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a b s t r a c t

Independent component analysis (ICA) is an effective feature extraction tool for process monitoring.

However, the conventional ICA-based process monitoring methods usually adopt noise-free ICA models

and thus may perform unsatisfactorily under the adverse effects of the measurement noise. In this paper,

a process monitoring method using a new noisy independent component analysis, referred to as

NoisyICAn, is proposed. Using the noisy ICA model which considers the measurement noise explicitly, a

NoisyICAn algorithm is developed to estimate the mixing matrix by setting up a series of the fourth-

order cumulant matrices of the measured data and performing the joint diagonalization of these

matrices. The kurtosis relationships of the independent components and measured variables are

subsequently obtained based on the estimated mixing matrix, for recursively estimating the kurtosis

of independent components. Two monitoring statistics are then built to detect process faults using the

obtained recursive estimate of the independent components' kurtosis. The simulation studies are carried

out on a simple three-variable system and a continuous stirred tank reactor system, and the results

obtained demonstrate that the proposed NoisyICAn-based monitoring method outperforms the conven-

tional noise-free ICA-based monitoring methods as well as the benchmark monitoring methods based on

the existing noisy ICA schemes adopted from blind source separation, in terms of the fault detection time

and local fault detection rate.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Efficient and reliable process monitoring plays an extremely

important role in ensuring plant safety and product quality. As a

large number of process variables are measured in industrial

processes, multivariate statistical process monitoring (MSPM)

approaches have attracted great attentions from both academic

researchers and process engineers [1–3]. Among them, principal

component analysis (PCA) is a classical method that has been

widely studied in the process monitoring field [4–6]. Classical PCA

can handle high-dimensional and highly correlated data by pro-

jecting them onto a low-dimensional subspace that contains the

most variance of the measured data. However, PCA only considers

up to the second-order statistics of the measured data to extract

uncorrelated latent variables, and it lacks the ability to provide

higher-order representations for the measured data [7]. Moreover,

in PCA-based monitoring methods, the control limits of Hotelling's

T-squared and the companion squared prediction error (SPE)

statistics are determined based on the assumption that the

extracted latent variables follow a multivariate Gaussian distribu-

tion. However, industrial data often obey non-Gaussian distribu-

tions, for which PCA-based monitoring methods are ill-suited [8].

More recently, a MSPM method, known as independent compo-

nent analysis (ICA), has emerged as a powerful tool in process

monitoring. It originates from the blind source separation problem

and has found wide-ranging applications in many areas, including

signal processing, telecommunications, and audio signal separa-

tion [9]. Different from PCA, ICA takes into account the higher-

order statistics in recovering the mutually independent latent

variables, called independent components (ICs), from the mea-

sured variables. The specified merits of ICA endow it with the

ability to reveal more useful information from the measured data

than PCA [10].

Because of its favorable performance in information extraction,

many researchers have implemented ICA for monitoring process

behaviours. Kano et al. [11] directly monitored the ICs obtained

from an ICA algorithm and demonstrated the superiority of ICA
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over PCA. However, in the method of [11], the number of moni-

toring charts increases with the number of ICs, which increases

the computational burden on process monitoring. Lee et al. [12]

proposed three Mahalanobis-type monitoring statistics based on

the extracted ICs to alleviate the onerous monitoring task of ICs'

charts. In the work [13], a local outlier factor method was adopted

to build a density-based monitoring statistic based on the

obtained ICs, and it was demonstrated that this approach achieves

better monitoring performance than the Mahalanobis-type mon-

itoring statistics. The authors of [14] proposed a particle swarm

optimization assisted ICA method for process monitoring, which

avoids the local minimum solution problem associated with the

gradient based FastICA algorithm [15]. In the light of the important

influence of the ICs' order on the monitoring performance, Wang

et al. [16] sorted the ICs according to the minimum mean square

prediction error criterion. The authors of [17] developed a state-

space ICA algorithm for process monitoring to take into considera-

tion both the auto-correlation and cross-correlation of the mea-

sured data. Based on the fact that the standard kernel density

estimation method used for determining the control limit does not

perform well with the calculated ICA based monitoring statistic

which is usually correlated, Hsu et al. [18] adopted the support

vector machine (SVM) to build a two-class classifier for fault

detection with the ICA based monitoring statistic as the classifier's

input. Since some of the latent variables may be Gaussian, Liu et al.

[19] adopted PCA to obtain the Gaussian and non-Gaussian latent

variables and then applied ICA to extract the non-Gaussian ICs

from the retained principal components. To further account for the

process's nonlinear behaviours, the author of [20] integrated the

Kernel ICA with Kernel PCA to extract both the non-Gaussian

feature information and Gaussian feature information for fault

detection. Tian et al. [21] considered the nonlinear characteristics

of batch processes and proposed a multiway kernel ICA monitor-

ing method based on feature samples. Cai et al. [22] integrated the

kernel ICA and local preserving projection (LPP) for nonlinear

continuous process monitoring by taking into account both non-

Gaussian information extraction and local neighborhood informa-

tion preservation. In order to characterize the shifting modes and

process uncertainty, Rashid and Yu [23] proposed a hidden Markov

model based adaptive ICA approach for multimodal process

monitoring. Taking both the multimodality and nonlinearity of

processes into account, Zhang et al. [24] proposed a nonlinear

multimode process monitoring method based on the Kronecker

product and modified kernel ICA.

In all the above studies, ICA is utilized as an effective feature

extraction tool. However, the commonly used ICA algorithms in

the existing process monitoring methods, such as the FastICA

based on the maximum negentropy criterion [15], are basically

“noise-free” algorithms. Specifically, these algorithms use noise-

free ICA models, and they are not very effective to take into

account ubiquitous measurement noise. In the ideal case where

there exists no measurement noise in the measured data, a noise-

free ICA algorithm can effectively estimate the mixing matrix or

de-mixing matrix. Once the mixing matrix or de-mixing matrix is

obtained, the ICs can be easily calculated for process monitoring.

As pointed out by Wang [25], however, the noise corruption

always exists in industrial processes. When the measured data

are corrupted by the measurement noise, the ICs may not be

directly calculated because of the adverse effects of the measure-

ment noise. Specifically, under the adverse disturbance of the

measurement noise, the extracted ICs by a noise-free ICA algo-

rithm may not represent the process operation information

adequately and, consequently, they may result in unsatisfactory

monitoring performance. Currently, in some other fields, such

as the blind source separation, there exist some ICA algorithms

which can explicitly consider the measurement noise. Specifically,

Cichocki et al. [26] extended the existing adaptive algorithm with

equivalent properties to reduce the bias in the de-mixing matrix

caused by measurement noise and developed a recurrent dynamic

neural network for estimating the unknown mixing matrix. The

author of [27] proposed a contrast function based on Gaussian

moments and developed a modified FastICA algorithm to estimate

the mixing matrix. Cao et al. [28] proposed a robust prewhitening

technique for reducing the effect of noise and a parametrized

t-distribution density model which was combined with the light-

tailed distribution model for estimating the mixing matrix. Liu

et al. [29] explicitly considered the effect of noise by using the

criterion of minimizing the normalized mean square prediction

error to conduct the mixing matrix estimation. Yang and Guo [30]

derived two new Gaussian moments algorithms for estimating the

mixing matrix by combining Gaussian moments and likelihood

estimation based on the assumption that independent compo-

nents are the time signals. The authors of [31] combined the

recursive least squares adaptive noise cancellation via QR decom-

position and the FastICA to reduce the bias in the estimation of

mixing matrix. Nevertheless, these “noisy” ICA algorithms were

not introduced for the process monitoring purpose. The main

reason lies in the fact that these “noisy” ICA algorithms usually

require some strict assumptions, such as that the covariance

matrix of the noise is a diagonal matrix with the identical diagonal

elements or has been obtained by prior knowledge, which may not

be satisfied in real industrial processes. Therefore, developing an

appropriate “noisy” ICA algorithm which can effectively remove or

alleviate the effects of the measurement noise is of great sig-

nificance for improving the process monitoring performance.

