconstrained optimization problem:

f(T)

0 TT r
21

w = max (22)

TeRnxn
with a measure of monitoring the singular valuesibfo
make sure thadet(T) # 0. The unconstrained optimiza-
tion problem (22) can be solved, for example, using the
adaptive simulated annealing (ASA) algorithm [11]. With
Topt, the corresponding optimal realizatid,p that is
the solution of (14) can readily be computed.

3.2 Stepwise transformation for sparse real-
izations

As the optimal sparse realization that maximizeds dif-
ficult if not impossible to obtain, we search for a subop-
timal solution of (12). Smcé(opt maximizesy; and pq

is a lower-bound ofu;, X,p Will produce a satlsfactory
large value ofu;, although it usually contains no trivial el-
ements. We mak&,,; sparse by changing one nontrivial
element ofX,,,; into a trivial one at a step, under the con-
dition that the value ofi; does not reduce too much. This
process produces a sparse realizaqp, with a satisfac-
tory value ofy, . ClearlyXsp, iS not a true optimal solution
of (12). Notice that, even though (Xspa) < p1(Xopt),

it is possible thaj; (Xspa) > w1 (Xopt)- In other words,
Xspa May actually have better FWL stability performance
thanX, . The stepwise procedure for obtainiXg,, is:

Step 1 Setr to a very small positive real number (e.g.
10-%). The transformation matrif € R"*" is ini-
tially set toT,p, SO thatX (T) = Xopt.-

Step 2: Find out all the trivial element$n,,---,n,.} in
X (T) (a parameter is considered to be trivial if its dis-
tance to 0, 1 or -1 is less than a tolerance, Hay®).
Denote¢ the nontrivial element iX(T) that is the
nearestto O, 1 or -1.

Step 3: ChooseS € R™*™ such that

) g1 (X(T + 78)) is close tou, (X(T)).
i) {n1, -+, ny}in X(T) remain unchanged K (T +
7S).

iii) £in X(T) is changed as nearer as possible to 0, 1
or-1inX(T + 78S).



) (1S = 1.

If S does not existT,, = T and terminate the algo-
rithm.

Step 4: T =T+ 7S. If £in X(T) is nontrivial, go to step
3. If £ becomes trivial, go to step 2.

TheStep 3 guarantees th& (T, ) has good performance
as measured by; and contains many trivial parameters.
The key is how to obtair8. DenoteVec(-) the column
stacking operator. With a very smail] condition i) means

that .
(Vec (‘;’; )) Vec (S) = 0 23)

and condition ii) means that

(Vec (d’“))TVec (S)=0

(Vec (‘;’JF

(24)

”)).TVec(S) =0

Denote the matrix

))T e RIrH)xn®  (25)

T
| (Vee (%)) |
Vec(S) must belong to the null spact’(E) of E. If
N (E) is empty, Vec(S) does not exist and the algorithm
is terminated. IfA(E) is not empty, it must have basis
{by,---,b;}, assuming that the dimension &f(E) is ¢.
Condition iii) requires moving to its desired value (0, 1
or -1) as fast as possible, and we should chdasgS) as

the orthogonal projection dfec ( ) onto'(E). Noting
condition iv), we can compufeec(S) as follows:

=

1>

~—~
3

/\

a ottt

a; = b! Vec (%) ER, Vie{l, -t} (26)

t
v=> ab; e R™ (27)
=1
Vec(S) = +—— e R’ (28)
vVvTv

The sign in (28) is chosen in the following way. {fis
larger than its nearest desired value, the minus sign isifake
otherwise, the plus sign is used.

