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a b s t r a c t 

This paper proposes a selective ensemble of multiple local model learning for modeling and identifica- 

tion of nonlinear and nonstationary systems, in which the set of local linear models are self adapted to 

capture the newly emerging process characteristics and the prediction of the process output is also self 

adapted based on an optimally selected ensemble of subset linear local models. Specifically, our selective 

ensemble of multiple local model learning approach performs the model adaptation at two levels. At the 

level of local model adaptation, a newly emerging process state in the incoming data is automatically 

identified and a new local linear model is fitted to this newly emerged process state. At the level of on- 

line prediction, a subset of candidate local linear models are optimally selected and the prediction of the 

process output is computed as an optimal linear combiner of the selected subset local linear models. Two 

case studies involving chaotic time series prediction and modeling of a real-world industrial microwave 

heating process are used to demonstrate the effectiveness of our proposed approach, in comparison with 

other existing methods for modeling and identification of nonlinear and time-varying systems. 

© 2019 Published by Elsevier B.V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

o  

i  

t  

T  

r  

o  

O  

t  

o  

c

 

t  

p  

o  

m  

a  

e  

n  
1. Introduction 

Real-world systems often exhibit both nonlinear and nonsta-

tionary characteristics [1–13] . For these time-varying nonlinear

systems, batch global nonlinear modeling approaches [14–26] be-

come ineffective. Adaptive global nonlinear modeling of nonsta-

tionary processes is a challenging task, since both the model

parameter values and the model structure must be adapted suf-

ficiently fast in order to timely capture the changing nonlinear

characteristics of the underlying process. However, most of the

existing adaptive nonlinear modeling approaches do not perform

online nonlinear model structure updating and they only use

some recursive estimators, such as the recursive least squares

(RLS) algorithm, to adapt the model parameter values [27–34] . In

particular, if the system’s input space or operating region is known

a priori, by covering the input space with sufficiently dense fixed

nodes, the extreme learning machine (ELM) for single-hidden-layer

neural networks [30–32] only needs to sequentially update the

model weights using the RLS algorithm. Because the size of the
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onlinear model has to be very large for ELM, online adaptation

f the model weights is computationally costly and, moreover,

t takes time to sufficiently change the model weights to match

he changing nonlinear characteristics of the underlying process.

herefore, the online sequential ELM (OS-ELM) only works well for

elatively slow time varying nonlinear processes with the known

perating regions. In an attempt to improve the performance of

S-ELM in nonstationary environment, the work [35] proposed a

ime-varying OS-ELM (OS-ELM-TV), whose weights are function

f time. Specifically, each weight of the OS-ELM-TV is a linear

ombination of a set of basis functions. 

However, during the online operation of a time-varying indus-

rial process, the process dynamics can vary significantly and the

rocess may enter a new operating region which is completely

utside the initial modeling space. This will degrade the perfor-

ance of the fixed-structure nonlinear modeling methods, such

s the OS-ELM and OS-ELM-TV. In order to capture the newly

merging processes dynamics, the classical resource-allocating

etwork (RAN) technique [36,37] adapts the nonlinear model

tructure by growing the set of radial basis function (RBF) nodes,

tarting from an empty set of RBF nodes. By contrast, start-

ng from an initial set of RBF nodes, the fast tunable RBF method

38] adjust RBF nodes as well as the model weights online to adap-

ively model nonstationary systems. The experimental results of

https://doi.org/10.1016/j.neucom.2019.10.015
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38] show that this fast tunable RBF method typically outperforms

he RAN. 

A well-known alternative to nonlinear modeling with a single

lobal model is to adopt the multiple local models, which are ca-

able of capture severe nonlinearity too [39–43] . The essence of

ultiple local modeling is to ‘partition’ the model input space into

ultiple ‘regions’, each covered by a local model. With a suffi-

iently fine partitioning, the characteristics of the process in each

ocal region can be accurately modeled with a simple linear model.

oreover, in order to capture the newly emerging nonlinear char-

cteristics of a time-varying system, an adaptive local modeling

ethod must be able to grow its local models. The multiple local

odeling framework of [42,43] however does not have this capa-

ility, as it employs a fixed set of local RBF models. In the online

oft sensor design, this capability of adaptively growing the set of

ocal models has been demonstrated to be vital to achieve excel-

ent performance in online soft sensing [44,45] . This motivates our

urrent work. 

Against the above background, in this paper, we propose a se-

ective ensemble of multiple local model learning approach for

onlinear and time-varying systems, in which the set of local lin-

ar models are self adapted to capture the newly emerging pro-

ess state, and the prediction of the process output is also adapted

ased on an optimally selected ensemble of subset linear local

odels. Similar to the works of [44,45] , which consider a very

ifferent application of soft sensor design, our proposed selective

nsemble of multiple local model learning approach performs the

odel adaptation at two levels. At the level of local model adap-

ation, a newly emerging process state in the incoming data is au-

omatically identified and a new local linear model is fitted to this

ewly emerged process state. At the level of online prediction or

odeling, a subset of candidate local linear models are optimally

elected and the prediction of the process output is computed as

n optimal linear combiner of the selected subset local linear mod-

ls. Noted that different from the work [43] which employs a fixed

et of sub-models and only computes the weights of the ensemble

nline, the proposed method continuously learns newly emerging

rocess states and identifies new sub-models accordingly. To our

est knowledge, this work is the first to apply selective ensemble

f multiple local linear model learning for modeling and identifi-

ation of nonlinear and nonstationary systems. 

The remainder of the paper is organized as follows. Section 2 is

ntirely dedicated to our selective ensemble of multiple local

odel learning approach, which includes adaptation of the local

inear models and selective ensemble of local linear models for

nline prediction. Extensive experimental results are presented in

ection 3 , which includes the two case studies of online time se-

ies prediction involving Lorenz chaotic time series [46] and mod-

ling of a real-world industrial microwave heating process (MHP)

47–49] . Our conclusions and future research directions are pro-

ided in Section 4 . 

