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ABSTRACT 2. THE BAYESIAN DFE

An importance sampling (IS) simulation technique is pre- . )

sented for evaluating the lower-bound bit error rate (BER) e Will assume that the channel is real-valued and the re-

of the Bayesian decision feedback equalizer (DFE) underC€ived signal sample is given by:

the assumption of correct decisions being fed back. A de- -

sign procedure is deve_loped,w_hlch chooses approprlfﬂe b!a y(k) = Z ais(k —i) + e(k) Q)

vectors for the simulation density to ensure asymptotie effi P

ciency of the IS simulation.
wheren, is the channel impulse response (CIR) length,
are the channel taps, the Gaussian white neisghas zero

1. INTRODUCTION mean and varianee?, and the transmitted symbol sequence

{s(k)} takes values from the sét-1}. A DFE uses the

I - e —_ T
For the class of equalizers based on symbol-by-symbol de-ObSEN‘BItlon vectoy (k) = [y(k)---y(k —m + 1)]' and

cision with decision feedback, the Bayesian DFE [1]-[4] is t;zz EZSt_(jTLe)I]eTC:s d ;ﬁ?gglaﬁ]eggiﬁggk[i(g)gf S(_kl_) d)
known to provide the best performance. Due to its com- . P . - '

. : : . Without the loss of generality, the decision delaydot=
plexity, performance analysis of the Bayesian DFE is usu- n. — 1 feedforward order ofn = n. and feedback order
ally based on conventional Monte Carlo simulation, which ofan - . — 1 are chosen as_thi; choice is sufficient to
is computationally very costly even for low signal to noise uara_nteg the linear se ara,bilit (see lemma 1 below)
ratio (SNR) conditions. lltis [5] developed a randomized 9 P y |

bias technique for the IS simulation of Bayesian equaliz- The received signal vector can be expressedyd#) =
ers. Although it can only guarantee asymptotic efficiency, r, s, (k) + F sy(k) + e(k), wheres(k) = [s(k)---
as defined in [6], for certain channels, this IS simulation (x — @))%, sy (k) = [s(k —d — 1) ---s(k — d — n)]T, and
technique provides a valuable method in assessing the per-

formance of the Bayesian equalizer. apg  aq n, -1
We apply the IS simulation technique to evaluate the lower- o 0 a - : @
bound BER of the Bayesian DFE. By viewing decision feed- = L u
back as a geometric translation, the Bayesian DFE is “con- 0 0' al
0

verted” to the Bayesian equalizer in the translated spdce [7
with a desired property that the subsets of opposite-class
channel states are always linearly separable. It can furthe 0 0 T 0

be shown that the asymptotic decision boundary is piece- an 1 0
wise linear. A design procedure is developed, which de- = ’ ) 3)
termines the set of hyperplanes that form the asymptotic 27| ng2 Gn 1 E 0

Bayesian decision boundary and constructs the convex re- : 0
gions associated with individual states by intersecting hy
perplanes that are reachable from the states concernesd. Thi
provides the appropriate bias vectors for the simulation de are them x (d + 1) andm x n CIR matrices, respectively.
sity to ensure asymptotic efficiency. Under the assumption of correct decision feedback, we have

3] ap,—2 Gp,—1 |



§y(k) = sp(k), and the decision feedback translates the 3. ISSIMULATION METHOD
original signal spacg (k) into a new space(k):