More specifically, how to obtain the ICs or ICs-related statistics

that are resistant or robust to the measurement noise based on the

estimated mixing matrix is an urgent problem to solve for process

monitoring.

Motivated by the above analysis, in this contribution, a process

monitoring method is proposed based on a new noisy independent

component analysis, referred to as the NoisyICAn. First, we consider

the measurement noise explicitly in the noisy ICA model, and

develop the NoisyICAn algorithm, which does not need the knowl-

edge of the noise's covariance matrix, to estimate the mixing matrix

by building a series of the fourth-order cumulant matrices of the

measured data and carrying out the joint diagonalization of these

matrices with the least-squares based non-orthogonal joint diag-

onalization algorithm [32]. Furthermore, the estimated mixing

matrix is adopted to establish the kurtosis relationships of the ICs

and the measured variables, and an effective approach for recur-

sively estimating the kurtosis of ICs is constructed. This further

reduces the effect of the noise. Then, two monitoring statistics, the

I2 and SPE statistics, are built using the obtained recursive estimate

of ICs' kurtosis to conduct process monitoring. Unlike the existing

“noisy” ICA algorithms, such as the two algorithms given in [27,29],

respectively, our proposed NoisyICAn algorithm does not require

the information of the noise's covariance matrix and thus it can be

applied more easily and conveniently to monitor actual industrial

processes. In our extensive simulation study involving a simple

three-variable system and a continuous stirred tank reactor system,

we compare our proposed NoisyICAn-based monitoring method

with the four benchmark schemes, the conventional noise-free

FastICA-based monitoring method [12] and the kernel FastICA-

based monitoring scheme [20,21] as well as the two monitoring

methods based on the existing noisy ICA schemes of [27,29],

referred to as the NoisyICA1 and NoisyICA2, respectively. The results

obtained demonstrate that the proposed NoisyICAn-based monitor-

ing method outperforms the other four benchmark methods in

terms of the fault detection time and fault detection rate.

The remainder of the paper is organized as follows. In Section 2,

the conventional ICA-based monitoring methods are briefly reviewed.
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Then, our proposed NoisyICAn-based process monitoring method is

detailed in Section 3. The simulation studies on a simple three-

variable system and a continuous stirred tank reactor system are

carried out in Section 4, while our conclusions are drawn in Section 5.

2. The conventional ICA-based monitoring methods

The conventional ICA-based monitoring methods usually take

the following noise-free ICA model as the basis:

x¼ As; ð1Þ

where x¼ ½x1x2…xm$
T
AR

m denotes the vector of the zero-mean

measured variables, s¼ ½s1s2…sm$
T
AR

m is the vector of the zero-

mean ICs, and AAR
m%m is known as the mixing matrix, while

T denotes the vector or matrix transpose operator. The objective of

the ICA is to estimate the ICs by finding a de-mixing matrix

WAR
m%m from the measured variables, such that the estimate of

the ICs can be expressed by

bs ¼Wx; ð2Þ

in which the elements of the estimate of the ICs bs ¼ ½bs1bs2…bsm$T are
as independent of each other as possible.

Usually, the measured data need to be whitened before apply-

ing the ICA algorithm. The whitened variables can be obtained by

means of the PCA as

z¼Qx; ð3Þ

where Q denotes the whitening matrix which can be chosen as

follows. Let E½xxT$ ¼VΛVT , where E½&$ denotes the expectation

operator, V is the orthogonal matrix consisting of the eigenvectors

of E½xxT$, and Λ is the diagonal matrix with the eigenvalues of

E½xxT$ as its diagonal elements. Then, Q ¼Λ
'1=2

VT. The whitened

variables satisfy the condition

E½zzT$ ¼ Im; ð4Þ

where Im denotes the m%m identity matrix.

For the mathematical convenience, all the ICs are made to have

the unit variance by appropriately choosing the de-mixing matrix

W ¼UTQ . Then Eq. (2) can be reformulated as

bs ¼Wx¼UTQx¼UTz; ð5Þ

where U is an orthonormal matrix satisfying E½bsbsT$ ¼ E½UTzzTU$ ¼

UTE½zzT$U ¼UTU ¼ Im. There exist several ways of calculating the

matrix U , including the measures of non-Gaussian, such as

kurtosis and negentropy, as well as the minimization of mutual

information and the maximum likelihood estimation [9]. Among

them, the FastICA algorithm [15] is most widely used in the

conventional ICA-based monitoring methods [7,8,10–13,16–21].

The optimization objective of the FastICA is defined by

max
ui

JðuiÞ ¼max
ui

ðE½GðuT
i zÞ$'E½GðvÞ$Þ2;

s:t: E½ðuT
i zÞ

2$ ¼ 1; ð6Þ

for 1r irm, where ui is the ith column of U and v is a Gaussian

variable with zero mean and unit variance, while Gð&Þ is a non-

quadratic function which can be chosen as GðyÞ ¼ 'expð'y2=2Þ.

The details of the FastICA algorithm can be found in [15] and

therefore they are not repeated here.

Once the matrix U is obtained, the ICs can be estimated by

using Eq. (5). The estimated ICs can be arranged in the descending

order according to their non-Gaussian degrees [21], and the rows

of the matrix UT are also sorted correspondingly. The l extracted

dominant ICs, bs lARl, are then expressed as

bs l ¼UT
l z; ð7Þ

where UT
l denotes the matrix consisting of the l corresponding

rows of UT. The I2 and SPE statistics are next constructed to detect

process faults. Let xðtÞ be the sample value of x at the sample

time t, and bs lðtÞ be the corresponding extracted l dominant ICs. The

I2 and SPE statistics are defined respectively by [7,12,14,16,21]

I2ðtÞ ¼ ðbs lðtÞÞTbs lðtÞ; ð8Þ

SPEðtÞ ¼ ðxðtÞ'Q '1U lbs lðtÞÞTðxðtÞ'Q '1U lbs lðtÞÞ: ð9Þ

I2ðtÞ is used to monitor the systematic part of the process variation,

while SPEðtÞ is used to monitor the non-systematic part of the

process variation.

3. The new noisy ICA-based monitoring method

It is well acknowledged that the process data measured by the

sensors usually contain the measurement noise. Under the influ-

ence of the measurement noise, the process information extracted

by the FastICA may not be sufficiently accurate. A natural solution

is using the existing noisy ICA algorithms [26–31] to substitute for

the FastICA. However, these noisy ICA algorithms generally require

the knowledge of the noise's covariance matrix, which may not be

realistic in most real-world situations. Moreover, the monitoring

statistics calculated using Eqs. (8) and (9) by the process monitor-

ing schemes based on these noisy ICA algorithms are still subject

to the effect of the noise. All of these may lead to unsatisfactory

monitoring performance. In this section, we explicitly consider the

measurement noise in the noisy ICA model and develop a new

noisy ICA algorithm, called the NoisyICAn which does not require

the noise's covariance matrix. Then we further propose a

NoisyICAn-based monitoring method to improve the process

monitoring performance.

