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Abstract

We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression

problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design,

originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF)

network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by

combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious

model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and

robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model

construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the

regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class

classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection

algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that

generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-

antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Complex-valued artificial neural networks have found
wide-ranging applications in processing of complex-valued
signals and data [31,24,23,32,20,22]. In this contribution,
we re-visit a special class of neural networks, known as the
radial basis function (RBF) network. The complex-valued
RBF (CVRBF) network of [14] has widely been used in
nonlinear signal processing applications that involve
complex-valued signals. In this CVRBF network, each
e front matter r 2007 Elsevier B.V. All rights reserved.
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RBF node has a real-valued response that can be
interpreted as a conditional probability density function.
This interpretation makes such a CVRBF network
particularly useful in the equalisation application of
communication channels with complex-valued signals
[15,4,19,17,3]. Because the RBF node’s response is real-
valued, this CVRBF network is essentially two separate
real-valued RBF networks. Various learning methods, such
as the orthogonal least squares (OLS) forward selection
algorithm [8,9,27,12], can readily be adopted to this
CVRBF network for regression and two-class classification
applications. This contribution extends the CVRBF net-
work of [14], where each RBF node has a real-valued
response, to a fully CVRBF network, where each RBF
node has a complex-valued response. The motivation for
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considering this more general class of fully CVRBF
networks is twofold. Firstly, this extension brings the
RBF network architecture to the same general level of the
multilayer perceptron architecture where the fully complex-
valued hidden node has long been proposed [24]. Secondly,
this fully CVRBF network arises naturally from detection
problems that originate from communication systems
employing complex-valued modulation schemes, as will
be shown in Section 4 of this contribution. This paper
considers this class of fully CVRBF networks for regres-
sion and classification, and we develop efficient learning
algorithms for constructing sparse fully CVRBF models
with excellent generalisation capability.

Among various learning algorithms for regression
application of real-valued RBF networks, the local
regularisation assisted OLS (LROLS) algorithm combined
with the D-optimality experimental design criterion [13] is a
powerful algorithm for constructing parsimonious real-
valued RBF networks that generalise well, because it
combines two effective and complementary approaches for
modelling, namely, the local regularisation assisted OLS
regression [5,6] and the D-optimality experimental design
[1,21]. By adopting multiple regularisers, the LROLS
algorithm is capable of constructing very sparse real-
valued RBF models with excellent generalisation capability
from noisy data [5,6]. Optimal experimental designs [1]
have been used to construct smooth model response
surfaces based on the setting of the experimental variables
under well controlled experimental conditions. In optimal
design, model adequacy is evaluated by design criteria
that are statistical measures of goodness of experimental
designs by virtue of design efficiency and experimental
effort. Quantitatively, model adequacy is measured as
function of the eigenvalues of the design matrix, as it is
known that the eigenvalues of the design matrix are
linked to the covariance matrix of the least squares (LS)
parameter estimate. There exist a variety of optimal
design criteria based on different aspects of experimental
design [1]. The D-optimality criterion is most effective
in optimising the parameter efficiency and model
robustness via the maximisation of the determinant of the
design matrix. Combining the D-optimality criterion with
OLS regression [21] leads to an enhanced construction
algorithm, as the coupling effects of the two approaches in
the combined algorithm further enhance each other.
Moreover, the user only needs to specify a weighting for
the D-optimality criterion and the model construction
process is fully automatic. The value of this weighting does
not influence the model selecting procedure critically and it
can be chosen with ease from a wide range of values [13].
We extend this combined LROLS algorithm and
D-optimality experimental design to the fully CVRBF
network. An example involving the identification of a
complex-valued nonlinear channel is used to demonstrate
the effectiveness of the proposed algorithm for construct-
ing sparse fully CVRBF network models for regression
application.
The fully CVRBF network is also considered for the
application to four-class classification problems that
originate from communication systems employing com-
plex-valued quadrature phase shift keying (QPSK) mod-
ulation scheme. For the application to two-class
classification problems using real-valued RBF networks,
the orthogonal forward selection (OFS) based on the two-
class Fisher ratio of class separability measure (FRCSM)
[27,12] has been demonstrated to be an effective construc-
tion algorithm. Because the FRCSM measures the
classifier’s discriminative power [18], incremental maximi-
sation of the FRCSM leads to a sparse classifier with
enhanced generalisation capability. Due to orthogonal
decomposition, calculation of the FRCSM along each
model basis direction is fast, and this ensures an efficient
classifier construction process. We adopt this powerful
approach to construct parsimonious fully CVRBF classi-
fiers and derive a complex-valued version of the OFS based
on the multi-class (four-class) FRCSM. Application to
nonlinear beamforming for multiple-antenna assisted
QPSK wireless communication systems [11] is then
demonstrated. In general, when to terminate the selection
procedure of the CVRBF classifier or the determination of
the model size can be decided via cross validation.
However, for the particular application to four-class
classification problems in communication systems, the
number of the underlying channel states [15] is known.
Therefore, the construction of a CVRBF classifier can
automatically be terminated without the need to apply
costly cross validation, when the number of the selected
RBF nodes reaches the number of the channel states.
The paper is organised as follows. Section 2 briefly

outlines the proposed fully CVRBF network, while Section
3 details the LROLS algorithm with D-optimality design for
constructing sparse fully CVRBF networks from noisy data
as well as presents a case of identifying a complex-valued
nonlinear channel using the proposed algorithm. In Section
4 we derive a complex-valued OFS algorithm based on the
multi-class FRCSM for constructing parsimonious fully
CVRBF classifiers, and this is followed by an application to
nonlinear beamforming for multiple-antenna assisted QPSK
wireless systems. Our conclusions are offered in Section 5.
2. Fully CVRBF network