. Selective ensemble of multiple local model learning 

pproach 

To effectively model nonlinear and nonstationary systems, the

roposed selective ensemble of multiple local model learning car-

ies out two levels of model adaptation: (1) adaptation of the local

inear model set, and (2) online adaptation of model prediction.

e now detail these two components. 

.1. Adaptation of local linear model set 

Consider the data sample set { x (t) , y (t) } N 
t=1 

drawn from a pro-

ess, where x (t) ∈ R 

m and y (t) ∈ R are the system’s input vector

nd output, respectively. Assume that the nonlinear characteristics
f the system over { x (t) , y (t) } N 
t=1 

can be represented by the L local

rocess states. Then the task is to automatically construct the lo-

al linear models { f l } L l=1 
that are valid in their corresponding pro-

ess states represented by their respective sub-datasets { X l , y l } L l=1 
,

here each X l contains W consecutive time samples of the input

 ( t ) and y l consists of the corresponding output samples. 

Without loss of generality, let a data window W ini =
X ini ∈ R 

W ×m , y ini ∈ R 

W 

}
with W consecutive time samples

 x (t) , y (t) } t ini + W 

t= t ini 
be initially set, and a local linear model f ini 

s built on it as 

 

 ini = f ini 

(
X ini 

)
= �β (1) 

here � = 

[
1 W 

X ini 

]
∈ R 

W ×(1+ m ) and 1 W 

denotes the W -

imensional vector whose elements are all one, while the model

arameter vector β ∈ R 

(1+ m ) is readily given by the least square

LS) estimate as 

= 

(
�T �

)−1 �T y ini . (2) 

he prediction error or residual vector of this local model over W ini 

s given by 

 ini = y ini − f ini 

(
X ini 

)
∈ R 

W . (3) 

After an initial local model f ini is built, a shifted window W sft =
X sft , y sft 

}
is sequentially obtained by moving the window one step

head, that is, W sft contains the samples { x (t) , y (t) } t ini +1+ W 

t= t ini +1 
. If the

wo local regions W ini and W sft are not significantly different, it

an be considered that the process data within W sft follow the

ame distribution as in W ini and the window is continued to be

hifted forward. Otherwise, W sft is considered to represent a new

perating mode different from the previous mode, and a new local

inear model f new 

should be developed based on W sft . Determin-

ng whether W ini and W sft are significantly different or not can be

aturally casted as statistical hypothesis testing [51] . 

Specifically, let the estimation error vector produced by f ini on

 sft be defined as 

 sft = y sft − f ini 

(
X sft 

)
. (4) 

hen whether W ini and W sft are similar or not can then be turned

nto the equivalent hypothesis testing that tests whether e ini and

 sft are significantly different or not. Since f ini is a linear model,

 ini and e sft are considered not significantly different when both

heir means, μini and μsft , as well as variances, σ 2 
ini 

and σ 2 
sft 

, are

he same. Therefore, the two null hypotheses can be set to 

 

μ
0 

: μini = μsft , (5) 

 

σ 2 

0 : σ 2 
sft = σ 2 

ini . (6) 

he mean μini and variance σ 2 
ini 

are estimated based on e ini , while

sft and σ 2 
sft 

are estimated based on e sft . Since f ini is an unbiased

stimator, we have μini = 0 and σ 2 
ini 

= 

1 
W −1 e 

T 
ini 

e ini . Assuming that

 ini and e sft follow normal distribution, the T and χ2 statistics can

e constructed as [51] 

 = 

√ 

W 

(
μsft − μini 

)/
σsft , (7) 

2 = (W − 1) σ 2 
sft 

/
σ 2 

ini . (8) 

ccording to the statistical theory [51] , if the hypotheses H 

μ
0 

and

 

σ 2 

0 
are both valid, the T statistic (7) and χ2 statistic (8) follow the

 distribution and χ2 distribution with the degree of freedom W −
 , respectively. Thus, the t -test and χ2 -test can be utilized to test

he above two hypotheses. Specifically, the conditions of accepting

 

μ
0 

and H 

σ 2 

0 
are 

 T | < λt and χ2 < λχ , (9) 
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Algorithm 1 Adaptation of local linear model set. 

1: Initialization 

2: Collect W ini with W consecutive samples from historical 

data,and construct the LS linear model f ini on W ini . 

3: Calculate e ini , and estimate μini and σ 2 
ini 

. 

4: Set L = 1 , {W L , f L } = {W ini , f ini } and W sft = W L . 

5: Step 1: New local model detection 

6: When a new data sample is available, shift W sft one sample 

ahead. 

7: Calculate e sft , and estimate μsft and σ 2 
sft 

. 

8: Construct T and χ2 statistics using (7) and (8). 

9: If both conditions of (9) are satisfied 

10: Go to Step 1 . 

11: End if 

12: Construct the LS linear model f sft on W sft . 

13: Set W new 

= W sft and f new 

= f sft . 

14: Calculate e new 

, and estimate μnew 

and σ 2 
new 

. 

15: Step 2: Redundant local model deletion 

16: For l = 1 , 2 , . . . , L − 1 

17: Compute e l , and estimate μl and σ 2 
l 

. 

18: Construct T l and χ2 
l 

statistics using (12) and (13). 

19: If both conditions of (16) are satisfied 

20: Delete f l , set f i = f i +1 for i = l, l + 1 , . . . , L − 1 , 

set L = L − 1 , then go to Step 3 . 

21: End if 

22: End for 

23: Step 3: Add new local model 

24: Set L = L + 1 , W L = W new 

and f L = f new 

. 

25: Return to Step 1 . 

t  

m  

g  

{  

d  

[  

p  

b  

b  

c  
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e  

T
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B
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m  
where λt is the threshold of the T statistic for the given signif-

icance level αt which satisfies Pr {| T | < λt } = 1 − αt , while λχ is

the threshold of the χ2 statistic for the given significance level αχ ,

which satisfies Pr { χ2 < λχ } = 1 − αχ . 

