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Outline

[1 Channel equalisation revisit

Symmetric property of Bayesian solution

[1 Symmetric RBF equaliser
Exploit prior knowledge (symmetry)
[J Adaptive equalisation algorithms
[0 Kernel-type algorithm (Off-line, block data)
[0 Nonlinear LBER algorithm (On-line, recursive)
[0 Clustering algorithm (On-line, recursive)

Better performance due to exploiting prior knowledge
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Equaliser Model

[1 Channel model: received signal

Ne—1

z(k) = > cib(k — i) + n(k)

i=0
0 Signal model: equaliser input x(k) = [z(k) z(k —1)---2(k — n, + 1)]¥
x(k) = Cb(k) + n(k) = x(k) + n(k)
[0 Equaliser: uses information contained in x(k) to detect symbol b(k — 7)
c;, 0 <1< n.—1, are channel taps, with channel length n.
C is n. X L channel convolution matrix, with L =n,. + n, — 1
ne is equaliser order and 7 decision delay

n(k) is AWCN, with E[[n(k)|?] = o2

n
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Bayesian Equaliser

0 Assume BPSK: b(k) € {—1,+1}, denote N, = 2 legitimate combina-
tions of b(k) as by, 1 < q < Ny, and (7 + 1)-th element of b, as b, -

[1 Noiseless channel output x(k) takes values from signal state set
X:{)_(q:qu, 1§q§Nb}

[1 Optimal Bayesian equaliser

Clx(k)=xq12

Ny
yay(k) = ) sen(byr)Be 7%
q=1

1
Ny(2mwo2)L/27

where 3, = with decision

+1, yBa,y(k) >0

bk = 1) =sgnuma () = ¢ 7T
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Symmetry Property

[1 Signal state set X can be divided into two subsets conditioned on b(k —7)
XF) =1x,eX,1<i<Ngy: blk—7)==+1}

Sizes of X*) and X(~) are both N, = Ny /2

[1 Symmetry property: for any )‘(Z(-H e Xt there exists a 5(1(-_) e X(7) such
that ! ) = —x{™

[1 With this symmetry property, Bayesian equaliser can be re-arranged as

) —=S 2 ()=l >

Nsb
YBay (k) = Z 3, <€ 202 e 252
g=1

where iéﬁ e Xt), Bayesian solution has an inherent odd symmetry

[1 Symmetric property of Bayesian equaliser is difficult to learn accurately
from noisy data by a traditional RBF network
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Symmetric RBF Equaliser

[ RBF network equaliser

b(k — 1) = sgn(yppr(k)) with yrpr(k) = Z 0;0:(x(k))

0; are RBF weights and M number of RBF units
[1 Symmetric RBF node

Gi(x) = o(x; i, i) — P(x; — 1, 7))
p; € R" is RBF centre, p? RBF variance, and ¢(e) usual RBF function
[ Gaussian RBF function

B A
o(x; i, p°) =€ 207

[1 This symmetric RBF network has an inherent odd symmetry
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Block-Based Kernel Algorithm

0 Given training set Dy = {x(k),d(k) = b(k — 7)}_,, set M = K and
p; = x(i) for 1 <i < K, and fix all RBF variances to p?

[0 Define (i) = d(¢) — yrpr (7). Then we arrive regression model

d= PO +¢

D = [ ¢y Pyl € RFM

with ¢; = [¢i(x(1)) ¢i(x(2)) -~ di(x(K))]", and @ = [01 02 -+ Opr]"

[ Sparse kernel modelling problem = select sparse Mgp,-term subset model

I OFS-FRCSM:

Orthogonal Forward Selection based on incrementally maximising Fisher
Ratio of Class Separability Measure
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Bit Error Rate of RBF Equaliser

[1 Generic symmetric RBF equaliser

YyrBF(k;w) 29 k); wis p7) — o(x(k); =gy, 07))

where w includes all RBF centres u,, variances p? and weights 0;

[0 Define probability density function (PDF) of signed decision variable
ys(k) = sgn(b(k — 7))yrer(k; W) as p,(ys)
[1 Error probability or BER of RBF equaliser

0
Pr(w) = Prob{y, (k) < 0} = [ p,(s) s,
[0 Nonlinear minimum bit error rate (MBER) solution

WMBER = arg min Pg(w)
W
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Approximate Minimum Bit Error Rate

[0 Unknown p,(ys) = Parzen window estimate

(s =SENb(k—m)yrpF (kiw))?