Consider the modelling of the data set DN ¼ fxðkÞ;
yðkÞgNk¼1, where N is the number of training data, xðkÞ 2 Cm

is the kth complex-valued training input vector, and yðkÞ is
the corresponding complex-valued desired response. More
specifically, for regression application, the desired output
yðkÞ 2 C. For four-class classification application we adopt
the following discrete complex-valued representation of the
class label set:

S49fs½1� ¼ þ1þ j; s½2� ¼ �1þ j,

s½3� ¼ �1� j; s½4� ¼ þ1� jg ð1Þ
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with j9
ffiffiffiffiffiffiffi
�1
p

and, therefore, yðkÞ takes values from the set
S4. The aim is to use the RBF network of the form

ŷðkÞ ¼
XM
i¼1

yifiðxðkÞÞ (2)

to capture the underlying data generating mechanism that
produces the data set DN , where ŷðkÞ denotes the complex-
valued model output, yi are the complex-valued model
weights, M is the number of RBF nodes, and fiðxðkÞÞ

denote the CVRBF nodes’ response. In particular, for
regression ŷðkÞ represents a prediction of yðkÞ while for
classification ŷðkÞ is used to estimate the true class label
yðkÞ according to the decision rule

~yðkÞ ¼ sgnðŷðkÞÞ

9

s½1�; R½ŷðkÞ�X0 and I½ŷðkÞ�X0;

s½2�; R½ŷðkÞ�o0 and I½ŷðkÞ�X0;

s½3�; R½ŷðkÞ�o0 and I½ŷðkÞ�o0;

s½4�; R½ŷðkÞ�X0 and I½ŷðkÞ�o0;

8>>>>><
>>>>>:

ð3Þ

where R½�� and I½�� denote the real and imaginary parts,
respectively.

Similar to the case of generic complex-valued neural
networks where many complex-valued activation functions
can be employed [24], there are many ways of specifying the
CVRBF node’s response function. One such complex-
valued response function is defined by

fiðxÞ ¼ jðkR½x� �R½ci�k=riÞ þ jjðkI½x� � I½ci�k=riÞ, (4)

where ci 2 Cm is the ith CVRBF centre vector, r2i 40 is the
ith RBF variance, and jð�Þ is the usual real-valued basis
function. Two typical basis functions are the thin-plate-
spline function

jðw=1Þ ¼ w2 logðwÞ (5)

and the Gaussian function

jðw=rÞ ¼ e�w
2=2r2 . (6)

The response function (4) will be adopted for regression
application. For four-class classification problems that
originate from communication application, however, we
will adopt the following RBF node’s response function:

fiðxÞ ¼ s½1� � jðkx� cik=riÞ þ s½2� � jðkx� j � cik=riÞ

þ s½3� � jðkxþ cik=riÞ þ s½4� � jðkxþ j � cik=riÞ, ð7Þ

where the real-valued basis function jð�Þ is typically chosen
to be the Gaussian function of (6). This choice of the RBF
node’s response explicitly incorporates the desired sym-
metric property of the underlying data generating mechan-
ism [11], which leads to significant enhancement in
classification capability. The choice of this RBF node will
be further explained in Section 4.

A significant advantage of the RBF network over other
neural networks is that learning can be formulated as a
linear-in-the-parameters problem. Specifically, define the
modelling residual for xðkÞ 2 DN as eðkÞ ¼ yðkÞ � ŷðkÞ.
Further consider every data points as candidate centres,
namely, M ¼ N and ci ¼ xðiÞ for 1pipM. Moreover, set
every RBF variance to a given value r2i ¼ r2. Then we
obtain the unified regression model over the data set DN

for both regression and classification problems

y ¼ Uhþ e, (8)

where y ¼ ½yð1Þ yð2Þ � � � yðNÞ�T, h ¼ ½y1 y2 � � � yM �
T,

e ¼ ½eð1Þ eð2Þ � � � eðNÞ�T and the complex-valued regres-
sion matrix

U ¼ ½/1 /2 � � � /M � (9)

with columns /i ¼ ½fiðxð1ÞÞ fiðxð2ÞÞ � � � fiðxðNÞÞ�
T. Let

an orthogonal decomposition of U be U ¼WA, where

A ¼

1 a1;2 � � � a1;M

0 1 . .
. ..

.

..

. . .
. . .

.
aM�1;M

0 � � � 0 1

2
666664

3
777775 (10)

with complex-valued ai;l , 1piolpM, and the complex-
valued orthogonal matrix

W ¼ ½w1 w2 � � � wM �

¼

w1;1 w1;2 � � � w1;M

w2;1 w2;2 � � � w2;M

..

. ..
.
� � � ..

.

wN ;1 wN ;2 � � � wN;M

2
6666664

3
7777775

ð11Þ

with columns satisfying wH
i wl ¼ 0, if ial. The regression

model (8) can alternatively be expressed as

y ¼Wgþ e, (12)

where the weight vector g ¼ ½g1 g2 � � � gM �
T defined in

the orthogonal model space satisfies the following trian-
gular system Ah ¼ g.

3. Locally regularised OLS algorithm with D-optimality

design

We first describe the two components of the combined
LROLS algorithm and D-optimality design. The detailed
LROLS algorithm with the D-optimality experimental
design is then presented, and this is followed by the case
of identifying a complex-valued nonlinear channel.