Let the local model set contain L > 1 independent local lin-

ear models { f l } L l=1 
, and f ini = f L . When one or both conditions of

(9) are violated, W ini and W sft are significantly different, and the

new local linear model f new 

= f sft is identified, which is different

from f L . We need to test whether f new 

is different from the other

models f l for 1 ≤ l ≤ L − 1 . This task can also be fulfilled based

on the statistical hypothesis testing. Let the predicted errors of

{ X sft , y sft } based on f new 

and f l be defined, respectively by 

e new 

= y sft − f new 

(
X sft 

)
, (10)

e l = y sft − f l 
(
X sft 

)
, 1 ≤ l ≤ L − 1 . (11)

With the assumption that e new 

and e l follow normal distribution,

the T and χ2 statistics are constructed according to 

T l = 

√ 

W 

(
μl − μnew 

)/
σl , (12)

χ2 
l = (W − 1) σ 2 

l 

/
σ 2 

new 

, (13)

where μnew 

and σ 2 
new 

are the mean and variance of e new 

, which

can be estimated using e new 

, while μl and σ 2 
l 

are the mean and

variance of e l , which can be estimated in the same way. Based on

the statistical theory [51] , if the null hypotheses 

H 

μ
l 

: μl = μnew 

, (14)

H 

σ 2 

l : σ 2 
l = σ 2 

new 

, (15)

are both valid, the T l statistic in (12) and χ2 
l 

statistic in (13) follow

the t distribution and χ2 distribution with the degree of freedom

 − 1 , respectively. Therefore, if there exist an l ∈ { 1 , 2 . . . L − 1 }
such that 

| T l | < λt and χ2 
l < λχ , (16)

the hypotheses (14) and (15) are both valid, and e new 

and e l are

regarded to be identical. Consequently, f new 

and f l are the same

model, and one of them should be removed. Since f l is ‘older’ than

f new 

, we keep the local model f new 

and delete f l . On the other

hand, if one or both conditions are violated ∀ l ∈ { 1 , 2 . . . L − 1 } , f new

is different from f l for 1 ≤ l ≤ L . Thus, we have identified a new

process state, and we add f new 

to the local model set by setting

L = L + 1 and f L = f new 

. 

Remark 1. Although the aforementioned procedure seems to de-

scribe offline training, this local learning strategy can readily oper-

ate online. Specifically, during online operation, when the newest

data sample { x ( t ), y ( t )} is available, the data window W sft can be

shifted one sample ahead, and the corresponding learning proce-

dure can then be carried out. 

The proposed online adaptive local model set development pro-

cedure is summarized in Algorithm 1 . The significance levels in the

statistical testings are typically set to αt = 0 . 05 and αχ = 0 . 05 [51] .

The window size is a key algorithmic parameter of Algorithm 1 .

A small W may lead to large number of local models, which will

increase online operating time, but it may result in better nonsta-

tionary adaptation capability. A large W has the opposite effort s.

The effects of the window size W to the achievable performance

will be further investigated in the simulation study. 

2.2. Adaptation of model prediction 

After the online operation at time sample t , Algorithm 1 pro-

duces the local model set of { f l } L l=1 
. At the next time sample of
 next = t + 1 , the task of online modeling update is to produce the

odel prediction 

̂ y (t next ) for the processes true output y ( t next ),

iven the process input x ( t next ) and the available local model set

 f l } L l=1 
. One way of generating this online prediction is to pro-

uce a mixture of experts by combining all the local linear models

52–54] . However, there exist evidence in literature that combining

art of the ensemble models rather than all of them may achieve

etter performance [55,56] . Therefore, we adopt a selective ensem-

le of local linear models from the local model set { f l } L l=1 
and

ompute the selective-ensemble based online prediction using the

 ( > 1) latest labeled data { x (t − i ) , y (t − i ) } p−1 
i =0 

. 

Let e l (t) = [ e l (t) e l (t − 1) . . . e l (t − p + 1)] T be the modeling er-

or vector of the l th local linear model f l on the available data set

 x (t − i ) , y (t − i ) } p−1 
i =0 

, which is given by 

 l (t − i ) = y (t − i ) − f l (x (t − i )) , 0 ≤ i ≤ p − 1 . (17)

he performance metric of the l th local model is defined as 

 l (t) = ‖ 

e l (t) ‖ 

2 
. (18)

y further defining 

 l max 
(t) = max 

1 ≤l≤L 
J l (t) , (19)

e can normalize the performance metrics of (18) to 

 ̄l (t) = 

J l (t) 

J l max 
(t) 

, 1 ≤ l ≤ L. (20)

bviously, J̄ l (t) ∈ (0 , 1] . Clearly, the best local model, whose index

 1 = l min is given by 

 min = arg min 

1 ≤l≤L 
J̄ l (t) , (21)

hould be selected. Moreover, other local models whose perfor-

ance metrics (20) are below a given threshold 0 < ε ≤ 1 are also
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a

M  
elected. Note that if we set ε = 1 , all the L local models are se-

ected, while if the threshold is chosen to be ε ≤ J l min 
(t) , only the

est local model f l 1 is selected. 

Assume that M ( ≥ 1) local models are selected at time t for pre-

icting the system output at t next , and the indexes of the selected

ocal models are given in the index set � as 

= { l 1 , l m 

| 2 ≤ m ≤ M, J l m (t) ≤ ε, 1 ≤ l m 

≤ L } . (22) 

his selection procedure yields the M local model outputs 

 

 l m (t − i ) = f l m (x (t − i )) , 1 ≤ m ≤ M, (23) 

or 0 ≤ i ≤ p − 1 . The estimate ̂ y (t − i ) of the process output

 (t − i ) is given as the weighted sum of the M selected subset

odels, which is computed by 

 

 (t − i ) = 

M ∑ 

m =1 

θm 

(t) ̂  y l m (t − i ) , 0 ≤ i ≤ p − 1 , (24) 

here nonnegative θm 

( t ) is the combining coefficient for the m th

elected local model, and the combining coefficients must satisfy

he constraint of 

M ∑ 

 =1 

θm 

(t) = 1 . (25) 

he estimation errors 

 (t − i ) = y (t − i ) − ̂ y (t − i ) , 0 ≤ i ≤ p − 1 , (26) 

re utilized to determine the combining coefficients. 

