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A fundamental principle in data modelling is to incorporate available a priori information regarding the

underlying data generating mechanism into the modelling process. We adopt this principle and

consider grey-box radial basis function (RBF) modelling capable of incorporating prior knowledge.

Specifically, we show how to explicitly incorporate the two types of prior knowledge: (i) the underlying

a set of given boundary value constraints. The class of efficient orthogonal least squares regression

algorithms can readily be applied without any modification to construct parsimonious grey-box RBF

models with enhanced generalisation capability.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The radial basis function (RBF) network has found wide-ranging
applications in diverse fields of engineering [1–17], and the class of
orthogonal least squares (OLS) regression algorithms [18–22] offers
powerful and efficient tools for constructing parsimonious RBF
models that generalise well. This approach is equally applicable to
the supervised regression [18–22] and classification [23–25] as well
as the unsupervised probability density function estimation [26–28].
Like many other data modelling approaches, the RBF model consti-
tutes a black-box data modelling approach. Adopting a black-box
modelling is appropriate if no a priori information exists regarding
the underlying data generating mechanism. However, if there are
known prior knowledge concerning the underlying process, they
should be incorporated into the model structure explicitly. The use of
prior knowledge in data modelling often leads to enhanced model-
ling performance. A general discussion on learning from known prior
knowledge or hints is given in [29]. A few works have exploited the
symmetric properties of some underlying systems in regression
applications [30,31] as well as in classification problems [32,33].

System identification has a long history of investigating grey-
box based techniques, and some studies on how to incorporating a
ll rights reserved.
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priori system knowledge into the model structure can be found in
[34–39]. For the linear system identification, the work [34] has
shown how to translate crucial physical knowledge, such as
process stability and sign of stationary gains, into linear inequality
constraints on the black-box model to yield the grey-box model
class in which a Bayesian approach is adopted to associate the
physical knowledge with a prior distribution. The authors of [36]
have proposed an approach which can potentially incorporate the
system knowledge naturally into the linear-in-the-parameter
nonlinear black-box model. They argue that, instead of a black-
box polynomial expansion, various nonlinear functions or bases
can be adopted to form an extended model set and the choices of
nonlinear bases may be determined from physical knowledge of
the system to be modelled. The study [37] has emphasised that for
practical nonlinear engineering systems, some of the underlying
physical parameters are usually known a priori and, therefore, a
grey-box nonlinear model should be adopted to explicitly utilise
the a priori system knowledge. The works [38,39] have further
refined the concept of the extended model set [36] and have
proposed a novel eng-genes framework which chooses the activa-
tion functions of neural network nodes or nonlinear bases to
reflect physical reality of the process to be modelled. It should be
emphasised, however, that there does not exist a generic grey-box
model which can represent any a priori system knowledge.

How to incorporating prior knowledge to form a grey-box
model is highly problem dependent and is really an art. But there
exist some desired objectives in using a grey-box model. Firstly, by
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incorporating a priori information regarding the underlying
process to be modelled, better generalisation performance should
be achieved. Secondly, a grey-box modelling should not result in
an increased computational complexity. For example, when devel-
oping a grey-box RBF model, it is highly desirable that the existing
learning algorithms for the black-box RBF model can readily be
used, and one is not forced to derive new learning algorithms. In
this contribution, we specifically consider two types of a priori

information. In the first type of data modelling problems, the
underlying data generating mechanism exhibits a known
symmetric property and we introduce the symmetric RBF (SRBF)
model that guarantees to possess the known symmetry. For the
second type of applications, the underlying process obeys a set of
the given boundary value constraints (BVCs) and we adopt the
novel BVC-RBF structure which automatically meets the given
BVCs. All the learning algorithms originally derived for the black-
box RBF model can be applied to these two grey-box RBF models
without the need for any modification. In particular, the class of
OLS learning algorithms [18–22] provides efficient means of
building parsimonious grey-box RBF models with improved
generalisation performance.