3.1. Locally regularised OLS algorithm

Like the real-valued LROLS algorithm [5,6], the com-
plex-valued version also adopts a similar regularised error
criterion defined as

JRðg; kÞ ¼ eHeþ
XM
i¼1

lijgij
2 ¼ eHeþ gHKg, (13)
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where k ¼ ½l1 l2 � � � lM �
T is the regularisation parameter

vector and K ¼ diagfl1; l2; . . . ; lMg. Similar to the real-
valued case [6], with g set to its optimal value, i.e. at
qJR=qg ¼ 0, the criterion (13) can be expressed as (see
Appendix A)

eHeþ gHKg ¼ yHy�
XM
i¼1

ðwH
i wi þ liÞjgij

2. (14)

Normalising (14) by yHy yields

ðeHeþ gHKgÞ

yHy
¼ 1�

XM
i¼1

ðwH
i wi þ liÞjgij

2

yHy
. (15)

As in the case of the original OLS algorithm [8], the
regularised error reduction ratio due to wi is defined by

½rerr�i ¼ ðw
H
i wi þ liÞjgij

2=yHy. (16)

Based on this ratio, significant regressors can be selected in
a forward-regression procedure, and the selection process is
terminated at the nsth stage when

1�
Xns

l¼1

½rerr�lox (17)

is satisfied, where x is a chosen tolerance. This produces a
sparse model containing ns ð5MÞ significant regressors.

The regularisation parameters specify the prior distribu-
tions of g. Since initially we do not know the optimal value
of g, li should be initialised to the same small value, and
this corresponds to choose a same flat distribution for each
prior of gi [6]. Similar to the real-valued regression model
case [6], applying the evidence procedure [26] will lead to
the updating formulas for the regularisation parameters

lnewi ¼
goldi

N � gold
eHe

jgij
2
; 1pipM, (18)

where gi denotes the current optimal weight solution, and

gi ¼
wH

i wi

li þ wH
i wi

and g ¼
XM
i¼1

gi. (19)

Usually a few iterations (typically 10–20) are sufficient to
find an optimal k.

3.2. D-optimality experimental design

Adopting the usual concepts of experimental design, we
refer to the matrix UHU as the design matrix. The LS
estimate of h is given by ĥ ¼ ðUHUÞ�1UHy. Assume that (8)
represents the true data generating process and UHU is
nonsingular. Then, the LS estimate ĥ is unbiased and the
covariance matrix of the estimate is determined by the
design matrix

E½ĥ� ¼ h;

Cov½ĥ� / ðUHUÞ�1:

(
(20)

It is well known that the model based on the pure LS
estimate tends to be unsatisfactory for an ill conditioned
regression matrix (design matrix). The condition number of
the design matrix is given by

C ¼
maxfki; 1pipMg

minfki; 1pipMg
, (21)

with ki, 1pipM, being the eigenvalues of UHU. Too large
a condition number will result in unstable LS parameter
estimate while a small condition number improves model
robustness. The D-optimality design criterion maximises
the determinant of the design matrix for the constructed
model. Specifically, let Uns be a column subset of U
representing a constructed ns-term subset model. Accord-
ing to the D-optimality criterion, the selected subset model
is the one that maximises detðUH

ns
Uns Þ. This helps to prevent

the selection of an oversized ill-posed model and the
problem of high parameter estimate variances.
It is straightforward to verify that maximising

detðUH
ns
UnsÞ is identical to maximising detðWH

ns
Wns Þ or,

equivalently, minimising � log detðWH
ns
WnsÞ. In fact,

detðUHUÞ ¼ detðAH
Þ detðWHWÞ detðAÞ

¼ detðWHWÞ ¼
YM
i¼1

wH
i wi ð22Þ

and

� logðdetðWHWÞÞ ¼
XM
i¼1

� logðwH
i wiÞ

¼
XM
i¼1

� logðkiÞ. ð23Þ

3.3. Combined LROLS and D-optimality algorithm

The combined LROLS and D-optimality algorithm
adopts the following combined criterion:

JRDðg; k;bÞ ¼ JRðg; kÞ þ b
XM
i¼1

� logðwH
i wiÞ. (24)

In this combined algorithm, the updating of the model
weights and regularisation parameters is exactly as in the
LROLS algorithm, but the selection is according to the
combined regularised error reduction ratio defined as

½crerr�i ¼
ðwH

i wi þ liÞjgij
2 þ b logðwH

i wiÞ

yHy
(25)

and the selection is terminated with an ns-term model when

½crerr�lp0 for ns þ 1plpM. (26)

Note that there always exists a subset model size ns such
that (26) holds [21]. The iterative model selection procedure
can now be summarised:

Initialisation. Set li, 1pipM, to the same small positive
value (e.g. 10�6), and choose a fixed b. Set iteration I ¼ 1.

Step 1: Given the current k, use the procedure described
in Appendix B to select a subset model with nI terms.
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Step 2: Update k using (18) with M ¼ nI. If k remains
sufficiently unchanged in two successive iterations or a pre-
set maximum iteration number (e.g. 10) is reached, stop;
otherwise set Iþ ¼ 1 and go to Step 1.

The introduction of the D-optimality cost into the
algorithm further enhances the efficiency and robustness of
the selected subset model and, as a consequence, the
combined algorithm can often produce sparser models with
equally good generalisation properties, compared with the
LROLS algorithm alone. An additional advantage is that it
simplifies the selection procedure. Note that it is no longer
necessary to specify the tolerance x and the algorithm
automatically terminates when condition (26) is met. The
value of weighting b does not critically influence the
performance of this combined LROLS and D-optimality
algorithm. This is because the LROLS algorithm alone is
capable of producing a very sparse model and the selected
model terms are most likely to have large values of wH

i wi.
Using the OLS algorithm without local regularisation, this is
not necessarily the case, as model terms with small wH

i wi can
have very large jgij

2 (over-fitted) and consequently will be
chosen. Note that with regularisation such over-fitting will
not occur. The D-optimality design also favours the model
terms with large wH

i wi and therefore the two component
criteria in the combined criterion (25) are not in conflict.
Thus, the two methods enhance each other. Consequently,
the value of b is not critical in arriving a desired sparse model,
and the suitable weighting b can be chosen with ease from a
large range of values [13]. It should also be emphasised that
the computational complexity of this algorithm is not
significantly more than that of the OLS algorithm. This is
simply because after the 1st iteration, which has a complexity
of the OLS algorithm, the model set contains only n1ð5MÞ

terms, and the complexity of the subsequent iteration
decreases dramatically. Typically, after a few iterations, the
model set will converge to a constant size of very small ns.