3.1. The NoisyICAn algorithm

Unlike the noise-free ICA model of Eq. (1), the following noisy

ICA model is taken as the basis to develop our NoisyICAn-based

monitoring method:

x¼ ~xþε¼ Asþε; ð10Þ

where xARm are the measured variables which are corrupted by

the measurement noise variables ε¼ ½ɛ1ɛ2…ɛm$
T
AR

m, while
~x ¼ ½ ~x1 ~x2… ~xm$

T ¼ AsARm are the effective variables with zero

mean which are not subject to the effects of the measurement

noise. The noise variables ε and the ICs s satisfy the conditions:

(1) the elements of s are zero-mean and mutually independent;

(2) the elements of ε are zero-mean and uncorrelated Gaussian

variables; and (3) the elements of s and the elements of ε are

mutually independent.

Inspired by the work [33] which proposed a signal separation

technique using a double referenced system, we construct a series

of the fourth-order cumulant matrices of the measured variables x,

denoted as Cxðj; kÞ, for 1r j; krm. The i1th-row and i2th-column

element of each matrix Cxðj; kÞ is defined by

½Cxðj; kÞ$i1 ;i2 ¼ c4ðxi1 ; xi2 ; xj; xkÞ ¼ E½xi1xi2xjxk$

'E½xi1xi2 $E½xjxk$'E½xi1xj$E½xi2xk$

'E½xi1xk$E½xi2xj$; ð11Þ

for 1r i1; i2; rm, where c4ð&Þ denotes the fourth-order cumulant.

According to the conditions (1) to (3) for ε and s as well as the

multi-linearity property of cumulant [33,34], Eq. (11) can further

be expressed as

½Cxðj; kÞ$i1 ;i2 ¼ c4ð ~x i1þɛi1 ; ~x i2þɛi2 ; ~xjþɛj; ~xkþɛkÞ

¼ c4ð ~xi1 ; ~x i2 ; ~xj; ~xkÞ

L. Cai et al. / Neurocomputing 127 (2014) 231–246 233
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¼ c4 ∑
m

p1 ¼ 1

ai1 ;p1sp1 ; ∑
m

p2 ¼ 1

ai2 ;p2 sp2 ; ∑
m

p3 ¼ 1

aj;p3 sp3 ; ∑
m

p4 ¼ 1

ak;p4sp4

 !

¼ ∑
m

p1 ¼ 1

ai1 ;p1 ∑
m

p2 ¼ 1

ai2 ;p2 % c4 sp1 ; sp2 ; ∑
m

p3 ¼ 1

aj;p3 sp3 ; ∑
m

p4 ¼ 1

ak;p4 sp4

 !

¼ ∑
m

p ¼ 1

ai1 ;pai2 ;pc4 sp; sp; ∑
m

p3 ¼ 1

aj;p3sp3 ; ∑
m

p4 ¼ 1

ak;p4sp4

 !

¼ ∑
m

p ¼ 1

ai1 ;pai2 ;p ∑
m

p3 ¼ 1

aj;p3 ∑
m

p4 ¼ 1

ak;p4c4ðsp; sp; sp3 ; sp4 Þ

¼ ∑
m

p ¼ 1

ai1 ;pai2 ;paj;pak;pc4ðsp; sp; sp; spÞ

¼ ∑
m

p ¼ 1

ai1 ;pai2 ;paj;pak;pk4ðspÞ; ð12Þ

where ai;j denotes the ith-row and jth-column element of the

mixing matrix A, while k4ðspÞ ¼ c4ðsp; sp; sp; spÞ is known as the

kurtosis of the variable sp. According to Eq. (12), the matrix Cxðj; kÞ

can be expressed as

Cxðj; kÞ ¼ AΓðj; kÞAT; ð13Þ

with the diagonal matrix Γðj; kÞ defined by

Γðj; kÞ ¼ diagfaj;1; aj;2;…; aj;mg

%diagfk4ðs1g; k4ðs2g;…; k4ðsmgg

%diagfak;1; ak;2;…; ak;mg; ð14Þ

where diagfy1; y2;…; ymg denotes the m%m diagonal matrix with

y1; y2;…; ym as its diagonal elements.

From Eqs. (13) and (14), it becomes obvious that each matrix

Cxðj; kÞ can be diagonalized by the mixing matrix A. Therefore, the

joint diagonalization degree of the cumulant matrices can be taken

as the optimization objective to estimate A. Specifically, to esti-

mate A based on the measure of the attainable diagonalization

degree, the following weighted least-squares (WLS) criterion is

adopted [32]

JWLSð
bA; bΓÞ ¼ ∑

m

j ¼ 1

∑
m

k ¼ 1

wj;k JCxðj; kÞ' bA bΓðj; kÞbA
T
J
2
F ; ð15Þ

where wj;k are positive weights, bA is the estimate of the mixing

matrix A, and bΓðj; kÞ is the estimate of the diagonal matrix Γðj; kÞ,

while bΓ ¼ fbΓðj; kÞ : 1r j; krmg denotes the set of all the estimated

diagonal matrices. Typically, equal weightings wj;k, 1r j; krm, are

applied to form the criterion of Eq. (15). The so-called AC-DC

algorithm [32] can be utilized to estimate the mixing matrix by

minimizing the cost function of Eq. (15), and the algorithm

alternates between the following two minimization procedures.

(a) The AC “alternating columns” phase minimizes JWLSð
bA; bΓÞ with

respect to the ith column of bA, while keeping its other columns

as well as fbΓðj; kÞ : 1r j; krmg fixed, for 1r irm. This is

referred to as one sweep. This sweep procedure is repeated

q times, and each sweep starts with the initial bA given from

the previous sweep. Typically, q¼10 is sufficient.

(b) The DC “diagonal centres” phase minimizes JWLSð
bA; bΓÞ with

respect to all the diagonal matrices bΓ ¼ fbΓðj; kÞ : 1r j; krmg,

while keeping bA fixed.

The algorithm iterates between the two phases a number of

times, until the reduction in the cost function values of (15)

between two consecutive iterations is below a threshold value,

e.g. 10'5.

The more detailed descriptions of this AC-DC algorithm can be

found in [32]. We now summarize the procedure of the NoisyICAn

algorithm, which is developed partially based on the idea of [33].

(i) Construct the fourth-order cumulant matrices of the mea-

sured variables, Cxðj; kÞ for 1r j; krm, according to Eq. (11).

(ii) Use the calculated cumulant matrices, Cxðj; kÞ for 1r j; krm,

to form the measure Eq. (15) of the joint diagonalization

degree.

(iii) Optimize this objective function by the AC-DC algorithm to

estimate the mixing matrix A.

The computational complexities of the AC phase and the DC

phase are respectively Oðq ,m5Þ and Oðm5Þ. Thus, the overall

computational complexity of this NoisyICAn algorithm can be

shown to be in the order of Oðq ,m5Þ. In comparison, the

computational complexity of the FastICA algorithm is in the order

of Oðm , N1Þ [35], where N1 is the sample size of the training data

set. Moreover, the well-known noisy ICA algorithm of [27],

denoted as the NoisyICA1, which is an improved version of the

FastICA, as well as the noisy ICA algorithm of [29], denoted as

NoisyICA2, both have the computational complexity of Oðm , N1Þ.