Specifically, the optimal combining coefficients can be obtained

y minimizing the LS cost function 

 (t) = 

1 

2 

p−1 ∑ 

i =0 

e 2 (t − i ) , (27) 

ubject to the constraint (25) . Because of 
∑ M 

m =1 θm 

(t) = 1 , 

 (t) = 

1 

2 

p−1 ∑ 

i =0 

(
y (t − i ) −

M ∑ 

m =1 

θm 

(t) ̂  y l m (t − i ) 
)

2 

= 

1 

2 

p−1 ∑ 

i =0 

( M ∑ 

m =1 

θm 

(t) y (t − i ) −
M ∑ 

m =1 

θm 

(t) ̂  y l m (t − i ) 
)

2 

= 

1 

2 

p−1 ∑ 

i =0 

( M ∑ 

m =1 

θm 

(t) e l m (t − i ) 
)

2 = 

1 

2 

θT (t) ̄E (t) θ(t) , (28) 

here θ(t) = 

[
θ1 (t ) . . . θM 

(t ) 
]

T and Ē (t ) is the estimated error co-

ariance matrix which is given as 

¯
 (t) = 

p−1 ∑ 

i =0 

⎡ 

⎢ ⎣ 

e 2 
l 1 
(t − i ) · · · e l 1 (t − i ) e l M (t − i ) 

. . . 
. . . 

. . . 

e l 1 (t − i ) e L M (t − i ) · · · e 2 
l M 

(t − i ) 

⎤ 

⎥ ⎦ 

. (29) 

he problem of determining the optimal θ( t ) can then be formu-

ated as the following optimization 

in 

θ

1 

2 

θT (t) ̄E (t) θ(t) , 

s . t . 

M ∑ 

m =1 

θm 

(t) = 1 . 

(30) 

he Lagrangian function for the optimization (30) is given by 

 

(
θ(t) ;γ

)
= 

1 

2 

θT (t ) ̄E (t ) θ(t ) + γ
(
1 

T 
M 

θ(t) − 1 

)
, (31)

here γ > 0 is Lagrange multiplier. Letting ∂ 
∂θ(t) 

L = 0 M 

yields 

¯
 (t) θ(t) + γ 1 M 

= 0 M 

, (32)
here 0 M 

= [0 . . . 0] T ∈ R 

M . This suggests that the optimal combin-

ng vector ̂ θ can be obtained as follows. First, calculate 

 (t) = Ē 

−1 (t) 1 M 

, (33)

hich is followed by the normalization 

̂ 

m 

(t) = 

1 ∑ M 

j=1 ̃
 θ j (t) ̃

 θm 

(t) , 1 ≤ m ≤ M. (34) 

The prediction 

̂ y (t next ) for the processes true output y ( t next ) is

roduced as the selected ensemble 

 

 (t next ) = 

M ∑ 

m =1 

̂ θm 

(t) f l m 
(
x (t next ) 

)
(35)

lgorithm 2 summarizes the online prediction and adaptive model-

ng operations. The choice of p trades off the computational com-

lexity and the robustness against noise. The threshold ε is an-

ther algorithmic parameter of Algorithm 2 that trades off perfor-

ance with computational complexity. How p and ε influence the

chievable performance will be further investigated in the simula-

ion study. 

lgorithm 2 Online prediction and adaptive modeling. 

1: Initialization 

2: At the beginning of online operation, the local model set

{W l , f l } L l=1 
has been constructed. 

3: Set {W L , f L } = {W ini , f ini } and W sft = W L . 

4: Step 1: Online prediction 

5: Give input x (t next ) at new sample time t next = t + 1 . 

6: Calculate the performance metrics J̄ l (t) using (20) for 1 ≤ l ≤ L

onpast p data points. 

7: Select the subset models with the index set � of (22). 

8: Calculate the error covariance matrix Ē (t) using (29). 

9: Calculate the optimal combining coefficients ̂ θ(t) using (33)

and (34). 

10: Predict true process output y (t next ) with the selective ensemble

(35). 

11: Carry out other unrelated online operations. 

12: Step 2: Online model adaptation 

13: When the observation y (t next ) is available, add

{ x (t next ) , y (t next ) } to the dataset with t = t + 1 . 

14: Shift W sft one sample ahead, and perform relavent local model

setadaptation. 

15: Set t next = t next + 1 , and go to Step 1 . 

. Two case studies 

Two case studies involving chaotic time series prediction and

odeling of a real-world industrial MHP are used to evaluate

he proposed selective ensemble of multiple local model learning

pproach. The well-known online modeling algorithms, the RAN

37] , the OS-ELM with sigmoid nodes (OS-ELM (sigmoid)), the OS-

LM with RBF nodes (OS-ELM (RBF)) [30–32] , and the OS-ELM-

V [35] as well as the fast tunable RBF [38] , are employed as the

enchmarks. The two performance indexes, the mean square error

MSE) 

SE (t) = 

1 

t 

t ∑ 

i =1 

(
y (i ) − ̂ y (i ) 

)
2 , (36)

nd the mean absolute error (MAE) 

AE (t) = 

1 

t 

t ∑ 

i =1 

∣∣y (i ) − ̂ y (i ) 
∣∣, (37)
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are utilized to evaluate the online prediction performance, where
 y (i ) denotes the model prediction for y ( i ). The computational com-

plexity of an online modeling method is measured by its online av-

erage computational time per sample (ACTpS), which is defined as

ACTpS = 

Total time 
Total number of samples 

. The experiments are carried out on

Matlab 2017a, running on a PC with i7-3770 3.40 GHz processor of

4 cores and 16 GB of RAM. 

3.1. Online time series prediction 

We first consider the prediction of Lorenz chaotic time series.