3.4. A modelling example

Modelling capabilities of the fully CVRBF network and the
efficiency of the combined LROLS and D-optimality algo-
rithm is illustrated using an example of modelling a complex-
valued nonlinear communication channel. Fig. 1 depicts the
schematic of this nonlinear channel. The transmitted data
symbols sðkÞ ¼ sRðkÞ þ jsIðkÞ, where sRðkÞ ¼ R½sðkÞ� and
sIðkÞ ¼ I½sðkÞ�, take values from the Q-quadrature amplitude
modulation (QAM) constellation defined by

SQ9fsi;l ¼ ð2i �
ffiffiffiffi
Q

p
� 1Þ þ jð2l �

ffiffiffiffi
Q

p
� 1Þ,

1pi; lp
ffiffiffiffi
Q

p
g. ð27Þ
u (k) v (k)

Σ

s (k) y (k)
y (k)

n (k)

nonlinear
element 1

nonlinear
element 2

FIR
channel

Fig. 1. Baseband discrete-time model of a nonlinear channel.
For Q ¼ 4, the 4-QAM modulation scheme is equivalent to
the QPSK scheme of (1). The first nonlinear element,
representing the nonlinear high power amplifier in the
transmitter [29], is modelled by the static nonlinearity

uðkÞ ¼ f ampðsðkÞÞ ¼
2sðkÞ

1þ jsðkÞj2
ejðp=3ÞjsðkÞj

2=ð1þjsðkÞj2Þ: (28)

The time-dispersive transmission medium is modelled as a
finite-duration impulse response (FIR) filter whose z-transfer
function is defined by

AðzÞ ¼
V ðzÞ

UðzÞ
¼ ð0:3725þ j0:2172Þ

�ð1� ð0:35þ j0:7Þz�1Þð1� ð0:5þ jÞz�1Þ. ð29Þ

The second static nonlinear element is a third-order complex-
valued Volterra nonlinearity specified by

ȳðkÞ ¼ f VolðvðkÞÞ ¼ vðkÞ þ 0:2v2ðkÞ � 0:1v3ðkÞ. (30)

The additive noise nðkÞ ¼ nRðkÞ þ jnIðkÞ, where both nRðkÞ

and nIðkÞ are white Gaussian processes having a same
variance s2n. This nonlinear channel thus is characterised by
the complex-valued nonlinear model

yðkÞ ¼ ȳðkÞ þ nðkÞ ¼ f ðxðkÞÞ þ nðkÞ, (31)

where xðkÞ ¼ ½sðkÞ sðk � 1Þ sðk � 2Þ�T and f ð�Þ denotes the
complex-valued mapping that specifies this nonlinear channel.
For this example, the input vector xðkÞ only takes values

from the input state set defined by

X ¼ fx̄l ; 1plpNstg, (32)

where Nst ¼ Q3 is the number of input states. Therefore,
the noise-free part of the channel output, ȳðkÞ, only takes
values from the output state set specified by

Ȳ ¼ fȳl ¼ f ðx̄lÞ; 1plpNstg. (33)

Similarly, the model output ŷðkÞ ¼ f̂ ðxðkÞÞ, where f̂ ð�Þ

denotes the RBF model mapping, over the input set X is
defined by

Ŷ ¼ fŷl ¼ f̂ ðx̄lÞ; 1plpNstg. (34)

The mean state error of the model ŷðkÞ ¼ f̂ ðxðkÞÞ is then
defined by

Mean State Error ¼
1

2Nst

XNst

l¼1

jȳl � ŷlj
2. (35)

In the simulation, the energy of the transmitted data
symbol sðkÞ is normalised to E½jsðkÞj2� ¼ 1:0. Two sets of
data fxðkÞ; yðkÞgNk¼1, each having N points, are generated
for the training and testing purposes, respectively. The
mean square error (MSE) over a data set DN is defined by

MSE ¼
1

2N

XN

k¼1

jyðkÞ � ŷðkÞj2 (36)

with ŷðkÞ denoting the model output for the input xðkÞ.
First, we considered identifying the 4-QAM nonlinear

channel (31), and in this case the number of input states
was Nst ¼ 64. Given s2n ¼ 0:1, both the training and testing
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Table 1

Modelling performance for the 4-QAM nonlinear channel

Basis function D-weighting RBF variance Number of RBFs MSE for training MSE for testing Mean state error

Gaussian 102–10�6 0.5 15 0.120016 0.129401 0.027739

Thin-plate-spline 102–10�6 NA 15 0.120895 0.128526 0.027029

-2

-1

0

 1

2

-2 -1 0 1 2

Im
 [
y
]

Re [y]

channel states

model states

Fig. 2. State constellation for the 4-QAM nonlinear channel, where circles

indicate channel states while crosses indicate Gaussian RBF model states.

-2

-1

 0

 1

2

-2 -1  0  1  2

Im
 [

y
]

Re [y]

channel states

model states

Fig. 3. State constellation for the 4-QAM nonlinear channel, where circles

indicate channel states while crosses indicate thin-plate-spline RBF model

states.