A Since the Bayesian DFE is reduced to the Bayesian equal-

r(k) =y (k) = F> 8 (k). (4) izer in the translated space, the IS simulation technique of
LettheN; = 29+! sequences of; (k) bes;;, 1 < j < Ny. [5] can be extended to evaluate its lower-bound BER, which
The set of the noiseless channel states in the translated spa IS given by:
is defined as? 2 {r; = Fy s;;, 1 < j < Ny}, which can L NN (Rl
be partitioned into the two subsets conditioned:oin— d): P=—— Ig(r;(k)) = 10
N, N 2 2 ) ey @
R®) 2 {r; € R:s(k—d)=+1}. 5
{x; s( ) } ®) wherelg(r(k)) = 1if r(k) causes an error, afgh (r(k)) =
0 otherwisep(r;(k)|r;) is the true conditional density given
Lemmal R andR(~) are linearly separable. r; € R, andN, = 27 is the number of states iR(+):
the sampler; (k) is generated using the simulation density
Proof: Choose the weights of a hyperplafér) = w’r = p*(ri(k)|r;) chosen to be
0 to be: w’ = [0---0 ;—0] For anyr(*) ¢ R and p*(ei(R)|ri) =

r®) € RO, we havew’rH) = 1 > 0 andwTr(™) =

L; .

-1 < 0. - 1 r; k — Vi 2
S o (Il gy
=1

. ) . (2w02)% 202

Although it is always possible to construct a single hyper-

plane to correctly separate opposite-class states forftis D In the simulation density (11),; is the number of the bias

the optimal decision boundary in general cannot be realizedvectorsqi = —r; + vy forr; € R, pji > 0 for

by one hyperplane. 1<j <L andZ]@;l pji = 1. An estimate of the IS gain,
which is defined as the ratio of the numbers of trials required

Proposition 1 The asymptotic decision bounda of the for the same gstim{:\te variance u_sing the Mont(_e Car_lo_ and IS

Bayesian DFE for large SNR is piecewise linear and madeMethods, is given in [S]. To achieve asymptotic efficiency,

up of a set ofZ, hyperplanes. Each of these hyperplanes is {cjl-_} must meet certain cond!tlons [6]. We present the fol-

defined by a pair oflominantopposite-class stateésl(ﬂ c lowing procedure of constructing (r;(k)|r;) to meet these

R, x{™) € RO)), such that the hyperplane is orthogonal conditions.

to the line connecting the pair of dominant states and passesach of thel, dominant state pair$rl(+), rz(_)} defines a

through the midpoint of the line. hyperplane;(r) = wir + b, = 0. The weight vectomw;
and biag; of the hyperplane are given by:

Proof. See [5]. Aso? — 0, a necessary condition for a 4 ()
; . 2(r,") —r
pointr € OF is = —( ) (12)
. R
) MCONNCY ! !
r=-! + |- ’ , (6) (+) _ LNT () 4 (5
2 2 b= — (e =, ) (e ) ‘ (13)

lei™) — {72

wherex® denotes an arbitrary vector in the subspace or- )
thogonal tox, rl(+) andrl(’) are a pair of dominant states: Notice that the theory of support vector machlnes(g?)],[lo]

and the sufficient conditions fare O are has been applied to determine the hyperpEpwith (r; ",
rl(_)) as its two support vectors, and the hyperplaheés a

_ 2 — 2. Vs () g £ pH)
e =" <[le =l Ves € B vi #0p (7) canonical hyperplane having the properfy(ri") = 1

. ‘ - =)y = _
e =0 <l = sl ey € RO,y ™), @) ANl =1

o

v —r! rl(*>||2 ) (9) A stater; € R is said to besufficiently separabléy the

hyperplaned,, if H, can separate; correctly with|w/ r;+
bi| > 1. Thus, ifw el") 45, > 1forr{? € R, (V)

The set of all the dominant state pafs ', r{™)}%, can is sufficiently separable bif; and a separability indek”

easily be determined using an algorithm given in [5],[8]. is set to 1; otherwisél(j) = 0. Similarly, if rgf) € RO

= lir -

Proposition 1 follows as a direct consequence.



satisfiesw; r ( ) 4 b < —1, it is sufficiently separable by
H, andhl(i b= otherW|sehl(i_) = 0. The reachability of
H, fromr{™ € R can be tested by computing

c; = —0.5 (w,TrEJr) + bl) (rl(+) - rg_)) .

consideration. This may be because of the linear separabil-
ity and because of the associated property of a much more
sparse state distribution due to the decision feedback. We
have tested a variety of channels, and no counter example

(14) has been found.