The number of the measured variablesm and the sample size N1 of

the training data are determined by the specific application. The

training data size N1 is typically large. Thus, for the cases of modest

m, the complexity of the NoisyICAn algorithm may be comparable

to those of the FastICA, NoisyICA1 and NoisyICA2 algorithms. Note

that the operations of estimating the mixing matrix A are carried

out off-line and, therefore, the complexity of this modeling stage is

not too critical. The significant advantage of our NoisyICAn algo-

rithm over the FastICA algorithm is that it effectively takes into

account the ubiquitous measurement noise in the modeling.

Furthermore, unlike the NoisyICA1 algorithm [27] and the Noi-

syICA2 algorithm [29], our NoisyICAn algorithm does not require

the information of the noise's covariance matrix and thus it is

more practical for real industrial processes.

3.2. The recursive kurtosis estimation of ICs

After obtaining an estimated mixing matrix bA, the usual

practice is to apply the inverse bA
'1

to the measured variables x

to obtain an estimate bs ¼ bA
'1

x of the ICs s. However, it can be

easily seen that the estimates of the ICs so obtained are con-

taminated with the noise variables bA
'1
ε. In order to alleviate the

influence of the measurement noise, we construct the kurtosis

relationships of the ICs and the measured variables using the

estimated mixing matrix by exploiting the fact that the kurtosis

statistic of a Gaussian variable with zero mean is zero [34].

The kurtosis of the ith measured variable xi is given by

k4ðxiÞ ¼ c4ðxi; xi; xi; xiÞ ¼ E½x4i $'3ðE½x2i $Þ
2: ð16Þ

Noting the property of Eq. (12), Eq. (16) can be expressed as

k4ðxiÞ ¼ c4ð ~xiþɛi; ~x iþɛi; ~xiþɛi; ~x iþɛiÞ

¼ c4ð ~xi; ~xi; ~xi; ~xiÞ ¼ ∑
m

p ¼ 1

a4i;pc4ðsp; sp; sp; spÞ

¼ ∑
m

p ¼ 1

a4i;pk4ðspÞ: ð17Þ

L. Cai et al. / Neurocomputing 127 (2014) 231–246234
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According to Eq. (17), we can establish the kurtosis relationships

between the ICs and the measured variables as

k4ðs1Þ

k4ðs2Þ

⋮

k4ðsmÞ

2

66664

3

77775
¼

a41;1 a41;2 … a41;m

a42;1 a42;2 … a42;m
⋮ ⋮ ⋱ ⋮

a4m;1 a4m;2 … a4m;m

2

66664

3

77775

'1
k4ðx1Þ

k4ðx2Þ

⋮

k4ðxmÞ

2

66664

3

77775
: ð18Þ

From Eq. (18), it can be observed that the mapping between the

kurtosis of the ICs and the kurtosis of the measured variables can

be built with the estimated mixing matrix bA, and the higher-order

kurtosis statistics have removed the influence of the Gaussian

measurement noise ε.

The kurtosis of the ith measured variable xi with zero mean and

unit variance at the sample number t can be estimated by the

following recursive expression [36]:

k4ðxijtÞ ¼ k4ðxijt'1Þ'μðk4ðxijt'1Þ'x4i ðtÞþ3Þ; ð19Þ

for 1r irm, where k4ðxijtÞ denotes the kurtosis estimation of the

measured variable xi at the sample number t, and μ is a learning

rate, while xi(t) denotes the sample value of xi at the sample

number t. By substituting Eq. (19) into Eq. (18), we construct a

recursive estimation of the ICs' kurtosis as follows:

k4ðs1jtÞ

k4ðs2jtÞ

⋮

k4ðsmjtÞ

2

66664

3

77775
¼

a41;1 a41;2 … a41;m

a42;1 a42;2 … a42;m
⋮ ⋮ ⋱ ⋮

a4m;1 a4m;2 … a4m;m

2

66664

3

77775

'1
k4ðx1jtÞ

k4ðx2jtÞ

⋮

k4ðxmjtÞ

2

66664

3

77775
; ð20Þ

where k4ðsijtÞ, 1r irm, denotes the kurtosis estimation of the ith

IC at the sample number t. By defining

M ¼

a41;1 a41;2 … a41;m

a42;1 a42;2 … a42;m
⋮ ⋮ ⋱ ⋮

a4m;1 a4m;2 … a4m;m

2

66664

3

77775

'1

; ð21Þ

k4ðsjtÞ ¼ ½k4ðs1jtÞk4ðs2jtÞ…k4ðsmjtÞ$
T; ð22Þ

k4ðxjtÞ ¼ ½k4ðx1jtÞk4ðx2jtÞ…k4ðxmjtÞ$
T; ð23Þ

Eq. (20) can be expressed in the matrix form as

k4ðsjtÞ ¼M , k4ðxjtÞ: ð24Þ

The absolute values of the ICs' kurtosis statistics given in Eq. (18)

quantitatively represent the non-Gaussian degrees of the ICs. There-

fore, the ICs can also be arranged in descending order according to

their non-Gaussian degrees, and the rows of M are also sorted

accordingly. Specifically, the c recursive kurtosis estimations of the

c dominant ICs sc can be expressed as

k4cðscjtÞ ¼Mc , k4ðxjtÞ: ð25Þ

where McAR
c%m denotes the matrix consisting of the correspond-

ing c rows of the matrix M.

3.3. The process monitoring strategy

Assume that the order of the ICs in s has been arranged and the

rows of M have been sorted accordingly. In order to conduct

process monitoring, the I2 and SPE monitoring statistics can be

calculated respectively using the recursive kurtosis estimate of the

dominant ICs as follows:

I2ðtÞ ¼ k4cðscjtÞ
T
Φ

'1
k4cðscjtÞ; ð26Þ

SPEðtÞ ¼ ðk4ðxjtÞ'M'1
1:c k4cðscjtÞÞ

Tðk4ðxjtÞ'M'1
1:c k4cðscjtÞÞ; ð27Þ

whereΦ¼ E½k4cðscjtÞk4cðscjtÞ
T$ is the covariance matrix of k4c ðscjtÞ

which is estimated using the training data, while M'1
1:c denotes the

matrix consisting of the first c columns of M'1. Again, I2ðtÞ is used to

monitor the systematic part of the process variation, and SPEðtÞ is used

to monitor the non-systematic part of the process variation.

To use these two monitoring statistics for judging whether the

process is in control or not, the corresponding confidence limits need

to be determined. The δ confidence limits for the built monitoring

statistics can be determined as follows. Split the measured data

collected from the process under the normal operating conditions

into the two parts: the training data with N1 samples and the

validating data with N2 samples. Based on the training data, both

the mixing matrix bA and the covariance matrix Φ of k4cðscjtÞ are

estimated. Based on the validating data, the two monitoring statistics

are calculated, which are denoted as fI2ðtÞg
N2

t ¼ 1 and fSPEðtÞgN2

t ¼ 1,

respectively. Then round N2ð1'δÞ towards the nearest integer, which

is denoted as r. For each monitoring statistic, the rth highest value is

adopted as its confidence limit. Specifically, the rth highest value of

fI2ðtÞg
N2

t ¼ 1 is used as the confidence limit for the I2 statistic, while the

rth highest value of fSPEðtÞgN2

t ¼ 1 is adopted as the confidence limit for

the SPE statistic. With this strategy, the false alarm rate can be

reduced significantly [37]. Furthermore, the false alarm rates of

different monitoring methods can be adjusted to the same level

approximately, for fair and convenient comparison of the fault

detection times and fault detection rates of different methods.