The remainder of this contribution is structured as follows.
Section 2 summarises the black-box RBF modelling based on the
class of efficient OLS learning algorithms. The two grey-box RBF
models are derived in Sections 3 and 4, respectively, by incorpor-
ating a priori knowledge of symmetric property and a given set of
BVCs. Our conclusions are offered in Section 5.
2. Black-Box RBF modelling

Give the training data set DK ¼ fxðkÞ,yðkÞg
K
k ¼ 1, where

xðkÞ ¼ ½x1ðkÞ � � � xmðkÞ�
T ARm is the input vector and yðkÞAR is the

desired output for xðkÞ. The data is generated by the unknown
nonlinear data generating mechanism with the nonlinear map-
ping f : Rm-R as

yðkÞ ¼ f ðxðkÞÞþeðkÞ ð1Þ

where eðkÞ is the observation noise. The RBF model of the form

ŷ
ðMÞ
ðkÞ ¼ f̂

ðMÞ
ðxðkÞÞ ¼

XM
i ¼ 1

yipiðxðkÞ;sÞ ð2Þ

is constructed from the training data DK to realise the underlying
data generating mechanism f : Rm-R, where M is the number of
RBF units, and each RBF basis

piðx;sÞ ¼jðJx�ciJ=sÞ ð3Þ

is specified by its centre vector ciARm, RBF variance s2 and the
chosen basis function jð�Þ. This is a black-box modelling
approach, as no prior knowledge regarding f is required and
everything is learnt from the data, which is inherently stochastic
due to the observation noise. The class of efficient OLS learning
algorithms [18–22] have been developed to construct the RBF
model from the training data DK.

Use every data xðkÞ as a candidate RBF centre and assume that
a common RBF variance s2 is obtained separately via cross
validation. Then the resulting K-term RBF model over the training
data ðxðkÞ,yðkÞÞADK can be expressed as

yðkÞ ¼ ðpðKÞðkÞÞThKþeðKÞðkÞ ð4Þ

where eðKÞðkÞ ¼ yðkÞ�ŷ
ðKÞ
ðkÞ is the K-term modelling error, hK ¼

½y1 � � �yK �
T is the RBF weight vector, and pðKÞðkÞ ¼ ½p1ðkÞ � � �pK ðkÞ�

T

with

piðkÞ ¼jðJxðkÞ�xðiÞJ=sÞ, 1r irK ð5Þ
Furthermore, the model (4) over the training data set DK can be
expressed as

y¼ PKhKþeðKÞ ð6Þ

by introducing the notations y¼ ½yð1Þ � � � yðKÞ�T , eðKÞ ¼ ½eðKÞð1Þ � � �
eðKÞðKÞ�T and

PK ¼ ½p1 � � �pK � ð7Þ

with pi ¼ ½pið1Þ � � �piðKÞ�
T . Note that pk is the kth column of PK , while

ðpðKÞðkÞÞT denotes the kth row of PK .
Let an orthogonal decomposition of the regression matrix PK

be PK ¼WK AK with

AK ¼

1 a1,2 � � � a1,K

0 1 & ^

^ & & aK�1,K

0 � � � 0 1

2
6664

3
7775 ð8Þ

and the orthogonal regression matrix

WK ¼ ½w1 � � �wK � ð9Þ

that satisfies wT
i wj ¼ 0 if ia j. Then the regression model (6) can

be written equivalently as

y¼WK gKþeðKÞ ð10Þ

where the weight vector gK satisfies the relationship AKhK ¼ gK .
Similar to (4), y(k) can be modelled by

yðkÞ ¼ ðwðKÞðkÞÞT gKþeðKÞðkÞ ð11Þ

where wðKÞðkÞ ¼ ½w1ðkÞ � � �wK ðkÞ�
T is the kth row of WK .