Lorzen chaotic time series [46] is governed by the three differential

equations as ⎧ ⎨ 

⎩ 

d x (t) 
d t 

= a (y (t) − x (t)) , 
d y (t) 

d t 
= cx (t) − x (t ) z(t ) − y (t) , 

d z(t) 
d t 

= x (t) y (t) − bz(t) , 

(38)

where a, b and c are the parameters that control the behaviour of

Lorzen system. The fourth-order Runge-Kutta method with a step

size of 0.01 is used to generate the samples, and only Y -dimension

samples { y ( t )} are used for the time-series prediction. The 60-steps
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Fig. 1. Lorenz time series with fixed parameters: (a) influence of window size W on num

two values of p , (c) influence of number of latest labeled data p on prediction accuracy g

accuracy and average number of local models in selective ensemble given p = 10 and two
head prediction is considered, which predicts y ( t ) with the past

amples 

 (t) = 

[
y (t − 60) y (t − 66) y (t − 72) y (t − 78) 

]
T . (39)

n all the simulations, after removing a large number of initial

amples, 40 0 0 data samples are generated. The first 10 0 0 samples

re employed for initial model training and the last 30 0 0 samples

re used for online prediction and adaptive modeling. Note that

ur proposed learning approach does not really need a large num-

er of training samples, as it can start online operation with just

 = 1 local linear model. But the OS-ELM needs a large number of

raining samples, as the ELM model must contain a large number

f hidden nodes. 

The OS-ELM-TV employs the polynomial function p f (x ) = x 2 + x

s the hidden layer activation function and the 3-order Legen-

re function as the output weight basis function [35] , while the

raining data are used for weight initialization. For the fast tun-

ble RBF, the training is done by the orthogonal least squares al-

orithm [16] to construct an initial small RBF model. During online

peration, the node replacement threshold and the number of data

oints for weight adaptation are empirically chosen as 10 −6 and 5,
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Table 1 

Lorenz time series with fixed parameters: comparison of online prediction and adaptive modeling perfor- 

mance for the OS-ELM, OS-ELM-TV, RAN, fast tunable RBF and the proposed selective ensemble of multiple 

local model learning. 

Model MSE (dB) MAE Online ACTpS (ms) Models/Nodes 

Initial Final 

OS-ELM (Sigmoid) 16.7853 4.8137 6.35 500 500 

15.7036 4.1841 41.75 1000 1000 

OS-ELM (RBF) 16.9318 4.5486 6.11 500 500 

17.3510 4.7206 35.36 1000 1000 

OS-ELM-TV 19.8955 7.7182 0.15 10 10 

20.1744 7.9257 0.42 50 50 

RAN 5.0932 0.8375 1.49 0 142 

Tunable RBF −5.2476 0.0557 0.19 10 10 

−20.2228 0.0437 0.37 30 30 

Proposed ( W = 39 , ε = 1 , p = 7 ) −22.4413 0.0181 0.62 23 31 

Proposed ( W = 37 , ε = 0 . 001 , p = 9 ) −23.2790 0.0179 1.20 49 83 
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Fig. 2. Lorenz time series with fixed parameters: test MSE learning curves for var- 

ious modeling methods. 
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espectively. The step size and the maximum iterations are empir-

cally set to 0.01 and 5, respectively. 

.1.1. Fixed parameters a, b and c 

First Lorzen time series parameters are fixed to a = 10 , b = 8 / 3

nd c = 28 . We start by investigating the impact of window size

 on adaptive local modeling as well as the influence of W , the

umber of the latest data samples p and the threshold ε on selec-

ive ensemble. The dashed curve in Fig. 1 (a) shows the number of

ocal linear models obtained as the function of W on the training

ataset. As expected, small W leads to large number of local mod-

ls identified, and vice versa. Starting with the set of local mod-

ls identified in training, Algorithm 1 is also applied to the test-

ng dataset, and the number of local linear models obtained as the

unction of W is depicted in Fig. 1 (a) as the solid curve. Obviously,

he number of local models increases during online adaptation, as

he newly emerging process states in the testing data have been

dentified. Given the threshold ε = 0 . 01 , Fig. 1 (b) depicts the pre-

iction MSE as the function of W with p = 5 and p = 10 , respec-

ively. In general, small W yields better prediction accuracy at the

xpense of high ACTpS and vice versa. Taking into account both

rediction accuracy and computational complexity, it can be seen

rom Fig. 1 (b) that W = 37 to 39 are appropriate. With ε = 0 . 01 ,

ig. 1 (c) shows the impact of the number of latest labeled data

amples p on the achievable prediction performance for W = 37

nd W = 39 , respectively. It can be seen that the test MSE first de-

reases as p increases. After reaching the minimum value, the test

SE begins increasing as p increases further. In this case, p = 7

o 10 are appropriate in terms of prediction accuracy. Fig. 1 (d)

emonstrates how the threshold ε impacts on online prediction

nd adaptive modeling, in terms of trade off between prediction

ccuracy and computational complexity, given p = 10 and two val-

es of W = 37 and 39. It can be seen that when ε is smaller

han certain value, only the single best local linear model is se-

ected, which results in the lowest computational complexity but

he poorest test MSE. Beyond this certain value, increasing ε im-

roves the test MSE while increasing the number of local linear

odels selected in ensemble prediction. Fig. 1 (d) indicates that the

est prediction MSEs can be achieved with ε = 0 . 010 for W = 37

nd ε = 1 for W = 39 , respectively. 

Table 1 compares the online prediction and adaptive modeling

erformance of the proposed selective ensemble of multiple local

odel learning with those achieved by the OS-ELM, the OS-ELM-

V, the RAN and the fast tunable RBF. Not surprisingly, the OS-ELM

as very poor online prediction accuracy with the highest ACTpS.

his agrees with the experimental results of [38] . Observe that the

S-ELM-TV can attain the lowest ACTpS but its online prediction

ccuracy is the worst. It can also be seen that adding more hid-
en nodes to the OS-ELM-TV may degrade its online performance.

he RAN is significantly better than the OS-ELM, in terms of both

chievable MSE and ACTpS. The MSE of the tunable RBF is much

etter than that of the RAN, and it has the second lowest ACTpS.

ur proposed approach achieves the best online prediction accu-

acy and its ACTpS is significantly lower than that of the OS-ELM.

ig. 2 depicts the online MSE learning curves of various models,

hich again demonstrates the superior prediction accuracy perfor-

ance of our proposed approach. 