Referring to Fig. 1, the proposed monitoring procedure based

on the NoisyICAn algorithm is now detailed, which consists of the

off-line modelling stage and the on-line monitoring stage.

The off-line modelling stage:

(1) Collect the data from the process under normal operation

conditions, and divide the measured data into the training

data part and the validating data part.

data, and divide them into

Collect normal operation

training data

Off−line Modelling

validating data

Estimate mixing matrix
training dataA based on 

using NoisyICAn algorithm

Φ

training data

Calculate covariance

matrix based on 

Calculate monitoring

statistics, SPE,andI
2

based on validating data

Determine confidence

limits for two monitoring
statistics

On−line Monitoring

Take measurement from

the process
under monitoring

Estimate current process's

independent components
of dominantkurtosis

Calculate current process's

I
2 SPEand

monitoring statistics

If the current monitoring

limits

statistics exceed confidence

: fault is detected

Fig. 1. The overall procedure of the proposed process monitoring strategy.
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(2) Based on the training data, estimate the mixing matrix by the

NoisyICAn algorithm.

(3) Based on the training data, estimate the kurtosis values of the

measured variables recursively using Eq. (19) and, with the

obtained kurtosis values of the measured variables and the

estimated mixing matrix, estimate the kurtosis values of the

dominant ICs using Eq. (25). Calculate the covariance matrixΦ

of k4cðscjtÞ.

(4) Based on the validating data, estimate the kurtosis values of

the measured variables recursively using Eq. (19), and obtain

the kurtosis values of the dominant ICs using Eq. (25).

(5) Use the estimated kurtosis values of the dominant ICs

obtained in (4) in Eqs. (26) and (27) to calculate the two

monitoring statistics. Determine the δ confidence limits of the

two monitoring statistics.

The on-line monitoring stage:

(1) Take the measurement from the process under monitoring,

and use the current measured data to estimate the current

kurtosis values of the measured variables using Eq. (19).

(2) Use the current kurtosis values of the measured variables

obtained in (1) in Eq. (25) to calculate the current kurtosis

values of the dominant ICs.

(3) Use the current kurtosis values of the dominant ICs obtained

in (2) in Eqs. (26) and (27) to calculate the current values of the

two monitoring statistics.

(4) Determine whether the current monitoring statistics exceed

their respective confidence limits, and give an alarm if a fault

is detected.

In the above procedure, the training data, the validating data

and the current measured data for monitoring are all normalized

with the means and variances of the measured variables in the

training data. The kurtosis estimates of the measured variables in

the training data, the validating data and the current measured

data for monitoring are also all normalized with the means and

variances of kurtosis estimates of the measured variables in the

training data. How to choose an appropriate learning rate μ for the

recursive kurtosis estimation of (19) is discussed in Appendix A,

while how to determine an appropriate number of the dominant

ICs is summarized in Appendix B.

4. Simulation studies

The proposed NoisyICAn-based monitoring method is evalu-

ated in the two case studies, a simple three-variable system and

a continuous stirred tank reactor (CSTR) system. In both the case

studies, the fault detection performance of our NoisyICAn-based

method is compared with those of the four benchmark schemes,

namely, the conventional noise-free FastICA-based monitoring

method [12] and the kernel FastICA-based monitoring scheme

[20,21] as well as the two monitoring methods based on the

existing noisy ICA schemes of [27,29], referred to as the NoisyICA1

and NoisyICA2, respectively.

4.1. A three-variable system

The three-variable system which is a modified version of the

system studied by Kano et al. [11] is given by x¼ Asþε of Eq. (10),

with the mixing matrix defined by

A¼

'0:433 0:287 1:190

'1:666 '1:146 0:038

0:125 1:326 0:327

2

64

3

75: ð28Þ

The three ICs s¼ ½s1 s2 s3$
T are the uncorrelated random signals

following the uniform distributions within ½'1;1$, ½'1:5;1:5$ and

½'2;2$, respectively, while the three outputs x¼ ½x1 x2 x3$
T are

corrupted by the three zero-mean measurement noises

ε¼ ½ɛ1 ɛ2 ɛ3$
T which follow the Gaussian distributions. We define

the noise intensity of ɛi as the ratio percentage of ɛi's variance over

the output xi's variance, for 1r ir3. The noise intensities in the

three output signals are set to 20%, 50% and 80%, respectively.

A fault case, which is the ramp change of the first-row and the

second-column element a1;2 in the mixing matrix A, is simulated.

The ramp change rate is set to 0.03. In industrial processes, many

faults can be attributed to the slow drift of process parameters,

and this simulated fault case is used to represent a typical example

of this type of “ramp fault”. The normal operation data with 3000

samples and the fault data with 1000 samples are respectively

generated by simulating the three-variable system. The normal

operation data are divided into the training set of N1 ¼ 1500

samples and the validating set of N2 ¼ 1500 samples. For the fault

data used in process monitoring, the fault is introduced at the

101th sample.

The number of the dominant ICs is set to 2 for all the five

monitoring methods. The learning rate μ is empirically chosen to

be 0.4 for our proposed NoisyICAn-based method. As this is a

linear process, the linear kernel is chosen for the kernel FastICA-

based monitoring method. The fault detection performance is

evaluated in terms of the fault detection rate, which is defined

as the percentage of the fault samples whose monitoring statistic

values exceed the related confidence limit in all the fault samples,

and the fault detection time. In order to decrease the false alarm,

Fig. 2. The monitoring charts of the FastICA-based method for the simple three-variable system, where the fault occurs at the 101th sample.
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a fault is indicated only when six consecutive monitoring statistic

values exceed the confidence limit and the fault detection time is

then defined as the corresponding first sample at which the

confidence limit is exceeded [38]. The 99% confidence limit is

adopted as the alarming threshold. The monitoring charts of the

five methods are depicted in Figs. 2–6, respectively. In order to

facilitate the comparison, in each monitoring chart, the monitoring

statistic values are normalized by the corresponding confidence

limit so that the confidence limit is equal to 1. The monitoring

statistic values are plotted as the solid line, while the related

confidence limit is indicated by the dashed line.

It can be seen from the FastICA-based, kernel FastICA-based,

NoisyICA1-based and NoisyICA2-based monitoring charts of

Figs. 2–5 that after the occurrence of the fault at the 101th sample,

the I2 and SPE monitoring statistics' values of many fault samples

are still below the corresponding confidence limits, resulting in

late detection of the fault. By contrast, from the NoisyICAn-based

monitoring charts of Fig. 6, we observe that the two monitoring

statistics' values of the fault samples quickly exceed the respective

confidence limits, leading to a much earlier detection of the fault.

As expected, with the linear kernel, the kernel FastICA-based

method is equivalent to the conventional FastICA-based method

and, therefore, the both methods achieve the same performance.

Table 1 compares the fault detection times (the sample number)

and the fault detection rates of the five methods evaluated. It can

be seen from Figs. 2–6 as well as Table 1 that the proposed

NoisyICAn-based method has a faster fault detection time and

achieves a higher fault detection rate than the benchmark FastICA-

based, kernel FastICA-based, NoisyICA1-based and NoisyICA2-

based methods.

Fig. 3. The monitoring charts of the kernel FastICA-based method for the simple three-variable system, where the fault occurs at the 101th sample.

Fig. 4. The monitoring charts of the NoisyICA1-based method for the simple three-variable system, where the fault occurs at the 101th sample.

