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Outline

❏ Channel equalisation revisit

Symmetric property of Bayesian solution

❏ Symmetric RBF equaliser

Exploit prior knowledge (symmetry)

❏ Adaptive equalisation algorithms

✰ Kernel-type algorithm (Off-line, block data)

✰ Nonlinear LBER algorithm (On-line, recursive)

✰ Clustering algorithm (On-line, recursive)

Better performance due to exploiting prior knowledge
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Equaliser Model

❏ Channel model: received signal

x(k) =

nc−1
∑

i=0

cib(k − i) + n(k)

❏ Signal model: equaliser input x(k) = [x(k) x(k − 1) · · ·x(k − ne + 1)]T

x(k) = Cb(k) + n(k) = x̄(k) + n(k)

❏ Equaliser: uses information contained in x(k) to detect symbol b(k − τ)

ci, 0 ≤ i ≤ nc − 1, are channel taps, with channel length nc

C is ne × L channel convolution matrix, with L = nc + ne − 1

ne is equaliser order and τ decision delay

n(k) is AWGN, with E[|n(k)|2] = σ2
n
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Bayesian Equaliser

❏ Assume BPSK: b(k) ∈ {−1, +1}, denote Nb = 2L legitimate combina-

tions of b(k) as bq, 1 ≤ q ≤ Nb, and (τ + 1)-th element of bq as bq,τ

❏ Noiseless channel output x̄(k) takes values from signal state set

X = {x̄q = Cbq, 1 ≤ q ≤ Nb}

❏ Optimal Bayesian equaliser

yBay(k) =

Nb
∑

q=1

sgn(bq,τ )βqe
−

‖x(k)−x̄q‖2

2σ2
n

where βq = 1
Nb(2πσ2

n)L/2 , with decision

b̂(k − τ) = sgn(yBay(k)) =







+1, yBay(k) ≥ 0

−1, yBay(k) < 0
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Symmetry Property

❏ Signal state set X can be divided into two subsets conditioned on b(k−τ)

X (±) = {x̄i ∈ X , 1 ≤ i ≤ Nsb : b(k − τ) = ±1}

Sizes of X (+) and X (−) are both Nsb = Nb/2

❏ Symmetry property: for any x̄
(+)
i ∈ X (+) there exists a x̄

(−)
i ∈ X (−) such

that x̄
(−)
i = −x̄

(+)
i

❏ With this symmetry property, Bayesian equaliser can be re-arranged as

yBay(k) =

Nsb
∑

q=1

βq

(

e
−

‖x(k)−x̄

(+)
q ‖2

2σ2
n − e

−
‖x(k)+x̄

(+)
q ‖2

2σ2
n

)

where x̄
(+)
q ∈ X (+), Bayesian solution has an inherent odd symmetry

❏ Symmetric property of Bayesian equaliser is difficult to learn accurately

from noisy data by a traditional RBF network

http://www-mobile.ecs.soton.ac.uk
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Symmetric RBF Equaliser

❏ RBF network equaliser

b̂(k − τ) = sgn(yRBF (k)) with yRBF (k) =
M
∑

i=1

θiφi(x(k))

θi are RBF weights and M number of RBF units

❏ Symmetric RBF node

φi(x) = ϕ(x; µi, ρ
2
i ) − ϕ(x;−µi, ρ

2
i )

µi ∈ Rne is RBF centre, ρ2
i RBF variance, and ϕ(•) usual RBF function

❏ Gaussian RBF function

ϕ(x; µi, ρ
2) = e

−
‖x−µi‖

2

2ρ2

❏ This symmetric RBF network has an inherent odd symmetry
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Block-Based Kernel Algorithm

❏ Given training set DK = {x(k), d(k) = b(k − τ)}K
k=1, set M = K and

µi = x(i) for 1 ≤ i ≤ K, and fix all RBF variances to ρ2

❏ Define ε(i) = d(i) − yRBF (i). Then we arrive regression model

d = Φθ + ε

where d = [d(1) d(2) · · · d(K)]T , ε = [ε(1) ε(2) · · · ε(K)]T ,

Φ = [φ1 φ2 · · ·φM ] ∈ RK×M

with φi = [φi(x(1)) φi(x(2)) · · ·φi(x(K))]T , and θ = [θ1 θ2 · · · θM ]T

❏ Sparse kernel modelling problem ⇒ select sparse Mspa-term subset model

❏ OFS-FRCSM:

Orthogonal Forward Selection based on incrementally maximising Fisher

Ratio of Class Separability Measure

http://www-mobile.ecs.soton.ac.uk
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Bit Error Rate of RBF Equaliser

❏ Generic symmetric RBF equaliser

yRBF (k;w) =
M
∑

i=1

θi

(

ϕ(x(k); µi, ρ
2
i ) − ϕ(x(k);−µi, ρ

2
i )
)

where w includes all RBF centres µi, variances ρ2
i and weights θi

❏ Define probability density function (PDF) of signed decision variable

ys(k) = sgn(b(k − τ))yRBF (k;w) as py(ys)