S. Chen et al. / Neurocomputing 71 (2008) 3421–34333426
data sets had N ¼ 400 points. The fully CVRBF networks
having the node response (4) and with both the Gaussian
and thin-plate-spline basis functions were applied to the
training data set using the combined LROLS and
D-optimality algorithm. For this example, it was found
that the weighting b was not critical at all and any value in
102 to 10�6 gave the same excellent modelling performance.
For the Gaussian RBF network, the RBF variance was set
to r2 ¼ 0:5 via cross validation. The algorithm automati-
cally selected 15 RBF nodes for both the Gaussian and
thin-plate-spline RBF models. Table 1 summarises the
modelling performance of the two selected RBF models. It
can be seen from Table 1 that the two RBF network
models had similarly good generalisation performance.
Fig. 2 plots the model output state set Ŷ for the Gaussian
RBF model, while Fig. 3 displays Ŷ of the thin-plate-spline
RBF model, in comparison with the true channel state set
Ȳ. The state errors, defined by ȳl � ŷl , 1plpNst, are
plotted in Figs. 4 and 5, respectively, for the two RBF
network models.

Next the 16-QAM nonlinear channel was investigated,
again given the noise variance s2n ¼ 0:1. In this case, the
number of input states was increased to Nst ¼ 4096, but the
number of data points used was only N ¼ 600 for both the
training and testing data sets. For the thin-plate-spline
RBF model, an appropriate value for the D-optimality
weighting was found to be b ¼ 10:0 empirically, while for
the Gaussian RBF network, b ¼ 10�6 was found to be
appropriately. For the Gaussian RBF network, the RBF
variance was chosen to be r2 ¼ 1:5 via cross validation.
The algorithm selected 50 RBF nodes for the Gaussian
RBF model and 57 RBF nodes for the thin-plate-spline
RBF model. The modelling performance of these two RBF
networks is listed in Table 2, which shows that the two
constructed RBF networks had similar good generalisation
performance.
4. OFS based on fisher ratio for classifier construction

The OFS algorithm based on the multi-class FRCSM is
first derived for constructing sparse fully CVRBF classi-
fiers, and this is followed by its application to nonlinear
beamforming for multiple-antenna aided QPSK wireless
communication systems.
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4-QAM nonlinear channel.
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Fig. 5. State errors between the channel and thin-plate-spline RBF model

for the 4-QAM nonlinear channel.
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4.1. Construction algorithm for fully CVRBF classifiers

Recall from Section 2 that we are dealing with a multi-
class classification problem. First divide the training
feature vectors X ¼ fxðkÞgNk¼1 into the MC classes
(MC ¼ 4 in our case)

X½i�9fxðkÞ 2 X : yðkÞ ¼ s½i�g; 1pipMC . (37)

Assume that the number of samples in X½i� is N ½i�.
Obviously

XMC

i¼1

N ½i� ¼ N. (38)

Define the mean and variance of samples belonging to class
X½i� in the direction of basis wl as mi;l and s2i;l , respectively,
which can be calculated according to

mi;l ¼
1

N ½i�

XN

k¼1

d yðkÞ � s½i�
� �

wk;l (39)
and

s2i;l ¼
1

N ½i�

XN

k¼1

dðyðkÞ � s½i�Þðwk;l �mi;lÞ
2, (40)

where the indicator function

dðxÞ ¼
1; x ¼ 0þ j0;

0; xa 0þ j0:

(
(41)

Denote the Fisher ratio of the class separation between
classes X½i� and X½q� in the direction of basis wl as F i;q;l .
Recall that Fisher ratio is defined as the ratio of the
interclass difference to the intraclass spread [18], namely,

Fi;q;l ¼
ðmi;l �mq;lÞ

2

ðs2i;l þ s2q;lÞ
. (42)

Fisher ratio provides a good class separability measure
because its maximisation leads to the interclass difference
being maximised and the intraclass spread being minimised.
Since we are dealing with multiple MC classes, we can

define the average Fisher ratio of the class separation in the
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Table 2

Modelling performance for the 16-QAM nonlinear channel

Basis function D-weighting RBF variance Number of RBFs MSE for training MSE for testing Mean state error

Gaussian 10�6 1.5 50 0.128931 0.143484 0.035443

Thin-plate-spline 10:0 NA 57 0.117874 0.146306 0.038081

array Rx

. . .

Tx 2
Tx 1

Tx i
desired. . .

Tx S

user

. . .

. . .

i

1 L

ηi

2

Fig. 6. (a) Beamforming based multiple-antenna receiver to support

multiple users, and (b) geometric structure of uniformly spaced antenna

array, where L is the number of antenna-array elements, S is the number

of users, and Zi is the angle of arrival for user i.
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direction of basis wl as

Fl ¼
2

ðMC � 1ÞMC

XMC�1

i¼1

XMC

q¼iþ1

F i;q;l . (43)

Based on this average Fisher ratio, significant RBF nodes or
regressors can be selected in an OFS procedure, just as in the
case of two-class problems [27,12]. Specifically, at the lth
stage of the OFS procedure, a regressor is chosen as the lth
term in the selected fully CVRBF classifier if it produces the
largest Fl among the candidates terms, wi, lpipM. The
procedure is terminated with a sparse ns-term classifier when

F nsPns
l¼1F l

px, (44)

where the threshold x determines the sparsity of the
selected classifier. The detailed OFS procedure based on
the multi-class Fisher ratio class separation measure is
given in Appendix C. The LS solution for the correspond-
ing sparse model weight vector hns is readily available from
Anshns ¼ gns

, given the LS solution of gns
.

In general, a desired value for the threshold x has to be
determined via cross validation. However, in our particular
application to nonlinear beamforming for multiple-anten-
na aided communication systems, the number of users in
the system is usually known and hence, the number of the
subset underlying channel states, Nsub, is given (see the next
subsection). Thus, we can simply set the size of the fully
CVRBF classifier to ns ¼ Nsub. In this application, there-
fore, we do not need to employ costly cross validation to
determine the model size and the OFS procedure is fully
automatic.