The OLS forward selection procedure chooses model terms one
by one from the full K-term candidate set. Specifically, after the
n�1-th stage of the subset selection, the selected model contains
n�1 model columns while the candidate pool contains the remain-
ing K�nþ1 candidate columns, as illustrated in the following:

w1w2 � � �wn�1

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{selected model terms

j pnpnþ1 � � �pK

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{candidate pool
2
4

3
5

At the n-th stage of the subset selection, one model term is selected
from the candidate pool as the nth selected model term to add to
the selected subset model. This selected model term wn should
maximally improve the modelling performance of the n-term
subset model according to some specified criterion.

2.1. D-optimality enhanced ROLS algorithm

In the D-optimality enhanced regularised OLS (ROLS) algo-
rithm, the criterion for the subset model selection is the com-
bined regularised training mean square error (MSE) and the
D-optimality criterion [21] defined by

JCRDðgK ,kK ,bÞ ¼ ðeðKÞÞTeðKÞ þgT
KKK gK Þþb

XK

n ¼ 1

�logðwT
nwnÞ ð12Þ

where kK ¼ ½l1 � � �lK �
T is the regularisation parameter vector, KK ¼

diagfl1, � � � ,lKg, and b is the D-optimality weighting. The local
regularisation term gT

KKK gK in the criterion (12) enhances the
generalisation and sparseness of the selected model [40], while
the D-optimality criterion, the last term in JCRDðgK ,kK ,bÞ, prevents
the selection of an oversized ill-posed model and reduces the
parameter estimate variances [21,41].

Denote the value of JCRD for the selected n�1-term subset
model as Jðn�1Þ

CRD . Then at the n-th stage of selection, the selected
model term is the one that minimises the combined criterion

JðnÞCRD ¼ Jðn�1Þ
CRD �g2

n ðw
T
nwnþlnÞ�blogðwT

nwnÞ ð13Þ
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As shown in [21], with an appropriate chosen value for b, there
exists an ‘‘optimal’’ subset model size M5K such that: for nrM,
the criterion JðnÞCRD decreases as n increases, while

JðMÞCRDo JðMþ1Þ
CRD ð14Þ

Thus, the subset model selection is automatically terminated,
yielding an M-term RBF model. The regularisation parameters can
be updated using the evidence procedure [21,22,40]. The detailed
algorithm can be found in [21], and it will not be repeated here. In
particular, when no regularisation is employed, i.e. ln ¼ 0 for all n,
this algorithm reduces to the D-optimality assisted OLS algorithm
presented in [42].
2.2. ROLS algorithm based on LOO statistics

It is highly desirable to select model terms by directly optimising
the model generalisation performance, instead of the training
performance. Model generalisation can be evaluated by the test
performance on the data not used in training the model, and a
commonly used cross validation method is the leave-one-out (LOO)
cross validation [43,44]. The idea of LOO cross validation is as follow.
Remove the kth data from the training set DK ¼ fxðkÞ,yðkÞg

K
k ¼ 1, and

use the remaining K�1 data DK \ðxðkÞ,yðkÞÞ to identify the n-term

model, which is denoted by ŷ
ðn,�kÞ

. The test error on the single data
point not used in training is

eðn,�kÞðkÞ ¼ yðkÞ�ŷ
ðn,�kÞ
ðkÞ ð15Þ

Repeating the procedure for each k leads to the LOO test MSE for the
n-term model

JðnÞLOO ¼
1

K

XK

k ¼ 1

ðeðn,�kÞðkÞÞ2 ð16Þ

which is a generalisation measure for the model ŷ
ðnÞ

identified using
the whole DK [43,44]. For the linear-in-the-weights models, which
the model (6) is, the above steps of the LOO cross validation are
virtual, as the LOO test errors can be generated, without actually
sequentially splitting the training data set and repeatedly estimating
the associated models, by applying the Sherman–Morrison–Wood-
bury theorem [43,44].