❏ Error probability or BER of RBF equaliser

PE(w) = Prob{ys(k) < 0} =

∫ 0

−∞

py(ys) dys

❏ Nonlinear minimum bit error rate (MBER) solution

wMBER = arg min
w

PE(w)

http://www-mobile.ecs.soton.ac.uk
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Approximate Minimum Bit Error Rate

❏ Unknown py(ys) ⇒ Parzen window estimate

p̃y(ys) =
1

K
√

2πσ

K
∑

k=1

e−
(ys−sgn(b(k−τ))yRBF (k;w))2

2σ2

where σ2 is kernel variance

❏ With this estimated PDF, estimated or approximate BER is given by

P̃E(w) =

∫ 0

−∞

p̃y(ys) dys =
1

K

K
∑

k=1

Q (g̃k(w))

where Q(•) is the usual Gaussian error function and

g̃k(w) =
sgn(b(k − τ))yRBF (k;w)

σ

❏ Approximate MBER solution for w is obtained by minimising P̃E(w)

http://www-mobile.ecs.soton.ac.uk
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Nonlinear Least Bit Error Rate

❏ To derive a sample-by-sample adaptive algorithm, consider single-sample

PDF “estimate” of py(ys)

p̃y(ys, k) =
1√
2πσ

e−
(ys−sgn(b(k−τ))yRBF (k;w))2

2σ2

❏ Conceptually, with this instantaneous PDF “estimate” we have one-

sample BER “estimate” P̃E(w, k) = Q (g̃k(w))

❏ Using instantaneous or stochastic gradient ∇P̃E(w, k) gives rise to

w(k) = w(k−1)+
ξ√
2πσ

e−
y2

RBF
(k;w(k−1))

2σ2 sgn(b(k−τ))
∂yRBF (k;w(k − 1))

∂w

which we refer to as Nonlinear Least Bit Error Rate (NLBER)

❏ Step size ξ and kernel width σ should be chosen carefully to ensure fast

convergence and small steady-state BER misadjustment

http://www-mobile.ecs.soton.ac.uk
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Clustering Algorithm

❏ Set M = Nsb, θi = β > 0 and ρ2
i = σ̂2

n ∀i, where σ̂2
n is estimated σ2

n

❏ Then symmetric RBF equaliser realises exactly Bayesian equaliser by

placing its centres µi = x
(+)
i ∈ X (+)

❏ Denote legitimate combinations of b(k) corresponding to b(k − τ) = +1

as b
(+)
i , 1 ≤ i ≤ Nsb

❏ During training, supervised clustering

if (b(k) == b
(+)
i )

x̌(k) = x(k);

else if (b(k) == −b
(+)
i )

x̌(k) = − x(k);

µi(k) = µi(k − 1) + µ (x̌(k) − µi(k − 1)) ;

❏ In data transmission, use unsupervised or enhanced κ-means clustering

http://www-mobile.ecs.soton.ac.uk
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A Simulation Example

❏ Three-tap channel

x(k) = 0.3 b(k) + 0.8 b(k − 1) + 0.3 b(k − 2) + n(k)

❏ Equaliser order ne = 4

x(k) = [x(k) x(k − 1) x(k − 2) x(k − 3)]T

and decision delay τ = 2

❏ Size of X (+) is Nsb = 32

http://www-mobile.ecs.soton.ac.uk
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OFS-FRCSM Results

Bit error rate comparison of optimal Bayesian equaliser and symmetric

RBF equaliser based on OFS-FRCSM algorithm

❏ Symmetric RBF size M = 30

❏ Data block length K = 600

❏ RBF variance ρ2 = σ2
n

http://www-mobile.ecs.soton.ac.uk
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NLBER Results

❏ SNR= 13 dB, and average over 10 runs

❏ First M data points as initial centres µi(0), θi(0) = 0.01 and ρ2
i (0) = 4σ2

n

❏ Step size µ = 0.1 and kernel width σ = σn for NLBER

Learning Curve (M = 30) Influence of Model Size
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NLBER Results (continue)

Bit error rate comparison of optimal Bayesian equaliser and symmetric

RBF equaliser based on NLBER algorithm

❏ Symmetric RBF size M = 30

❏ First 30 data as initial centres

µi(0), initial weights θi(0) = 0.01

and initial variances ρ2
i (0) = 4σ2

n

❏ Step size µ = 0.1 and kernel width

σ = σn for NLBER
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Clustering Results

❏ SNR= 10 dB, symmetric RBF size M = 32 and RBF variance ρ2 = σ2
n

❏ Learning curve shows Euclidean distance between set of RBF centres and

set of channel states

Learning Curve Influence of RBF variance
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Clustering Results (continue)

Bit error rate comparison of optimal Bayesian equaliser and symmetric

RBF equaliser based on clustering algorithm

❏ Symmetric RBF size M = 32

❏ RBF variance ρ2 = σ2
n
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Conclusions

❏ Classical channel equalisation has been revisited

✰ Inherently odd symmetry property of optimal Bayesian

equaliser has been highlighted

❏ A novel symmetric radial basis function network has been pro-

posed for channel equalisation

✰ Which exploits prior knowledge on symmetry property of

optimal solution, leading to enhanced performance

❏ Adaptive algorithms for training this symmetric RBF

equaliser have been reviewed
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