4.2. Application to nonlinear beamforming

Consider a coherent wireless communication system that
supports S single-transmit-antenna users of the same
carrier frequency o ¼ 2pf by employing a receiver
equipped with a linear antenna array consisting of L

uniformly spaced elements [28,30], as shown in Fig. 6.
Assume that the channel is non-dispersive and it does not
induce intersymbol interference. Then the received signal
vector xðkÞ ¼ ½x1ðkÞ x2ðkÞ � � � xLðkÞ�

T at receiver can be
expressed as [25,2]

xðkÞ ¼ PbðkÞ þ nðkÞ ¼ x̄ðkÞ þ nðkÞ, (45)

where P is the L� S complex-valued system’s channel
matrix, nðkÞ ¼ ½n1ðkÞ n2ðkÞ � � � nLðkÞ�

T, nlðkÞ is the com-
plex-valued Gaussian white noise associated with the lth
channel having E½jnlðkÞj

2� ¼ 2s2n, bðkÞ ¼ ½b1ðkÞ b2ðkÞ

� � � bSðkÞ�
T, biðkÞ denotes the kth transmitted symbol of

user i, and biðkÞ takes the values from the QPSK symbol set
of (1). The system’s channel matrix is defined by

P ¼ ½A1s1 A2s2 � � � ASsS�, (46)

where Ai is the ith non-dispersive channel tap coefficient,

si ¼ ½e
jot1ðZiÞ ejot2ðZiÞ � � � ejotLðZiÞ�T (47)

is the steering vector of source i, with Zi and tlðZiÞ denoting
the angle of arrival and the relative time delay at array
element l for user i, respectively.
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Table 3

Angular positions of the four QPSK users with respect to the three-

element linear array having half wavelength spacing

User i 1 2 3 4

Angle of arrival Zi (1) 15 �20 45 �70
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Fig. 7. Comparison of bit error rate performance of three beamformers

for desired user 1. The fully CVRBF classifier constructed by the OFS

based on FRCSM had 64 RBF nodes.
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Traditionally, a linear beamformer is adopted to detect
the desired user’s signal [25,2]. The linear beamformer for
user i is defined by

ŷLin;iðkÞ ¼ hHi xðkÞ, (48)

where hi ¼ ½y1;i y2;i � � � yL;i�
T is the complex-valued ith

linear beamformer’s weight vector. The decision regarding the
transmitted symbol biðkÞ is given by b̂iðkÞ ¼ sgnðŷLin;iðkÞÞ,
where b̂iðkÞ denotes the estimate of biðkÞ by the linear
beamformer (48). The optimal weight vector designed for the
linear beamformer is known to be the minimum bit error rate
(L-MBER) solution [7,10]. However, if one is willing to
extend the beamforming process to nonlinear, substantial
improvement in the achievable system’s bit error rate (BER)
performance and significant enhancement in the user capacity
can be achieved at a cost of increased computational
complexity [11].

Denote the Nsta ¼ 4S legitimate combinations of bðkÞ as
bq, 1pqpNsta. The noiseless channel output x̄ðkÞ takes
values from the vector state set

X9fx̄q ¼ Pbq; 1pqpNbg, (49)

and X can be divided into the four subsets conditioned on
the values of biðkÞ ¼ s½t�, 1ptp4, as follows:

X½t;i�9fx̄½t;i�q 2 X; 1pqpNsub : biðkÞ ¼ s½t�g, (50)

where the size of X½t;i� is Nsub ¼ 4S�1. If the system’s
channel matrix P is known, the channel state set X can be
calculated and the optimal nonlinear Bayesian beamform-
ing solution for user i can be expressed as [11]

ŷBay;iðkÞ ¼
XNsub

q¼1

bqfs
½1� � e�kxðkÞ�x̄

½1;i�
q k

2=2s2n

þ s½2� � e�kxðkÞ�j�x̄
½1;i�
q k

2=2s2n

þ s½3� � e�kxðkÞþx̄
½1;i�
q k

2=2s2n þ s½4� � e�kxðkÞþj�x̄
½1;i�
q k

2=2s2ng,

ð51Þ

where x̄½1;i�q 2 X½1;i�, and bq are positive constants related
to the a priori probabilities of x̄½1;i�q . The derivation of
the Bayesian beamforming solution (51) is also given
in Appendix D. In general, the system’ channel matrix
is unknown. Given a training data set DN ¼ fxðkÞ;
yiðkÞ ¼ biðkÞg

N
k¼1, our aim is to construct a sparse fully

CVRBF classifier or beamformer ŷiðkÞ with ns ¼ Nsub RBF
nodes for detecting the user-i data, using the OFS based on
FRCSM. In the light of the symmetric structure of the
underlying Bayesian beamforming solution (51), we choose
the RBF node’s response function (7) with Gaussian basis
function and set all the RBF variances to a constant r2,
where appropriate value of r2 is determined via cross
validation.