In particular, the use of the equivalent orthogonal model (10)
leads to an efficient computation of the LOO test MSE [22,45]. This
is because the LOO error can be expressed as [44]

eðn,�kÞðkÞ ¼
eðnÞðkÞ
ZðnÞðkÞ ð17Þ

where the n-term modelling error eðnÞðkÞ and the associated LOO
error weighting ZðnÞðkÞ can be calculated recursively according to
[22,45]

eðnÞðkÞ ¼ eðn�1ÞðkÞ�wnðkÞgn ð18Þ

ZðnÞðkÞ ¼ Zðn�1ÞðkÞ�
w2

nðkÞ

wT
nwnþln

ð19Þ

As shown in [45], the LOO test MSE has the following desired
property, namely, there exists an ‘‘optimal’’ subset size M5K such
that: for nrM, the criterion JðnÞLOO decreases as n increases, while

JðMÞLOOo JðMþ1Þ
LOO ð20Þ

Thus, the subset model selection is automatically terminated,
yielding an M-term RBF model. The detailed ROLS algorithm based
on the LOO test MSE can be found in [22].
3. Symmetric RBF modelling

Consider again the training data set DK ¼ fxðkÞ,yðkÞg
K
k ¼ 1 that is

generated by the underlying system (1). The system mapping
f : Rm-R is unknown. However, the system f is known to possess
the odd symmetry

f ð�xÞ ¼�f ðxÞ ð21Þ

This a priori information may come from the known physics law
governing the system. For example, from physics, the underlying
optimal discriminant function or detector for the binary digital
signals has this old symmetry [32]. Although we consider the old
symmetry in this contribution, the even symmetry can be treated
in a similar way. In fact, our approach can be extended to deal
with more complex symmetric properties, such as those encoun-
tered in the complex-valued digital signal detection [33].

3.1. Symmetric RBF network

Our goal is to construct the RBF model (2) from the data DK to
discover the underlying data generating mechanism f. To the defence
of the black-box RBF model with the standard RBF node (3), it has a
good learning capability and should be able to approximate the

underlying system f well. Thus, f̂
ðMÞ

learnt from the training data set
DK alone should approximately possess the odd symmetry. However,
this is not guaranteed, particularly when the training data DK is
noisy. Since the underlying system is known to possess the old
symmetry (21), we would like the model to possess the same old
symmetry, namely,

f̂
ðMÞ
ð�xÞ ¼ �f̂

ðMÞ
ðxÞ ð22Þ

Furthermore, we would like to exploit the prior knowledge (21) for
improving the modelling efficiency as well.

To explicitly incorporate the prior knowledge (21), we adopt
the following symmetric RBF (SRBF) node

piðx;sÞ ¼jðJx�ciJ=sÞ�jðJxþciJ=sÞ ð23Þ

With this symmetric node structure, the prior information is naturally

incorporated into the model structure and the resulting SRBF model
guarantees to have the same odd symmetry as the underlying system.
Moreover, this grey-box RBF model with the symmetric node
structure (23) has the same regression modelling form as the black-
box RBF model discussed in Section 2. Therefore, we do not need to
develop any new learning algorithm for this grey-box RBF model.
Instead, the class of OLS learning algorithms [18–22] can readily be
used to identify a parsimonious SRBF model based on DK.

3.2. A symmetric modelling example

The system to be identified was given by

f ðx1,x2Þ ¼ 10
sinðx1�5Þsinðx2�5Þ

ðx1�5Þðx2�5Þ

�
�

sinðx1þ5Þsinðx2þ5Þ

ðx1þ5Þðx2þ5Þ

�
ð24Þ

This system has the odd symmetry and f ðx1,x2Þ is plotted in Fig. 1
(a) using a grid of 90 601 points. The training data set DK contained
961 noisy data points as shown in Fig. 1(b), where the system noise
eðkÞ was a white Gaussian noise with variance s2

e ¼ 0:16. The basis
function was chosen to be the Gaussian function. The ROLS algorithm
based on the LOO test MSE, summarised in Section 2.2 (also see [22]),
was used to automatically identify both the conventional RBF and
SRBF models. The RBF variance s2 ¼ 8:0 was determined separately
using cross validation. A separate test data set of Ktest ¼ 961 noisy
data points was also generated to compute the test MSE according to

MSE¼ E ðyðkÞ�ŷ
ðMÞ
ðkÞÞ2

h i
¼

1

Ktest

XKtest

k ¼ 1

ðyðkÞ�ŷ
ðMÞ
ðkÞÞ2 ð25Þ
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Fig. 1. (a) The underlying symmetric function f ðx1 ,x2Þ shown on the grid of 90 601

points, and (b) the 961 noisy training data points.