.1.2. Time-Varying parameters b and c 

In this simulation, we set a = 10 , and let b and c vary with time

ccording to 

 = 

4 + 3(1 + sin (0 . 1 t)) 

3 

, (40) 

 = 25 + 3 

(
1 + cos 

(
2 

0 . 001 t 
))

. (41)

ig. 3 investigates the impacts of the key algorithmic parameters,

, p and ε, on online prediction and adaptive modeling for our

roposed method. Similar to the case of fixed parameters, we can

raw the same/similar conclusions from Fig. 3 (a)–(d). Table 2 com-
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Fig. 3. Lorenz time series with time-varying parameters: (a) influence of window size W on number of local models, (b) influence of W on prediction accuracy given 

ε = 0 . 01 and two values of p , (c) influence of number of latest labeled data p on prediction accuracy given ε = 0 . 01 and two values of W , and (d) influence of threshold ε

on prediction accuracy and average number of local models in selective ensemble given p = 5 and two values of W . 

Fig. 4. Lorenz time series with time-varying parameters: test MSE learning curves 

for various modeling methods. 
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pares the online prediction and adaptive modeling performance of

various modeling methods, while Fig. 4 illustrates their online MSE
earning curves. It can be seen again that our proposed method

chieves the best online prediction accuracy with relatively low

CTpS, and the fast tunable RBF has the second best MSE perfor-

ance with the second lowest ACTpS, while the ELM has the worst

erformance. In particular, although the OS-ELM-TV can attain the

owest ACTpS, its online prediction accuracy is the worst, which is

bout 40 dB higher than our proposed approach. 

.1.3. Lorzen time series with time-based drift 

The parameters of Lorenz system are fixed to a = 10 , b = 8 / 3

nd c = 28 but the samples { y ( t )} are weighted by an exponential

ime-based drift to obtain the new series 
{˜ y (t) 

}
according to 

 

 (t)(t) = 1 . 1 

0 . 01 t y (t) . (42)

he new time series 
{˜ y (t) 

}
is used for the time series prediction.

n this case, 
{˜ y (t) 

}
is even more nonstationary than the dataset in

he previous simulation with time-varying parameters. In particu-

ar, the dynamic range of ˜ y (t) changes from [ −20 , 20] initially to

 −20 0 0 , 20 0 0] in the end. 

How the algorithmic parameters, W, p and ε, influence the

erformance of our selective ensemble of multiple local model

earning approach is illustrated in Fig. 5 . Furthermore, Table 3 com-
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Table 2 

Lorenz time series with time-varying parameters: comparison of online prediction and adaptive modeling 

performance for the OS-ELM, OS-ELM-TV, RAN, fast tunable RBF and the proposed selective ensemble of 

multiple local model learning. 

Model MSE (dB) MAE Online ACTpS (ms) Models/Nodes 

Initial Final 

OS-ELM (Sigmoid) 11.0689 2.5390 6.65 500 500 

10.7813 2.4533 42.75 1000 1000 

OS-ELM (RBF) 10.8456 2.4077 6.23 500 500 

10.4071 2.3092 35.55 1000 1000 

OS-ELM-TV 12.8957 3.2010 0.15 10 10 

17.9352 6.0364 0.42 50 50 

RAN 3.5611 0.9198 0.56 0 79 

Tunable RBF −20.9151 0.0440 0.18 10 10 

−22.7813 0.0409 0.38 30 30 

Proposed ( W = 53 , ε = 1 , p = 6 ) −26.6323 0.0132 0.72 13 47 

Proposed ( W = 41 , ε = 0 . 01 , p = 4 ) −28.4732 0.0106 4.19 67 218 

Fig. 5. Lorenz time series with time-based drift: (a) influence of window size W on number of local models, (b) influence of W on prediction accuracy given ε = 0 . 01 and 

two values of p , (c) influence of number of latest labeled data p on prediction accuracy given ε = 0 . 01 and two values of W , and (d) influence of threshold ε on prediction 

accuracy and average number of local models in selective ensemble given p = 5 and two values of W . 

p  
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t
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c  

h  

r  
ares the online prediction and adaptive modeling performance of

arious modeling methods, while Fig. 6 depicts their online MSE

earning curves. Again, the same/similar observations as the previ-

us two cases can be observed. In particular, it can be seen from

ig. 6 that our proposed method is the most effective in tracking

his highly nonstationary and nonlinear Lorenz time series. 
.2. Real-world industrial microwave heating system 

Microwave heating technology has found wide-ranging appli-

ations in industry due to its many advantages over conventional

eating methods, which include selective and volumetric heating,

apid heat transfer and pollution-free environment [11] . However, a
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Table 3 

Lorenz time series with time-based drift: comparison of online prediction and adaptive modeling per- 

formance for the OS-ELM, OS-ELM-TV, RAN, fast tunable RBF and the proposed selective ensemble of 

multiple local model learning. 

Model MSE (dB) MAE ACTpS (ms) Models/Nodes 

Initial Final 

OS-ELM (Sigmoid) 52.7165 262.6718 6.15 500 500 

52.7175 262.0425 41.75 1000 1000 

OS-ELM (RBF) 52.7802 250.2566 5.68 500 500 

52.7402 248.4557 32.55 1000 1000 

OS-ELM-TV 54.1309 268.0022 0.15 10 10 

73.1339 1993.3448 0.41 50 50 

RAN 48.3101 29.8495 0.45 0 155 

Tunable RBF 36.9557 45.2908 0.18 10 10 

36.6295 42.6192 0.28 30 30 

Proposed ( W = 36 , ε = 0 . 01 , p = 5 ) 14.1114 1.3605 0.34 28 46 

Proposed ( W = 31 , ε = 10 −7 , p = 5 ) 6.9794 0.7076 0.51 65 120 

Fig. 6. Lorenz series with time-based drift: test MSE learning curves for various 

modeling methods. 