In the simulation investigation, a three-element linear
antenna array with half wavelength spacing was employed
to support four QPSK users. The angular positions of the
four users are listed in Table 3. The simulated channel
conditions were Ai ¼ 1:0þ j0:0, 1pip4, and all the four
users had a equal power. First we consider beamforming
for user 1. Fig. 7 depicts the BER performance of the
optimal linear beamformer, namely, the L-MBER solution,
and the Bayesian beamformer. For user 1, the underlying
system was linearly separable. That is, there existed
linear beamformers which could separate the four subsets
X½t;1�, 1ptp4, correctly. Given each signal to noise
ratio (SNR), a training set of N ¼ 600 samples was
generated to construct the fully CVRBF network using
the multi-class FRCSM based OFS. For this example,
Nsub ¼ 64, therefore we stopped the selection procedure
after choosing ns ¼ 64 nodes. The value of the RBF
variance r2 was determined using cross validation,
and appropriate values were in the range of 0.6–2.0
depending on the SNR value and noise realisation in
the training data. The BER performance of the 64-term
fully CVRBF classifier is also plotted in Fig. 7. It can be
seen from Fig. 7 that at low SNR values the 64-term
fully CVRBF network performed slightly better than
the Bayesian detector. A possible explanation is as
follows. The Bayesian solution is derived under the
assumption of white noise nðkÞ. In the simulation, the
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noise was slightly coloured. Note that the weights of
the fully CVRBF network are complex-valued. Therefore,
a 64-term fully CVRBF network has a larger model size
than the Bayesian solution (whose weights are real-valued).
This larger network size might have allowed the fully
CVRBF network to exploit the noise statistics in the
training data better. The influence of the RBF variance r2

to the performance of the fully CVRBF classifier is
demonstrated in Fig. 8, given SNR ¼ 6 dB.
The beamforming for detecting the user-4 data was also
considered, and Fig. 9 shows the BER performance of the
L-MBER beamformer and the Bayesian beamformer for
desired user 4. In this case, the underlying system was
linearly nonseparable as was demonstrated by the high
BER floor of the L-MBER beamformer. For each SNR
value, a training data set consisting of N ¼ 600 samples
was used to construct a 64-term fully CVRBF classifier
using the OFS based on the multi-class FRCSM, and the
BER performance of the resulting classifier is also depicted
in Fig. 9. Again the value of the RBF variance was
determined via cross validation. Detection of user-4 data
was a more difficult task than detection of user-1 data as
the former was a nonlinearly separable problem, and the
degradation of the fully CVRBF network from the optimal
Bayesian solution was more noticeable, as was confirmed
in Fig. 9.
5. Conclusions

A fully CVRBF network has been proposed for
regression and classification applications. For regression
problems, the combined LROLS algorithm and the
D-optimality design, originally derived for real-valued
RBF networks, has been extended to select parsimonious
fully CVRBF networks with excellent generalisation
capability. A modelling example involving the identifica-
tion of a nonlinear channel has been used to illustrate the
proposed approach. It has been demonstrated that
combining the local regularisation with the D-optimality
experimental design provides a state-of-the-art procedure
for constructing very sparse regression models with
excellent generalisation performance. The performance of
the algorithm is insensitive to the D-optimality cost
weighting, and the model construction process is fully
automated. For four-class classification problems, the
multi-class FRCSM based OFS algorithm has been derived
for constructing sparse fully CVRBF classifiers that
generalise well. The capability of the multi-class FRCSM
based OFS algorithm has been demonstrated by using it to
construct sparse fully CVRBF classifiers in the application
to nonlinear beamforming for multiple antenna aided
QPSK wireless communication systems.
Appendix A

The regularised LS solution for g is obtained by setting
qJR=qg ¼ 0, that is,

WHy ¼ ðWHWþ KÞg. (52)

Now

yHy� 2gHKg ¼ ðWgþ eÞHðWgþ eÞ � 2gHKg

¼ gHWHWgþ eHeþ gHWHe

þ eHWg� 2gHKg. ð53Þ
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Noting (52),

gHWHe� gHKg ¼ gHWHðy�WgÞ � gHKg

¼ gHðWHy�WHWg� KgÞ

¼ 0. ð54Þ

Similarly, eHWg� gHKg ¼ 0. Thus, yHy� 2gHKg ¼

gHWHWgþ eHe, or

eHeþ gHKg ¼ yHy� gHWHWg� gHKg. (55)

Appendix B

The complex-valued version of the modified Gram–Schmidt
orthogonalisation procedure also calculates the A matrix
row by row and orthogonalises U as follows: at the lth
stage make the columns /i, l þ 1pipM, orthogonal to the
lth column and repeat the operation for 1plpM � 1.
Specifically, denoting /

ð0Þ
i ¼ /i, 1pipM, then for l ¼

1; 2; . . . ;M � 1

wl ¼ /
ðl�1Þ
l ;

al;i ¼ wH
l /
ðl�1Þ
i =ðwH

l wlÞ; l þ 1pipM;

/
ðlÞ
i ¼ /

ðl�1Þ
i � al;iwl ; l þ 1pipM:

9>>=
>>; (56)

The last stage of the procedure is simply wM ¼ /
ðM�1Þ
M . The

elements of g are computed by transforming yð0Þ ¼ y in a
similar way:

gl ¼ wH
l y
ðl�1Þ=ðwH

l wl þ llÞ;

yðlÞ ¼ yðl�1Þ � glwl ;

)
1plpM. (57)

This orthogonalisation scheme can be used to derive a
simple and efficient algorithm for selecting subset models in
a forward-regression manner, just as in the real-valued
case. First define

Uðl�1Þ ¼ ½w1 � � � wl�1 /
ðl�1Þ
l � � � /

ðl�1Þ
M �. (58)

If some of the columns /
ðl�1Þ
l ; . . . ;/ðl�1ÞM in Uðl�1Þ have been

interchanged, this will still be referred to as Uðl�1Þ for
notational convenience. The lth stage of the selection
procedure is given as follows:

Step 1: For lpipM, compute

g
ðiÞ
l ¼ ð/

ðl�1Þ
i Þ

Hyðl�1Þ=ðð/ðl�1Þi Þ
H/
ðl�1Þ
i þ liÞ;

½crerr�
ðiÞ
l ¼ ðjg

ðiÞ
l j

2ðð/
ðl�1Þ
i Þ

H/
ðl�1Þ
i þ liÞ

þb logðð/ðl�1Þi Þ
H/
ðl�1Þ
i ÞÞ=ðyHyÞ:

9>>=
>>;

Step 2: Find

½crerr�l ¼ ½crerr�
ðil Þ

l ¼ maxf½crerr�
ðiÞ
l ; lpipMg.