Table 1
Performance comparison between the conventional RBF and SRBF models for the

symmetric system identification example.

Model size Training MSE Test MSE Test MME

RBF 105 0.1543 0.2047 0.0294

SRBF 68 0.1566 0.1839 0.0093
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Fig. 2. (a) The modelling error f ðx1 ,x2Þ�f̂ ðx1 ,x2Þ of the standard RBF model, and

(b) the modelling error f ðx1 ,x2Þ�f̂ ðx1 ,x2Þ of the SRBF model, for the symmetric

system identification example.
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The generalisation performance was also evaluated with the mean
modelling error (MME)

MME¼ E½ðf ðx1,x2Þ�f̂ ðx1,x2ÞÞ
2
� ð26Þ

by averaging over the grid of 90 601 points, where f̂ ðx1,x2Þ denotes
the identified model mapping.

Table 1 compares the performance of the two RBF models
obtained. Fig. 2(a) and (b) show the modelling error f ðx1,x2Þ�

f̂ ðx1,x2Þ on the grid of 90 601 points for the two obtained models,
respectively. It can be seen that, by incorporating the prior informa-
tion, the SRBF model offers a significantly better generalisation
performance. Specifically, its test MME is three times smaller than
that of the standard RBF model. It is also interesting to compare the
efficiency of model construction for the two models. For the class of
OLS learning algorithms [18–22], the complexity of selecting an
M-term model from the K-term candidate set is well known to be

C ¼ ðMþ1Þ �OðK2Þ ð27Þ

where OðK2Þ stands for the order of K2. For the SRBF model, we
obtained M¼68, while M¼105 was arrived for the black-box RBF
model. Thus, for this example, the complexity of the SRBF model
construction is only 65% of the complexity for the standard RBF
model construction. By incorporating the prior information natu-
rally, we also improve the efficiency of model construction proce-
dure. Finally, the prediction complexity of the two models are
approximately the same. This is because, although the SRBF unit
(23) requires more computation than the standard RBF unit (3), the
SRBF model has fewer RBF units and, therefore, the computational
requirements for calculating a test data point are roughly equal for
the two models.
4. BVC-RBF modelling

Again consider the identification of the unknown system f of
(1) using the RBF model (2) based on the noisy training data set
DK. In addition, the unknown system mapping f is known to
satisfy a set of the L BVCs given by

f ðxjÞ ¼ dj, 1r jrL ð28Þ

where xjARm and djAR are known. These BVCs may represent
the fact that at some critical regions, there is a complete knowl-
edge about the system. For example, at some boundary points xj,
the behaviour of the process is completely determined by the
known physics laws that govern the process. Note that the sensor
observations on these points xj are, however, stochastic because
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of the observation noise. Thus, from the noisy DK , the BVCs (28)
may not be seen clearly.

4.1. BVC-RBF network

Since the BVCs of (28) are critical to the underlying system f to

be identified, any identified model f̂
ðMÞ

is required to strictly meet
these BVCs, that is,

f̂
ðMÞ
ðxjÞ ¼ dj, 1r jrL ð29Þ

It is obvious that the black-box RBF model with the node
structure (3) cannot guarantee to satisfy the known set of BVCs.
The conventional way of incorporating the BVCs (29) as a set of
equality constraints in the learning will complicate the resulting
optimisation problem and dramatically increases the learning
complexity. The novel BVC-RBF network model proposed in [46]
has the capacity of satisfying the given BVCs automatically with-
out any added algorithmic complexity and computational cost.