Fig. 5. The monitoring charts of the NoisyICA2-based method for the simple three-variable system, where the fault occurs at the 101th sample.
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4.2. A continuous stirred tank reactor system

The CSTR system is widely used for testing the process

monitoring methods [11,39]. The schematic diagram of this CSTR

with the cascade control system is shown in Fig. 7. In this CSTR,

the reactant A flows into the reactor, and the first-order irrever-

sible reaction A-B happens. The single component B is produced

as an outlet stream. Heat from the exothermic reaction is taken

away by the cooling flow of the jacket, and the temperature of the

reactor is controlled by manipulating the coolant flow, while the

level is controlled by manipulating the outlet flow.

Based on the mass, energy and component balances, the

dynamic model of this CSTR system can be derived as follows:

dCA

dt
¼ 'k0e

'E0=RTCAþ
Q F ðCAF'CAÞ

Ah
; ð29Þ

dT

dt
¼
k0e

'E0=RTCAð'ΔHÞ

ρCp
þ
Q F ðTF'TÞ

Ah

þ
UACðTC'TÞ

ρCpAh
; ð30Þ

dTC

dt
¼
QCðTCF'TCÞ

VC
þ
UACðT'TCÞ

ρCCpCVC
; ð31Þ

dh

dt
¼
Q F'Q

A
: ð32Þ

The ten measured process variables of this CSTR system are des-

cribed in Table 2, while the model parameters in Eqs. (29)–(32) are

defined in Table 3. The detailed explanation of these parameters and

the nominal operating conditions of the CSTR can be found in [39].

The Gaussian measurement noises are added to all the mea-

sured data in the simulation procedure, and the noise intensity in

each measured variable is also given in Table 2. The simulation

Fig. 6. The monitoring charts of the proposed NoisyICAn-based method for the simple three-variable system, where the fault occurs at the 101th sample.

Table 1

Comparison of the fault detection performance for the simple three-variable

system.

Monitoring method Monitoring

statistic

Fault detection

time

Fault detection

rate (%)

FastICA-based I2 210 77.44

SPE 750 23.89

Kernel FastICA-based I2 210 77.44

SPE 750 23.89

NoisyICA1-based I2 210 77.78

SPE 503 37.00

NoisyICA2-based I2 210 77.00

SPE Failed 2.44

NoisyICAn-based I2 126 96.78

SPE 422 59.44

Fig. 7. The continuous stirred tank reactor with cascade control.

Table 2

The measured variables and the noise intensity in each measured variable for

the CSTR.

Measured

variable

Variable description Noise intensity

(%)

CA Concentration of species A in reactor 53.8

T Reactor temperature 47.8

QF Reactor feed flow rate 23.7

CAF Concentration of species A in reactor feed

stream

10.0

h Reactor liquid level 11.9

TF Temperature of reactor feed stream 23.7

TC Temperature of coolant in cooling jacket 80.6

QC Coolant flow rate 5.5

TCF Temperature of coolant feed 9.6

Q Reactor outlet flow rate 71.8

Table 3

The parameters of the CSTR.

Parameter Description

k0 Preexponential factor

E0=R Activation energy

A Reactor cross-sectional area

ΔH Reaction heat

ρ Density of reactor contents

Cp Heat capacity of reactor contents

UAC Heat-transfer coefficient

VC Capacity of cooling jacket

CpC Heat capacity of coolant

ρC Density of coolant
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data are sampled every 2 s, and 2000 samples are generated by

simulating the CSTR system under the normal operation condi-

tions. The measured data under the normal operation conditions

are divided into the training set of N1 ¼ 1000 samples and the

validating set of N2 ¼ 1000. Eight fault patterns as shown in the

Table 4 are simulated, which can be divided into two types

according to fault characteristics: the step fault type and the ramp

fault type. Among the simulated fault patterns, the faults 1 to 3

belong to the step fault type, while the faults 4 to 8 belong to the

ramp fault type. More specifically, the faults 1, 4, 5 and 8 are

caused by the internal or external disturbances. The fault 2 signifies

that the setpoint for the reactor temperature is changed, while the

fault 3 is caused by the temperature sensor for the reactor having

a bias, which is an instrumentation fault. The fault 6 is due to the

heat-exchanger fouling, while the fault 7 is caused by the catalyst

deactivation. Both the faults 6 and 7 are equipment faults. The data

for each fault pattern are recorded with 900 samples and the fault

is introduced at the 190th sample.

For all the five monitoring methods, the number of the

dominant ICs is selected as 5. The learning rate μ is set to 0.3 for

our NoisyICAn-based method. For the kernel FastICA-based mon-

itoring method, we use the Gaussian kernel with the kernel width

determined according to the empirical method given in [40]. Again

the 99% confidence limit is also adopted as the alarming threshold.

The monitoring charts obtained by all the five methods under

the fault pattern 5 are illustrated in Figs. 8–12, respectively. From

the monitoring charts of our proposed NoisyICAn-based method

shown in Fig. 12, we observe that when the sample number is

greater than 420, almost all the monitoring statistics' values

exceed the respective confidence limits and stay well above the

confidence limits. By contrast, observe from the monitoring charts

of the four benchmark methods depicted in Figs. 8–11, respec-

tively, that only when the sample number is greater than 600, can

the monitoring statistics' values exceed the corresponding con-

fidence limits. The results shown in Figs. 8–12 clearly demonstrate

that our proposed NoisyICAn-based monitoring method can detect

the fault pattern 5 of the CSTR process much faster and much more

effectively than the FastICA-based and kernel FastICA-based mon-

itoring methods as well as the NoisyICA1-based and NoisyICA2-

based monitoring methods.

Table 4

The simulated fault patterns for the CSTR system.

Fault Description Value

1 Step change in the reactor feed flow rate QF '7 L/min

2 Setpoint change for the reactor temperature T 10 K

3 Bias in the measurement of the reactor

temperature T

4 K

4 The reactor feed stream temperature TF ramps

up with the ramp rate

0.3 K/min

5 The feed concentration CAF ramps up with the

ramp rate

7%10'4 (mol/L)/min

6 The heat-transfer coefficient UAC ramps

down with the ramp rate

'125 (J/(min K))/Min

7 The catalyst activation energy E0=R ramps

up with the ramp rate

6 K/min

8 The coolant feed temperature TCF ramps

down with the ramp rate

'0.2 K/min

Fig. 8. The monitoring charts of the FastICA-based method for the CSTR under the fault pattern 5 which occurs at the 190th sample.

Fig. 9. The monitoring charts of the kernel FastICA-based method for the CSTR under the fault pattern 5 which occurs at the 190th sample.
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The monitoring charts obtained by all the five monitoring

methods for the fault pattern 8 are examined in Figs. 13–17,

respectively. In contrast to the monitoring charts of the FastICA-

based, kernel FastICA-based, NoisyICA1-based and NoisyICA2-

based methods, the monitoring charts of the NoisyICAn-based

method react much more quickly and sharply to the occurring

fault. Specifically, in the I2 monitoring chart of the NoisyICAn-

based method shown in Fig. 17, almost all the I2 statistic's values

exceed the corresponding confidence limit after the 400th sample,

whereas in the I2 monitoring charts of the four benchmark

methods given in Figs. 13–16, respectively, many I2 statistic's

values from the 400th sample to the 450th sample are still below

the related confidence limits. Furthermore, the SPE monitoring

chart of the NoisyICAn-based method confidently indicates a fault

after the 420th sample, whereas in the SPE monitoring charts of

the other four methods, the SPE monitoring statistic's values still

fluctuate around the confidence limits from the 420th sample to

the 500th sample, and thus cannot give a definite fault indication.