For calculating the required denvatlve% dT,
dn ..., 2k the following well-known fact is useful.
Given any elemeny;; in a nonsingula?yY € R™*™ with

ie{l,---,n}andj € {1,---,n},
oY T oY1 _ _
=e;e; and =_-Y leely ! 29
yij / Oyij / (29)

wheree; denotes théth coordinate vector. In (15), define

I, 0O
0o T

I, O

U, = { and U, = {6’ T} (30)

For any elementr;s in X = U, 'X,U,, wherek ¢
{1,---,l+n}ands € {1,---,¢ +n}, and anyt;; in T,

wherei € {1,---,n}andj € {1,---,n},
al'ks TaU_ Tyri—1 8U2
= X, Us U] Xo=——
Bty Oh gy, ol Ter i Rogmes

Ty7—1 T y7-1 Ty7—1 T
= —e, U; eH_ieHle XoUses+e€, U; Xoeq+ieq+jes
Ty7—1 T Ty7—1 T
= —e, Uy eqie ;Xes +e, Ul Xoegiie,, €5 (32)
That is,

T7-1
e, Uy
dxks _ . «
dT T e
e, U]
T T
Xoeg+1€g41 Xoegt+1€4n
T T
Xo€g+n€qi1 Xo€g+n€qiy
elHelTHX el+1eﬁnX e
T T
el+nez+1X eH_neH_nX e(s32)
Thus, we can readily calculag:, 2%t . - -, 4= | et
. 1
ig = arg
7,6{1, - ,m+n} I 0
VN &; |
H [0 T "o T 7|,
(33)

Similar to the derivation of%, for any elementu; in

W = UT®,;, U, ", wherek € {1,---,1 + n} ands €
{1,---,q +n}, we have
T
e
dwps _ k %
dT

T
€k

T T
el+1ez+1‘1’io el+nel+1<§i0

T T
el+1el+n(1)'i0 el_,_neH_n‘I'io

Weg el Wey el
- : : x
We, 11 eg+n Weq+neg+n
U;Tes
(34)
UQ_Tes
Since )
= (35)

\/_\/Zlﬂl el Wi W



We can calculate

dul 1 I+n g+n dwy,
— = __Re Wy =
dt — N W [ZZ £ dT

k=1 s=1

(36)

As in [6],[7], an estimated minimum bit length for
guaranteeing closed-loop stability basedg(X) is

Bs,min = Bz + Int[_ 10g2(:u1 (X))] -1
where the integer Ifit] > x.

(37)

4. A numerical example

This was a single-input single-output fluid power speed
control system studied in [12],[13]. The plant model was
in the continuous-time form and a continuous-titfg,
optimal controller was designed in [12]. We obtained
a discrete-time planP(z) and a discrete-time controller
C(z) by sampling the continuous-time plant afd,, con-
troller with a sampling rate of 2 kHz. The discrete-time
plantP(z) was given by

9.9988¢ — 1 1.9432¢—5 5.9320e — 5
Ap— —4.963le — 7 2.3577e —2 2.3709¢ — 5
—1.515le—3 2.3709¢ —2 2.375le —5
1.5908¢ — 3 2.3672¢ —2 2.3898¢ — 5
—6.2286¢ — 5 3.0504e — 03
2.3672¢ — 5 B, — | —12373¢-02
2.3898¢—5 | P T | —1.2375¢—02 |’
2.3667¢ — 5 —8.8703¢ — 02

Cp=[10 0 0]

The initial realization of the controllef'(z) given in a con-
trollable canonical form was

~8.0843e —4 —1.6112e—3 —1.5998¢ — 3
1 0 0
X, = 0 1 0
0 0 1
0 0 0

—1.5885¢—3 —1.5773e—3

0 —-3.307le—1
0 1.9869¢ + 0
0 —3.9816e+0
1 3.3255e + 0

The closed-loop transition matri& (X,) was formed us-
ing (3), from which the eigenvalues and the corresponding
eigenvectors of the ideal (infinite-precision) closedgoo
system were computed. The optimisation problem (22) was
constructed, and the ASA algorithm [11] obtained a solu-
tion T,p¢. The corresponding controller realization, which
maximises the lower-bound measuyre was

—8.0843e—4  6.4378e¢—2 —1.1974e—2

2.7588e — 3 1.0010e +0 —1.4054e —2

Xopt = | —2.2776e —4 —5.8175e — 2 3.3649¢ — 1
—2.5200e — 4 1.0668e — 3 1.6778e — 2
81179e —3  5.1520e -3  3.131le—2