 

 

 

 

 

Fig. 8. Influence of window size W on number of local models obtained for three 

training datasets of MHP. 

a  

p  

t  

d  
major drawback associated with microwave heating is the temper-

ature runaway, caused by properties of material and the inner elec-

tromagnetic field distribution [10] , which may lead to unwanted

combustion and destruction in industrial processes. To improve the

safety and efficiency of microwave heating technology in industrial
Fig. 7. An industrial microw
pplications, an accurate model is required for the purpose of tem-

erature prediction and control [47–50,57] . This is a challenging

ask, because MHP is a complex thermal process with nonlinear

ynamics and nonstationary characteristics. Unlike conventional
ave heating system. 
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Fig. 9. Influence of window size W on: (a) number of total local models obtained, and (b) online prediction accuracy given p = 25 and ε = 0 . 01 , for three testing datasets 

of MHP. 

Fig. 10. Influence of number of latest labeled data samples p on: (a) online average computational time per sample, and (b) online prediction accuracy, both obtained given 

W = 15 and ε = 0 . 01 for three testing datasets of MHP. 
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eat transfer and heat radiation, microwave heating not only in-

olves thermal dynamic variation but also coupled with conversion

f microwave energy [58] . Temperature of heated material is a cru-

ial measurement during MHP, as thermal runaway often occurs

ue to the time-varying physicochemical properties of material.

ith the increase of the material temperature, its dielectric loss

ncreases dramatically, which conversely poses a positive feedback

o temperature increase [59] . Therefore, accurate online tempera-

ure estimation is vital to detect thermal runaway in advance. 

.2.1. Description of system 

A real-world industrial microwave heating system [49] , as illus-

rated in Fig. 7 , is used in this case study, which consists of five

icrowave generators and waveguides, temperature measurement

ensors and the control system hosted in programmable logic con-

roller (PLC). Microwave generated by each microwave generator

s transmitted through the corresponding waveguide, fed into the

avity and absorbed by the heated material. Each microwave gen-

rator has a maximum power supply of 3 kW at 2.45 GHz. The

aterial is continuously transported through cavity by the con-

eyor belt, whose speed can be adjusted by a motor driver. Three
ber optical sensors (FOSs), denoted as FOS1 to FOS3, are placed at

hree different locations using microwave transparent taps to on-

ine record multiple-points of temperature. 

During the real-time operation of this MHP, the control cen-

er receives the measured temperature values from the FOSs, and

ends control commends, which include the five microwave pow-

rs u p i (t) , 1 ≤ i ≤ 5, for the five microwave generators as well as

he conveyor speed v ( t ) to the cavity. Thus, the control inputs to

his MHP are given by 

 (t) = 

[
u p 1 (t) u p 2 (t) u p 3 (t) u p 4 (t) u p 5 (t ) v (t ) 

]
T . (43) 

ach FOS measures the temperature, which is the MHP’s output

 s j (t) at the FOS’s location, where 1 ≤ j ≤ 3. Because of near instan-

aneous response of MHP, the temperature y s j (t) at the j th FOS’s

ocation can be adequately represented by Wang [47,49,59] 

 s j (t) = f nl −ns , j (x j (t ) ; t ) , (44)

here f nl-ns, j ( · ; t ) represents the corresponding unknown nonlin-

ar and time-varying system mapping with the input 

 j (t) = 

[
y s j (t − 1) u 

T (t − 1) 
]

T ∈ R 

7 . (45) 
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Fig. 11. Influence of threshold ε on: (a) average selected ensemble size, and (b) online prediction accuracy, given p = 25 , W = 15 for FOS1 and FOS2 and W = 14 for FOS3 

of MHP. 

Table 4 

Real-world industrial MHP: comparison of online prediction and adaptive modeling performance for the OS-ELM, OS- 

ELM-TV, RAN, fast tunable RBF and the proposed selective ensemble of multiple local model learning. 

Sensor Model MSE (dB) MAE Online ACTpS (ms) Models/Nodes 

Initial Final 

FOS1 OS-ELM (Sigmoid) 18.7159 0.3275 0.17 100 100 

−13.3432 0.1230 1.26 300 300 

OS-ELM (RBF) 2.1618 0.1993 0.46 100 100 

−1.5694 0.1836 1.85 300 300 

OS-ELM-TV 4.8825 1.2540 0.16 10 10 

RAN 0.2035 0.3238 0.39 0 39 

Tunable RBF −11.6108 0.1075 0.34 10 10 

Proposed ( W = 15 , ε = 0 . 01 , p = 25 ) −14.0782 0.1335 0.65 14 61 

FOS2 OS-ELM (Sigmoid) 13.1016 0.2450 0.18 100 100 

−13.1594 0.1414 1.33 300 300 

OS-ELM (RBF) 16.2024 0.4114 0.43 100 100 

−4.0463 0.1747 1.89 300 300 

OS-ELM-TV 7.7808 1.8379 0.16 10 10 

RAN 5.9574 0.6522 0.45 0 50 

Tunable RBF −13.5971 0.1375 0.37 10 10 

Proposed ( W = 15 , ε = 0 . 01 , p = 25 ) −14.1107 0.1323 0.71 22 56 

FOS3 OS-ELM (Sigmoid) −1.7993 0.1889 0.17 100 100 

−12.1990 0.1690 1.34 300 300 

OS-ELM (RBF) 9.1531 0.2936 0.45 100 100 

−2.4284 0.2110 1.89 300 300 

OS-ELM-TV 7.1171 1.6951 0.16 10 10 

RAN 5.8149 0.6819 0.31 0 37 

Tunable RBF −13.1200 0.1207 0.34 10 10 

Proposed ( W = 14 , ε = 0 . 01 , p = 20 ) −14.2038 0.1168 0.76 16 40 
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From large amount of data collected from this industrial mi-

crowave heating system [47,49] , we use three datasets from the

three FOSs, and each data set contains 30 0 0 data samples. We first

normalize the five microwave power inputs and the temperature

measurements according to 

ū p i (t) = 

u p i (t) 

10 0 0 

, 1 ≤ i ≤ 5 , (46)

ȳ s j (t) = 

y s j (t) − y min ,s j 

y max ,s j − y min ,s j 

, 1 ≤ j ≤ 3 , (47)

where y min ,s j 
and y max ,s j are the minimum and maximum tem-

perature measurements of the j th FOS, respectively. For each FOS’s

dataset, we use the first 10 0 0 samples for model training, and the

last 20 0 0 samples for online prediction and adaptive modeling. 
.2.2. Experimental results 