1 K
D ) = ——— e 202
Py(Ys) K20 kzzl

where o2 is kernel variance

[1 With this estimated PDF, estimated or approximate BER is given by
. 0
Petw) = [ 5y(u)dy, = ZQ
where ()(e) is the usual Gaussian error function and

sgn(b(k — 7))yrpr(k; w)

gr(W) =

0 Approximate MBER solution for w is obtained by minimising Pg(w)
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Nonlinear Least Bit Error Rate

[1 To derive a sample-by-sample adaptive algorithm, consider single-sample
PDF “estimate” of p,(ys)

1 _ (ys—SEN (k=) yrpr (kiw))?
e 202

ﬁy (y87 k) —
2To

44

[1 Conceptually, with this instantaneous PDF “estimate” we have one-

sample BER “estimate” Pg(w, k) = Q (§x(W))

0 Using instantaneous or stochastic gradient VPg(w, k) gives rise to

f _y?%BF(k;‘;’(k_l)) 5’yRBF(k; W(k — 1))
\/%06 o sgn(b(k—7)) e

which we refer to as Nonlinear Least Bit Error Rate (NLBER)

w(k) =w(k—1)+

[1 Step size & and kernel width o should be chosen carefully to ensure fast

convergence and small steady-state BER misadjustment
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Clustering Algorithm

(0 Set M = Ng, 0; = 3> 0 and p? = 62 Vi, where 62 is estimated o2

[0 Then symmetric RBF equaliser realises exactly Bayesian equaliser by

placing its centres p, = X§+) c xH)

[0 Denote legitimate combinations of b(k) corresponding to b(k — 7) = +1
as b§+), 1 <7< Ng

[1 During training, supervised clustering

if (b(k) == b{"))

x(k) = x(k);
else if (b(k) == —b!™)
x(k) = —x(k);

pi(k) = pi(k—1) 4+ p(x(k) — p;(k—1));

[1 In data transmission, use unsupervised or enhanced k-means clustering
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A Simulation Example

[1 Three-tap channel
x(k) =03 b(k) +0.8 b(k—1)+0.3 b(k —2) + n(k)
[1 Equaliser order n, = 4
x(k) = [z(k) z(k —1) z(k —2) z(k — 3)]

and decision delay 7 = 2

[0 Size of X(H) is N, = 32
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OFS-FRCSM Results

Bit error rate comparison of optimal Bayesian equaliser and symmetric

[1 Symmetric RBF size M = 30

[1 Data block length K = 600

[0 RBF variance p? = o

RBF equaliser based on OFS-FRCSM algorithm
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NLBER Results

[1 SNR= 13 dB, and average over 10 runs

0 First M data points as initial centres u,;(0), ;(0) = 0.01 and p?(0) = 402

[1 Step size u = 0.1 and kernel width ¢ = o,, for NLBER

Learning Curve (M = 30) Influence of Model Size
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NLBER Results (continue)

Bit error rate comparison of optimal Bayesian equaliser and symmetric

RBF equaliser based on NLBER algorithm
0
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Optim —e—

-2 x\

3

[0 Step size u = 0.1 and kernel width 4
o = o0, for NLBER

[1 Symmetric RBF size M = 30

[] First 30 data as initial centres
p;(0), initial weights 6,(0) = 0.01

and initial variances p?(0) = 402

log10(Bit Error Rate)
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Clustering Results

0 SNR= 10 dB, symmetric RBF size M = 32 and RBF variance p* = o2

[1 Learning curve shows Euclidean distance between set of RBF centres and

set of channel states

Learning Curve Influence of RBF' variance
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Clustering Results (continue)

Bit error rate comparison of optimal Bayesian equaliser and symmetric

RBF equaliser based on clustering algorithm
0

RBF clustering —=—
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Conclusions

[1 Classical channel equalisation has been revisited
[] Inherently odd symmetry property of optimal Bayesian
equaliser has been highlighted
[1 A novel symmetric radial basis function network has been pro-
posed for channel equalisation
[ Which exploits prior knowledge on symmetry property of

optimal solution, leading to enhanced performance

[1 Adaptive algorithms for training this symmetric RBF

equaliser have been reviewed
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