The results obtained thus confirm that the NoisyICAn-based

method has better fault detection performance than the other

four methods for the CSTR system under the fault pattern 8.

We next investigate the achievable monitoring performance of

all the five monitoring methods on all the eight fault scenarios of

the CSTR system. The fault detection times and the fault detection

Fig. 10. The monitoring charts of the NoisyICA1-based method for the CSTR under the fault pattern 5 which occurs at the 190th sample.

Fig. 11. The monitoring charts of the NoisyICA2-based method for the CSTR under the fault pattern 5 which occurs at the 190th sample.

Fig. 12. The monitoring charts of the proposed NoisyICAn-based method for the CSTR under the fault pattern 5 which occurs at the 190th sample.
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rates obtained by these five methods are tabulated in Tables 5 and

6, respectively. From Table 5, it can be observed that all the five

monitoring methods can detect the occurring fault immediately

for the step-change fault patterns 1 to 3. Compared with the step-

change faults, the ramp faults are more difficult to detect, as

confirmed by the fault detection times for the ramp-change fault

patterns 4 to 8. For the challenging ramp fault detection problems,

our NoisyICAn-based method achieves much faster fault detection

times than the FastICA-based, kernel FastICA-based, NoisyICA1-

based and NoisyICA2-based methods, as can be seen from Table 5.

Taking the fault pattern 4 as an example, the I2 statistics of the four

benchmark methods detect the fault at the 425th, 405th, 415th

and 463th samples, respectively, while the I2 statistic of the

proposed NoisyICAn-based method detects the fault at the 323th

sample. The SPE statistics of the FastICA-based, kernel FastICA-

based, NoisyICA1-based, NoisyICA2-based and NoisyICAn-based

methods on the other hand detect the fault at the 386th, 410th,

386th, 403th and 282th samples, respectively. The results of

Table 5 clearly demonstrate the superior ability of the

NoisyICAn-based method in shortening the fault detection delay

for the challenging fault patterns 4 to 8, in comparison with the

other four methods. From Table 6, all the five methods are seen

to achieve 100% or close to 100% fault detection rates for the

step-change faults 1 to 3. For the challenging ramp faults 4 to 8,

Fig. 13. The monitoring charts of the FastICA-based method for the CSTR under the fault pattern 8 which occurs at the 190th sample.

Fig. 14. The monitoring charts of the kernel FastICA-based method for the CSTR under the fault pattern 8 which occurs at the 190th sample.

Fig. 15. The monitoring charts of the NoisyICA1-based method for the CSTR under the fault pattern 8 which occurs at the 190th sample.
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however, our NoisyICAn-based method is observed to attain

higher fault detection rates than the other four methods.

The average fault detection rate of each monitoring statistic

over the ramp faults 4 to 8 is illustrated in Fig. 18 for a more

intuitive comparison. The results of Fig. 18 further confirm the

superior monitoring performance of the NoisyICAn-based method

over the conventional FastICA-based, kernel FastICA-based,

NoisyICA1-based and NoisyICA2-based methods, especially for

the challenging ramp faults with changing process parameters.

We can also observe that the FastICA-based method exhibits better

monitoring performance than the NoisyICA2-based method,

whereas the NoisyICA1-based method performs better than the

FastICA-based method. This can be attributed to the following

reasons: (1) the NoisyICA2 algorithm assumes that the covariance

matrix of the noise is a diagonal matrix with the same diagonal

elements, which is not the case with the simulated situations;

(2) the NoisyICA1 algorithm requires the covariance matrix of the

noise, and in the simulation, the true noise's covariance matrix is

provided to the NoisyICA1 algorithm. Obviously, in real industrial

applications, the noise's covariance matrix must be estimated.

As the estimate of the noise's covariance matrix is subject to error,

the performance of the NoisyICA1-based method is likely to

degrade. Both the noise-free FastICA-based and kernel FastICA-

based methods achieve a similar performance. But the latter has a

higher complexity than the former, as the latter conducts the high-

dimensional nonlinear mapping using kernel function. Our

NoisyICAn algorithm can effectively deal with the noise and it

does not require the noise's covariance matrix. Based on this

NoisyICAn method, the constructed monitoring statistics of Eqs.

(26) and (27) can reduce the effect of the noise to a larger extent,

compared with the calculated monitoring statistics of Eqs. (8) and

(9) using the other four methods. Consequently, our NoisyICAn-

based monitoring method can detect faults more quickly and

reliably than the other four methods.

5. Conclusions

A NoisyICAn-based process monitoring method has been pro-

posed. Our contribution is two-fold. First, we have developed the

NoisyICAn algorithm to estimate the mixing matrix, which expli-

citly takes the measurement noise into consideration. Second, we

have utilised the kurtosis relationship between the ICs and the

measured variables to recursively estimate the ICs' kurtosis based

Fig. 16. The monitoring charts of the NoisyICA2-based method for the CSTR under the fault pattern 8 which occurs at the 190th sample.

Fig. 17. The monitoring charts of the proposed NoisyICAn-based method for the CSTR under the fault pattern 8 which occurs at the 190th sample.

Table 5

Comparison of the fault detection times (sample number) for the CSTR system.

Fault no. FastICA-

based

Kernel

FastICA-

based

NoisyICA1-

based

NoisyICA2-

based

NoisyICAn-

based

I2 SPE I2 SPE I2 SPE I2 SPE I2 SPE

1 190 190 190 190 190 190 191 190 190 190

2 190 190 190 190 190 190 190 190 190 190

3 190 192 190 190 190 191 190 190 190 191

4 425 386 405 410 415 386 463 403 323 282

5 605 534 551 579 558 500 570 592 364 479

6 470 455 496 462 457 455 500 524 362 369

7 398 368 424 401 403 384 416 499 320 386

8 460 549 502 422 468 486 489 502 330 433
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on the estimated mixing matrix, which effectively removes the

influence of the Gaussian measurement noise. Two monitoring

statistics, the I2 and SPE statistics, are then built to detect process

faults based on the recursive kurtosis estimation of the ICs.

Simulation results obtained on the three-variable system and the

CSTR system have demonstrated the superior process monitoring

performance of the proposed NoisyICAn-based method, in terms

of the fault detection time and fault detection rate, over the

conventional FastICA-based and kernel FastICA-based monitoring

methods as well as the two monitoring methods based on the two

existing noisy ICA algorithms referred to as the NoisyICA1 and

NoisyICA2, respectively. It is worth emphasizing that the NoisyICA1

algorithm requires the covariance matrix of the noise while the

NoisyICA2 algorithm assumes the noise's covariance matrix being a

diagonal matrix with the same diagonal elements. By contrast, our

NoisyICAn algorithm does not require the knowledge of the noise's

covariance matrix, and yet our NoisyICAn-based monitoring method is

capable of outperforming both the NoisyICA1-based and NoisyICA2-

based monitoring methods.