If vi; = rEH + c¢;; € OF, H; is said to be reachable from

rEH (cy; is then a bias vector), and the reachability index
is v;; = 1; otherwisey;; = 0. The process produces the
following separability and reachability table:

4. SIMULATION EXAMPLE

The IS technique for the Bayesian DFE was simulated using
the 3-tap CIR defined by:

e I | () r(H) .
— — =[-0.8 1.0 —0.5 17
Hi h51> hgwl (+> (711) 8\7)5 (11n,) [ ] ( )
: : ; : The bias vectors were generated using the procedure de-
Hy | b)) h(m? W (1) R (ew,) scribed in the previous section. As in [5], the bias vec-

tors were selected with uniform probability in the simula-

. 5 .
In order to construct a convex regitﬂfr) forrg+) c R, tion. For all the cased)” iterations were employed at each

we select those hyperplanes that cafficientlyseparate
r{") and that are reachable fron£a+) with the aid of the

(3

SNR, averaging over all the possible statesRif). Since
the channel had a length af = 3, the DFE structure was
specified bym = 3, d = 2 andn = 2. The asymptotic de-

above table. This yields the following integer set: cision boundary consisted of 5 hyperplanes. Table 1 gives

the separability and reachability table for this channel.

+) 2 ={j: hg-?_) =1land~; =1}. (15)
h 4) - i i A RO) R
enR, "’ is the intersection of all the half—spacﬂ§ = 11 1 0 110 ) 1) 0
{r: Hj(r) > 0} with j € GEH. In fact, it is not neces- Hy|1 0 1 1/1(1) 1(1) O 1(1)
sary to use every hyperplanes definecd}’iﬁ) to construct H; |1 1 1 1|0 1(1) O 0
R'™) . A subset of these hyperplanes will be sufficient, pro- | H4 | 0 1 0 0|1(1) 0 1(0) 1(1)
vided that every opposite-class state?itT) can sufficiently H; |0 0 1 0/1(1) 1(1) 1(1) 1(1)

be separated by at least one hyperplane in the subset. If ble 1: Th bil q habili ble for th
such &G; (+) existsforeactn(+) the simulation density con- Table 1: The separability and reachability table for the CIR

ofa =[-0.8 1.0 —0.5]7. The DFE structure is defined by
structed with the bias vectofgj; }, j € G J, will achieve 3 d—9%andn — 2 R — {I‘(i) IRESIINES I‘(i)}
asymptotic efficiency, since all the hyperplanes defined in" = > %~ - I L S
G(+) are reachable from(“ and obviously at least one of
{vﬂ} is the minimum rate point (as defined in [6]), and the

error regionF satisfies The statesrg’L) and rfﬁ) require the two hyperplaned,

and H, to separate them from all the opposite-class states,
and H, andH, are reachable from both states. Thus, there
are two bias vectors forﬁ“ and rfﬁ), respectively, and
Ec #7UHT. The staterl) is separated fronk(~)
i(r) <0} by the single reachable hyperplaf®. The stateréﬂ is
separated froni(~) by the two reachable hyperplan&s
For the 2-tap channel = [ag a;]7, it is straightforwardto  andHs, andE C 7—[5_) U?—lé_). Asymptotic efficiency of
verify that the simulation density for the Bayesian DFE can the IS simulation is therefore guaranteed for this example.
always be constructed to satisfy the conditions for asymp-Fig. 1 shows the lower-bound BERs obtained using the 1S
totic efficiency. Thisis in contrast to the case of the Bagiesi and conventional simulation methods, respectively. It can
equalizer where, for the 2-tap channel, asymptotic effigien be seen that the conventional Monte Carlo results for low
is not always guaranteed [5]. We believe that asymptotic ef- SNR conditions agreed with those of the IS simulation. The
ficiency of the IS simulation for the Bayesian DFE can gen- estimated IS gains, depicted in Fig. 2, indicate that expo-
erally be ensured, although a rigorous proof is still under nential IS gains were obtained with increasing SNRs.