We investigate the influence of the algorithmic parameters, the

indow size W , the number of latest data samples p and the

hreshold ε, on our selective ensemble learning approach. First we

pply Algorithm 1 to the training datasets of the three FOSs, and

ig. 8 shows the numbers of local linear models obtained as the

unctions of W . As expected, small W leads to large number of local

odels identified and vice versa. With the initial local model sets

dentified in training, we then apply Algorithm 2 to the three test-

ng datasets. Fig. 9 (a) shows the number of total local linear model

dentified as the function of W , while Fig. 9 (b) shows the influence

f W on online prediction accuracy given p = 25 and ε = 0 . 01 . As

xpected, small W results in better prediction accuracy but leads

o large local model set which has adverse effort on online com-

utational complexity. It can be seen from Fig. 9 (b) that W = 15

or FOS1 and FOS2, and W = 14 for FOS3 are appropriate. 
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Fig. 12. Test MSE learning curves for various modeling methods: (a) FOS1, (b) FOS2, 

and (c) FOS3 of MHP. 
Next, given W = 15 and ε = 0 . 01 , Fig. 10 (a) and (b) show the

mpacts of the number of latest labeled data samples p on online

omputational complexity and prediction accuracy, respectively.

ot surprisingly, the online ACTpS increases with p , while the test

SE first decreases rapidly as p increases and it approaches some

inimum value for large p . It can be seen from Fig. 10 (b) that the

rediction MSEs reach the minimum values when p ≥ 25 for FOS1

nd FOS2 and when p ≥ 20 for FOS3. 

Then, given p = 25 , W = 15 for FOS1 and FOS2 as well as W =
4 for FOS3, Fig. 11 (a) and (b) illustrate how the threshold ε im-

acts on online computational complexity, in terms of average se-

ected ensemble size, and prediction accuracy, respectively. Ob-

erve from Fig. 11 (a) that when ε is smaller than certain value,

nly the single best local linear model is selected. When ε is larger

han this value, the average size of selected ensemble increases

ith ε. Also when ε = 1 , all the local models are selected and the

ize of selected ensemble reaches the maximum value. Fig. 11 (b)

ndicates that the best online prediction MSEs are achieved with

 = 0 . 01 for all the three testing datasets of this MHP. 

Finally, we compare the online prediction and adaptive mod-

ling performance of the OS-ELM, the OS-ELM-TV, the RAN, the

ast tunable RBF and our proposed selective ensemble of multi-

le local model learning in Table 4 . The model construction and

he choice of the algorithmic parameters for each method are sim-

lar to the previous cases. Furthermore, the online MSE learning

urves of these modeling methods are depicted in Fig. 12 (a)–(c),

or the three test datasets of the real-world industrial MHP. For

his MHP, again the OS-ELM-TV achieves a very poor online predic-

ion accuracy although it imposes the lowest ACTpS. The OS-ELM

ith 100 hidden nodes attains the worst online prediction accu-

acy while imposing a very low ACTpS. By contrast, the OS-ELM

ith 300 hidden nodes significantly improves online prediction ac-

uracy but imposing the highest ACTpS. The RAN considerably out-

erforms the OS-ELM-TV, in terms of online prediction accuracy,

nd it also enjoys relatively low ACTpS. In general, the fast tunable

BF achieves the second best test MSE performance at the cost of

ery low online computational complexity. Our proposed method

utperforms all the other models in online prediction accuracy,

nd it also has a very low online computational complexity. Specif-

cally, for FOS1, our method attains the test MSE of −14.078 dB at

he cost of 0.65 ms of ACTpS, while the fast tunable RBF achieves

he test MSE of −11.611 dB at the cost of 0.34 ms of ACTpS. For

OS2, our method attains the test MSE of −14.111 dB and its ACTpS

s 0.71 ms, while by contrast the fast tunable RBF achieves the test

SE of -13.597 dB and its ACTpS is 0.37 ms. For FOS3, our method

chieves the online prediction MSE of −14.204 dB at the expense

f 0.76 ms of ACTpS, in comparison to the test MSE of 13.120 dB

nd the ACTpS of 0.34 ms achieved by the fast tunable RBF. The re-

ults of Fig. 12 further demonstrate that our selective ensemble of

ultiple local model learning approach can much better track the

onlinear and time-varying characteristics of the underlying sys-

em. 

. Conclusions and future research 

In this paper, a novel selective ensemble of multiple local

odel learning approach has been proposed for adaptive online

odeling of nonlinear and nonstationary systems. Our learning

pproach automatically identifies the newly emerging process state

uring online operation and fits a local linear model to the newly

dentified process state. Adaptive modeling is achieved by a selec-

ive ensemble strategy which selects a number of best local linear

odels from the local model set and optimally combines them to

roduce the online prediction. Extensive experimental results have

emonstrated that our proposed selective ensemble of multiple

ocal model learning is capable of fast tracking the nonlinear
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and time-varying characteristics of the underlying system. In

particular, it has been shown that our proposed method not only

achieves the best online prediction accuracy, in comparison with

some state-of-the-art online modeling methods, but also offers

acceptably low online computational complexity. 

Although our approach has been shown to outperform the fast

tunable RBF method, the latter offers lower online computational

complexity. A key property of our method is its ability to identi-

fying newly emerging characteristics of the underlying system and

grows the local linear model set online. Online modeling is car-

ried by an ensemble of small subset local linear models selected

from this local model set. For a highly nonlinear and time-varying

system, during online operation, the local linear model set is in-

evitably growing large. In order to reduce online computational

complexity, it is desired to remove some ‘oldest’ local models from

the local model set. However, this is not as simple as it appears. A

local model exists in the local model set because it has appeared

in the system’s past history. The fact that it is not used in the

most recent selective ensemble does not imply that it will not be

needed in the future. Further research is warranted to develop re-

liable mechanism of removing ‘unwanted’ past local linear model

online. This is expected to be challenging. 
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