The BVC-RBF model derived in [46] takes the form

ŷ
ðMÞ
ðkÞ ¼ f̂

ðMÞ
ðxðkÞÞ ¼

XM
i ¼ 1

yipiðxðkÞ;sÞþqðxðkÞÞ ð30Þ

with the novel RBF node structure

piðx;sÞ ¼ hðxÞjðJx�ciJ=sÞ ð31Þ

where

hðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYL

j ¼ 1

Jx�xjJ
L

vuut ð32Þ

is the geometric mean of the data sample x to the set of boundary
values xj, 1r jrL. The function qðxÞ is known as the offset
function which takes the form

qðxÞ ¼
XL

j ¼ 1

gje
�ðJx�xjJ

2=tÞ ð33Þ

where t is a positive scalar, and cL ¼ ½g1 � � � gL�
T is the set of

parameters that are obtained by solving the set of linear equa-
tions qðxjÞ ¼ dj, 1r jrL, as follows:

cL ¼Q�1
L dL ð34Þ

where dL ¼ ½d1 � � �dL�
T and

Q L ¼

1 e�ðJx1�x2J
2=tÞ � � � e�ðJx1�xLJ

2=tÞ

e�ðJx2�x1J
2=tÞ 1 & e�ðJx2�xLJ

2=tÞ

^ & & ^

e�ðJxL�x1J
2=tÞ e�ðJxL�x2J

2=tÞ � � � 1

2
66664

3
77775 ð35Þ

In the case that (35) is ill-conditioned, a regularisation technique
can be applied to the above solution.

It is easy to verify that with this BVC-RBF model, the BVCs (29)
are automatically satisfied. To elaborate further, we note the
following features of the BVC-RBF structure.
1.
 The BVC-RBF nodes (31) have the property of zero forcing at the
boundary points xj, 1r jrL, and the adjustable RBF weights yi

have no effects on the summation term in (30) at any of the
boundary points.
2.
 The term qðxÞ passes all the predetermined boundary values
f ðxjÞ ¼ qðxjÞ ¼ dj, 1r jrL, and it is completely determined by
the BVCs (28) but does not contain any adjustable parameters
dependent on DK.
3.
Fig. 3. (a) Five BVC-RBF nodes with zero forcing at the two boundary points, and

(b) the offset passing function qðxÞ, for the one-dimensional function f ðxÞ with the

two BVCs of f ð0:1Þ ¼ �2 and f ð0:5Þ ¼ 3.
Over the input range, the set of smooth BVC-RBF nodes piðx;sÞ
has diverse local responses, and has non-zero adjustable
contribution towards modelling f ðxÞ via the adjustable para-
meters yi which are learnt based on the training set DK .
The above properties 1. and 2. of the BVC-RBF nodes (31) and
the offset function (33) are illustrated in Fig. 3 for a one-
dimensional function f(x) with the two BVCs of f ð0:1Þ ¼�2 and
f ð0:5Þ ¼ 3.

With this BVC-RBF model, no constrained optimisation is
needed. In fact, define the desired output vector for training this
grey-box RBF model as

y¼ ½yð1Þ�qðxð1ÞÞ yð2Þ�qðxð2ÞÞ � � � yðKÞ�qðxðKÞÞ�T ð36Þ

where ðxðkÞ,yðkÞÞADK , 1rkrK. Then the learning of this grey-
box RBF model with the node structure (31) and the offset
function (33) takes the same regression modelling form as the
black-box RBF model discussed in Section 2. Thus, the class of OLS
learning algorithms [18–22] can readily be applied to identify a
parsimonious BVC-RBF model from the noisy training data DK.
4.2. A BVC modelling example

A 31�31 meshed data set f ðx1,x2Þ, as depicted in Fig. 4(a), was
generated by using Matlab command membrane.m for the third
eigenfunction of the L-shaped membrane, which was defined over
a unit square input region ðx1,x2ÞA ½0,1�2. In Fig. 4(b), the required
L¼120 BVCs, given by the coordinates of fðx1,x2Þ,f ðx1,x2Þg, are
marked by the cross points at the corresponding fðx1,x2Þg.
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Fig. 4. (a) The underlying function f ðx1 ,x2Þ shown on the grid of 961 points, (b) the L¼120 BVCs, xj for 1r jrL, marked as cross points, (c) the 961 noisy training data

points, and (d) the prediction f̂ ðx1 ,x2Þ of the resulting BVC-RBF model.