Then the ilth column of Uðl�1Þ is interchanged with the lth
column of Uðl�1Þ, the ilth column of A is interchanged with
the lth column of A up to the ðl � 1Þth row, and the ilth
element of k is interchanged with the lth element of k. This
effectively selects the ilth candidate as the lth regressor in
the subset model.
Step 3: Perform the orthogonalisation as indicated in
(56) to derive the lth row of A and to transform Uðl�1Þ into
UðlÞ. Calculate gl and update yðl�1Þ into yðlÞ in the way
shown in (57).
The selection is terminated at the ns stage when the

criterion (26) is satisfied and this produces a subset model
containing ns significant regressors. The algorithm de-
scribed here is in its standard form. A fast implementation
can be adopted, just as shown in the real-valued case [16],
to reduce complexity.

Appendix C

Without regularisation, the modified Gram–Schmidt
orthogonalisation procedure is defined in (56) and (57),
with all the regularisation parameters set to li ¼ 0 in (57).
Also recall from Appendix B that the definition of
the regression matrix Uðl�1Þ at the beginning of the lth
stage is given in (58). Further introduce the notation

/ðl�1Þq ¼ ½fðl�1Þ1;q fðl�1Þ2;q � � � fðl�1ÞN ;q �
T. Given a very small

positive number Tz, which specifies the zero threshold,
the lth stage of the OFS procedure is given as follows:

Step 1: For lpqpM:
Test—Conditioning number check. If ð/ðl�1Þq Þ

H/ðl�1Þq oTz,
the qth candidate is not considered.
Compute for 1pipMC

m
ðqÞ
i;l ¼

1

N ½i�

XN

k¼1

dðyðkÞ � s½i�Þfðl�1Þk;q

and

ðsðqÞi;l Þ
2
¼

1

N ½i�

XN

k¼1

dðyðkÞ � s½i�Þðfðl�1Þi;q �m
ðqÞ
i;l Þ

2.

Then calculate

F
ðqÞ
i;p;l ¼

ðm
ðqÞ
i;l �m

ðqÞ
p;l Þ

2

ððsðqÞi;l Þ
2
þ ðsðqÞp;l Þ

2
Þ
; 1pioppMC

and

F
ðqÞ
l ¼

2

ðMC � 1ÞMC

XMC�1

i¼1

XMC

p¼iþ1

F
ðqÞ
i;p;l .

Let the index set Jq be

Jq ¼ flpqpM and q passes Testg.

Step 2: Find

Fl ¼ F
ðql Þ

l ¼ maxfF
ðqÞ
l ; q 2 Jqg.

Then the qlth column of Uðl�1Þ is interchanged with the lth
column of Uðl�1Þ, and the qlth column of A is interchanged
with the lth column of A up to the ðl � 1Þth row. This
selects the qlth candidate as the lth term in the subset
model.

Step 3: Perform the orthogonalisation as indicated in
(56) to derive the lth row of A and to transform Uðl�1Þ into
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UðlÞ. Calculate gl and update yðl�1Þ into yðlÞ in the way
shown in (57).

Appendix D

Denote the conditional probabilities of receiving xðkÞ

given biðkÞ ¼ s½t� as p½t�ðxðkÞÞ ¼ pðxðkÞjbiðkÞ ¼ s½t�Þ. Accord-
ing to Bayes’ decision theory [18], the optimal detection
strategy is

b̂iðkÞ ¼ s½t
��, (59)

where

t� ¼ arg max
1ptp4

p½t�ðxðkÞÞ. (60)

Define the complex-valued Bayesian decision variable [15]

ŷBay;iðkÞ9s½1� � p½1�ðxðkÞÞ þ s½2� � p½2�ðxðkÞÞ

þ s½3� � p½3�ðxðkÞÞ þ s½4� � p½4�ðxðkÞÞ. ð61Þ

The optimal Bayesian detection rule (59) and (60) is
equivalent to b̂iðkÞ ¼ sgnðŷBay;iðkÞÞ.

The conditional probability p½t�ðxðkÞÞ can be expressed as

p½t�ðxðkÞÞ ¼
XNsub

q¼1

bqe
�kxðkÞ�x̄

½t;i�
q k

2=2s2n , (62)

where x̄½t;i�q 2 X
½t;i�, and bq is proportional to the a priori

probability of x̄½t;i�q . Since all the x̄½t;i�q are equiprobable,

bq ¼ b ¼ 1=Nsubð2ps2nÞ
L. It can be seen that the optimal

Bayesian decision variable (61) takes the structure of a
CVRBF network [14] with a Gaussian RBF function. The
state subsets X½t;i�, 1ptp4, are distributed sym-metrically
with respect to each other as summarised in the following
lemma.

Lemma. The four subsets X½t;i�, 1ptp4, satisfy

X½2;i� ¼ þj �X½1;i�;

X½3;i� ¼ �1 �X½1;i�;

X½4;i� ¼ �j �X½1;i�:

8><
>: (63)

Proof. Consider any x̄½1;i�q ¼ Pb½1;i�q 2 X½1;i�, where the ith

element of b½1;i�q is s½1� ¼ þ1þ j. Noting j � s½1� ¼ �1þ j ¼ s½2�,

j � x̄½1;i�q ¼ Pðj � b½1;i�q Þ 2 X
½2;i�. This proves the first relationship.

The proofs of the other two relationships are similar. &

Substituting the symmetric property (63) into the
optimal Bayesian solution (61) leads to the expression
(51), where x̄½1;i�q 2 X½1;i�.
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