There are three important issues that should be noted. First, the

measurement noises are assumed to follow Gaussian distributions

in this paper. For the generic case where the measurement noises

have arbitrary distributions, to develop an efficient monitoring

method capable of handling non-Gaussian noise will be included

in our future work. Second, as industrial processes usually exhibit

nonlinear characteristics, further investigation to take into the

consideration of nonlinear process behaviors in our proposed

method will also be conducted. Third, in this paper, we implicitly

assume that the process under monitoring is operating at one mode,

as a pure ICA based algorithm without any enhancing preprocessing

technique may not deal with the problem of multimode process

monitoring well. In our future study, we will investigate how to

integrate some appropriate enhancing techniques with our NoisyICAn-

based algorithm to extend its application to multimode process moni-

toring problems.

Appendix A. Empirically choosing the learning rate μ

Currently, there exists no method for determining the optimal

learning rate μ. This parameter is usually chosen by trial and error.

We develop an empirical method to choose an appropriate value

for μ. We now explain the basic idea of this heuristic method.

In the off-line modelling stage, the process data measured under

the normal operating conditions are used to form the training set

and the validation set. Because the samples whose monitoring

statistic values exceed the δ confidence limit are considered faulty

samples that may associate with some fault, we choose the

learning rate μ to make the monitoring statistic values of the

validating samples below the confidence limit as much as possible.

With this strategy, the region of normal operating conditions may

be better preserved.

For the monitoring statistic I2, we define an index to measure

the difference between the δ confidence limit of I2 and the

monitoring statistic values I2ð1Þ; I2ð2Þ;…; I2ðN2Þ for the validating

data, which is expressed as

η1 ¼
R1

R2
; ð33Þ

where R1 denotes the number of the monitoring statistic values

between I2lim;δ and I2lim;δ'D1, and R2 denotes the number of the

monitoring statistic values less than I2lim;δ'D1, while I2lim;δ is the

δ confidence limit of I2, and D1 is a predefined constant satisfying

the condition D1o I2lim;δ.

For the monitoring statistic SPE, we define a similar index to

measure the difference between the δ confidence limit of SPE and

the monitoring statistic values SPEð1Þ; SPEð2Þ;…; SPEðN2Þ for the

validating data as

η2 ¼
R3

R4
; ð34Þ

where R3 denotes the number of the monitoring statistic values

between SPElim;δ and SPElim;δ'D2, and R4 denotes the number of

the monitoring statistic values less than SPElim;δ'D2, while

SPElim;δ is the δ confidence limit of SPE, and D2 is a predefined

constant satisfying the condition D2oSPElim;δ .

A smaller value of η1 or η2 suggests that more monitoring

statistic values are far below the confidence limit and, therefore,

the region of normal operating conditions is better preserved.

As the indexes η1 and η2 are directly influenced by the learning

rate μ, they can be minimized to determine an appropriate value

Table 6

Comparison of the fault detection rates for the CSTR system.

Fault no. FastICA-based Kernel FastICA-based NoisyICA1-based NoisyICA2-based NoisyICAn-based

I2 (%) SPE (%) I2 (%) SPE (%) I2 (%) SPE (%) I2 (%) SPE (%) I2 (%) SPE (%)

1 100.0 100.0 100.0 100.0 99.86 100.0 100.0 100.0 100.0 100.0

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

3 100.0 99.72 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

4 70.28 70.00 69.58 70.70 71.41 74.37 66.48 67.46 81.55 84.08

5 41.55 56.76 50.85 48.31 49.58 57.46 47.61 46.67 70.14 60.28

6 64.51 66.06 61.41 67.18 65.07 67.46 62.68 60.14 76.20 74.79

7 76.34 72.25 70.28 71.41 76.76 68.31 74.37 60.00 82.96 70.00

8 64.79 54.93 59.15 69.72 66.62 59.86 61.83 58.45 72.39 63.38

Fig. 18. Comparison of the average fault detection rates over the ramp-change fault

patterns 4 to 8 of the CSTR process.
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of μ, and the following search procedure is adopted to choose this

learning rate.

(1) Set the search range for μ from μmin to μmax that covers all

the possible choices of the learning rate. Choose the

required δ value and set another value δ0oδ.

(2) Start with μ¼ μmin.

(3) Calculate the monitoring statistics' values fI2ðtÞg
N2

t ¼ 1 and

fSPEðtÞgN2

t ¼ 1 for the validating data.

(4) Determine the δ confidence limits I2lim;δ and SPElim;δ for I2

and SPE, respectively.

If μ¼ μmin: also determine the δ0 confidence limits I2lim;δ0

and SPElim;δ0 for I2 and SPE, respectively, as well as set

D1 ¼ I2lim;δ' I2lim;δ0
and D2 ¼ SPElim;δ'SPElim;δ0 .

(5) Calculate the index η1 of Eq. (33) and the index η2 of Eq. (34).

(6) Set μ¼ μþμmin. If μrμmax go to step (3); otherwise, stop.

The value μ in the search range μmin to μmax that approximately

minimises η1 and η2 may be chosen as the appropriate

learning rate.

The three-variable system. The search range for μ is set from

μmin ¼ 0:001 to μmax ¼ 0:5, while the values of δ and δ0 are set to

0.99 and 0.96, respectively. The indexes η1 and η2 as the functions

of the learning rate μ are depicted in Fig. 19. It can be seen from

Fig. 19 that a very small μ may result in a large number of normal-

operation samples whose monitoring statistics' values are near the

confidence limits and this may lead to high false alarming rate for on-

line fault detection. Indeed, our simulation experience suggests that a

too small μ may result in a large false alarming rate. On the other

hand, our empirical experience also suggests that a too large μ may

decrease the sensitivity of the algorithm to the occurring fault and,

therefore, reduces the fault detection rate. These empirical experience

together with the results of Fig. 19 suggest that the learning rate

μ¼ 0:4 is an appropriate choice which offers a good compromise

between the false alarming rate and the fault detection rate.

The CSTR system. The search range for μ is also set from

μmin ¼ 0:001 to μmax ¼ 0:5, while the values of δ and δ0 are also

set to 0.99 and 0.96, respectively. The indexes η1 and η2 as the

functions of the learning rate μ are plotted in Fig. 20. The results of

Fig. 20 indicate that μ¼ 0:3 is an appropriate choice.

Appendix B. Determining the number of the dominant ICs

We adopt a scheme similar to the one discussed in [21] to

determine an appropriate number c of the dominant ICs. The

cumulative percent variance (CPV) criterion is commonly applied

in the ICA-based fault detection methods [14,16]. We construct a

CPV criterion using the absolute values of the ICs' kurtosis

statistics given in Eq. (18), to help determining an appropriate
Fig. 19. The relationships between the indexes η1 and η2 and the learning rate μ for

the three-variable system.

Fig. 20. The relationships between the indexes η1 and η2 and the learning rate μ for

the CSTR system.
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number c of the dominant ICs. Assume that the ICs s¼ ½s1s2…sm$
T

obtained are arranged in the descending order according to their

non-Gaussian degrees which are measured by the absolute values

of the ICs' kurtosis statistics given in Eq. (18). The CPV criterion can

then be defined as

CPVðcÞ ¼
∑c

i ¼ 1jk4ðsiÞj

∑m
i ¼ 1jk4ðsiÞj

% 100%: ð35Þ

CPVðcÞ can be set to 90%, 95% or 99% to determine the corresponding

value of c, as described in [14].

For our both case studies, CPVðcÞ ¼ 90% is chosen to determine

the number of the dominant ICs. For the simple three-variable

system, this leads to c¼2, while for the CSTR system, an appro-

priate number of the dominant ICs is found to be c¼5. In order to

conduct a fair comparison, we use the same c value for all the five

ICA-based monitoring methods evaluated.
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