Table 2
Performance comparison between the conventional RBF and BVC-RBF models for

the BVCs system identification example.

Model

size

Training MSE

(inside DK )

Test MME

(inside boundary)

Test MME

(on boundary)

RBF 42 1.2254� 10�4 4.6043� 10�5 8.5540� 10�5

BVC-RBF 34 9.8634� 10�5 1.8230� 10�5 5.1462� 10�11
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The noisy training data set DK was generated by adding a white
Gaussian noise of variance s2

e ¼ 0:012 to f ðx1,x2Þ, and DK is plotted
in Fig. 4(c). We used all the data points of DK that were inside the
boundary as the training samples and applied the D-optimality
aided OLS regression algorithm, discussed in Section 2.1 (also see
[42]), to construct both the standard RBF and BVC-RBF models.
The basic function jð�Þ was chosen to be Gaussian and the RBF
variance s2 ¼ 0:2 was determined separately based on cross
validation. For the offset function (33), t¼ 0:2 was found to be
appropriate. The D-optimality weighting for the combined cost
function (12) was chosen to be b¼ 10�6.

Table 2 compares the performance of the conventional RBF
model obtained with that of the novel BVC-RBF model
constructed, where the sizes of the two models were automatically

determined by the learning algorithm. Fig. 5(a) and (b) depict the
modelling error f ðx1,x2Þ�f̂ ðx1,x2Þ of the two obtained models,
respectively, where f̂ denotes the model mapping identified. The
resulting BVC-RBF model is also shown in Fig. 4(d). From Table 2,
it can be seen that the BVC-RBF model has a much better
generalisation performance than the black-box RBF model.
Specifically, the MME calculated inside the boundary marked by
the cross points in Fig. 4(b) is more than two times smaller than
that for the conventional RBF model. More significantly, the MME
of the BVC-RBF model calculated on the boundary is effectively
zero, confirming that all the L¼120 BVCs are strictly met by the
BVC-RBF model. By contrast, the black-box RBF model cannot
satisfy these BVCs strictly. The results obtained also confirm that
the model construction is more efficient for the BVC-RBF model, as
a smaller model size was achieved for this grey-box RBF model.
Similar to the case of the SRBF modelling, it can be argued that the
prediction complexity of the conventional RBF and BVC-RBF
models are approximately the same.
5. Conclusions

In this contribution, we have discussed the art of incorporating
the prior knowledge to form the appropriate grey-box RBF model.
Two types of a priori information have been considered. In the first
case, the underlying data generating mechanism exhibits the
known symmetry property, while in the second case, the underlying
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Fig. 5. (a) The modelling error f ðx1 ,x2Þ�f̂ ðx1 ,x2Þ of the standard RBF model, and

(b) the modelling error f ðx1 ,x2Þ�f̂ ðx1 ,x2Þ of the BVC-RBF model, for the BVCs

system identification example.
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process obeys a set of boundary value constraints. The novel SRBF
model and the BVC-RBF model have been proposed, respectively, to
incorporate these two types of a priori information naturally. The
existing state-of-the-arts RBF learning methods for the black-box
RBF model can readily be applied to construct these two grey-box
RBF models efficiently, without any modification or added algorith-
mic complexity and computational cost. This contribution has
clearly demonstrated that incorporating appropriate prior knowl-
edge naturally into the model structure leads to a better general-
isation performance, a smaller model size and a reduced complexity
in model construction.
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