—1.1493e —2 —-2.2104e—1
1.0924e —3 —8.9552e -3
7.5457e — 2 1.3962e — 3
9.9766e — 1 1.5423e — 3

—3.8681e — 3 9.9031e — 1

The stepwise transformation was then applied to make
Xopt Sparse, which yielded a similarity transformation ma-
trix Tspa and corresponding controller realization

—8.0843e — 4 1.6372e —2 —5.4228e — 4
0 1 0
Xspa = 0 —6.8678 —2 3.3285e — 1
0 —5.6623e—6 —7.6002e—4
2.306le—2 —8.1961e —6 0
—1.8348¢ -3 —6.9866e — 2
0 —1.4073e—3
4.2230e — 1 5.8895e — 4
1 0
4.5476e — 5 9.9262e — 1

Table 1 compares the FWL closed-loop stability per-
formance and the number of non-trivial elements for the
three controller realizationX,, X, and Xsp,, respec-
tively. We also exploited the true minimum bit length that
guaranteed closed-loop stability for a controller rediora
X using the following computer simulation. Starting with
a large enough bit length, e.@;, = 100, we rounded
the controllerX to B, bits and checked the stability of
the closed-loop system, i.e. observing whether the closed-
loop poles were within the open unit disk. Redudgd
by 1 and repeated the process until there appeared to be
closed-loop instability aB,, bits. ThenB; min = By, + 1.
The values ofB; i, for the three realizations are given in
Table 1. Notice that foB; > B; min, the Bs-bit imple-
mented controller will always guarantee closed-loop sta-
bility. However, there may exist som@; < B,, which
regains closed-loop stability. For example, for the ihitia
realizationX,, B, = 32, i.e. when the bit length is smaller
than 33, the closed-loop becomes unstableBAtE= 16 or
15, the closed-loop becomes stable again. Bith< 15
instability is observed again.

For this example, the canonical realizati¥g is the
most sparse with 9 non-trivial parameters, but its FWL
closed-loop stability measung, (X,) is very poor. The
realizationX,p has a much better FWL stability robust-
ness as indicated by (Xopt), but its all 25 elements are
non-trivial. The realizatioX;p, has the largegt (Xspa)

Table 1. Comparison of the three controller realizations.

realization X Xopt Xspa
Ny 9 25 16

I 2.6045e-12 6.8629e-05 6.1081le-pP5

11 4.4179e-12 6.8629e-05 1.3489e-D4
Bs min 39 14 13
B min 33 11 11
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Figure 1. Comparison of unit impulse response of the
infinite-precision controller implementatioX;ye, With
those of the three 16-bit implemented controller realiza-
tions Xy, Xopty andXspa.

and, moreover, it is sparse with 16 non-trivial parameters.
Although this example only has a pair of complex eigen-
values, comparing with the results given in [8] confirms
that the proposed:; (u1 respectively) is less conserva-
tive in estimating the robustness of FWL closed-loop sta-
bility than the previous measure (its lower-bound respec-
tively). We also computed the unit impulse response of
the closed-loop control system when the controllers were
the infinite-precision implementeX, and 16-bit imple-
mented three different controller realizations. Any real-
ization X € S¢ implemented in infinite precision will
achieve the exact performance of the infinite-precision im-
plementedX,, which is thedesignedcontroller perfor-
mance. For this reason, the the infinite-precision imple-
mentedX, is referred to as thieleal controller realization
Xideal- Fig. 1 compares the unit impulse response of the
plant outputy (k) for the ideal controlleX;gea With those

of the 16-bit implemente®X,, X,p, andXspa.

5. Conclusions

We have presented a design procedure for constructing
sparse controller realizations with good FWL closed-loop
stability characteristics, based on an improved stability

measure. This new measure yields a more accurate esti-

mate for the robustness of FWL closed-loop stability. An
example confirms that the proposed design procedure pro-
duces computationally efficient controller structureg-sui
able for FWL implementation in real-time applications.
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