(+ 2 (=)
EcrR= |J #

jeat

(16)

with the half- space%[( )& ={r:H



5. CONCLUSIONS

[9] V. Vapnik, The Nature of Statistical Learning Theory
New York: Springer-Verlag, 1995.

We have extended the randomized bias technique for I1S[10] V. Vapnik, “The support vector method of function es-
simulation of [5] to evaluate the lower-bound BER of the
Bayesian DFE. A design procedure has been presented for ~ Box TechniqugsJ.A.K. Suykens and J. Vandewalle,

constructing the simulation density that meets the asymp-

totic efficiency conditions. Although asymptotic efficignc
for the general channel has not rigorously been proven, we
are unable to find a counter example suggesting that the
asymptotic efficiency conditions are not met. The more dif-
ficult problem of how to derive an upper-bound BER of the
Bayesian DFE, taking into account error propagation, re-
mains an open question and is still under investigation.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

6. REFERENCES

K. Abend and B.D. Fritchman, “Statistic detection for
communication channels with intersymbol interfer-
ence,"Proc. IEEE Vol.58, No.5, pp.779-785, 1970.

D. Williamson, R.A. Kennedy and G.W. Pulford,
“Block decision feedback equalizatiodEEE Trans.
Communicationsvol.40, No.2, pp.255-264, 1992.

S. Chen, B. Mulgrew and S. McLaughlin, “Adap-
tive Bayesian equaliser with decision feedbatkEE
Trans. Signal ProcessingVol.41, No.9, pp.2918-
2927,1993.

S. Chen, S. McLaughlin, B. Mulgrew and P.M. Grant,
“Adaptive Bayesian decision feedback equaliser for
dispersive mobile radio channel$Z2EE Trans. Com-
munications\Vol.43, No.5, pp.1937-1946, 1995.

R.A. lltis, “A randomized bias technique for the im-
portance sampling simulation of Bayesian equaliz-
ers,”|IEEE Trans. Communication¥0l.43, No.2/3/4,
pp.1107-1115, 1995.

J.S. Sadowsky and J.A. Bucklew, “On large deviations
theory and asymptotically efficient Monte Carlo es-
timation,” IEEE Trans. Information TheoryWol.36,
No.3, pp.579-588, 1990.

S. Chen, B. Mulgrew, E.S. Chng and G. Gibson,
“Space translation properties and the minimum-BER
linear-combiner DFE,"IEE Proc. Communications
Vol.145, No.5, pp.316—-322, 1998.

E.S. Chng, B. Mulgrew, S. Chen and G. Gibson, “Op-
timum lag and subset selection for radial basis func-
tion equaliser,” inProc. 5th IEEE Workshop Neural
Networks for Signal Processin@gambridge, USA),
Aug.31-Sept.2, 1995, pp.593-602.

timation,” in Nonlinear Modeling: Advanced Black-

Eds. Boston, MA: Kluwer, 1998, pp.55-85.

r\S
°
—

\g J E—
-20

AN
o

h \
\

0O 5 10 15 20 25 30
Signal to Noise Ratio (dB)

log10(Bit Error Rate)
w
o

Figure 1: The lower-bound BERs of the Bayesian DFE for
the CIR ofa = [-0.8 1.0 —0.5]% using conventional sam-
pling (CS) and importance sampling (IS) simulation. The
DFE structure is defined by, = 3, d = 2 andn = 2.
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Figure 2: The IS gain of the Bayesian DFE for the CIR of
a=[-0.8 1.0 —0.5]7. The DFE structure is defined by
m =3,d=2andn = 2.



