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a b s t r a c t

We develop a new sparse kernel density estimator using a forward constrained regression framework,

within which the nonnegative and summing-to-unity constraints of the mixing weights can easily be

satisfied. Our main contribution is to derive a recursive algorithm to select significant kernels one at

time based on the minimum integrated square error (MISE) criterion for both the selection of kernels

associated computational cost is very low. Specifically, the complexity of our algorithm is in the order

of the number of training data N, which is much lower than the order of N2 offered by the best existing

sparse kernel density estimators. Numerical examples are employed to demonstrate that the proposed

approach is effective in constructing sparse kernel density estimators with comparable accuracy to

those of the classical Parzen window estimate and other existing sparse kernel density estimators.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The finite mixture model [1] is a general approach to the
probability density function (PDF) estimation problem that is
fundamental to many pattern recognition, data analysis and other
engineering applications [2–7]. The celebrated Parzen window
(PW) estimate [8] can be regarded as a special case of the finite
mixture model, in which the number of mixtures is equal to that
of the training data samples and all the mixing weights are equal.
However, the point density estimate using the PW estimator for a
future data sample can be computationally expensive if the
number of training data samples is very large. Much of the
existing works in the fitting of a finite mixture model are based
on fixing the number of mixtures and applying the expectation-
maximisation (EM) algorithm [9] to provide the maximum like-
lihood (ML) estimate of the mixture model’s parameters. This
associated ML optimisation, in general, is a highly nonlinear
optimisation process requiring extensive computation, but for
the Gaussian mixture model, the EM algorithm can be derived in
an explicit iterative form [10]. However, this EM algorithm based
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ML estimation is well known to be ill posed and has a slow
convergence speed, and to tackle the associated numerical difficul-
ties, it is often required to apply resampling techniques [11–14].
In general, the correct number of mixture components is unknown,
and simultaneously determining the required number of mixture
components and estimating the associated parameters of the finite
mixture model is a challenging problem. Hence it is highly desirable
to develop new methods of fitting a finite mixture model with the
capability to infer a minimum number of mixtures from the data
automatically and efficiently.

There is a considerable interest into research on the sparse PDF
estimation. The support vector machine (SVM) density estimation
technique has been proposed [15,16], in which the density
estimation problem is formulated as a supervised learning mode
whilst the mean absolute deviation between the empirical cumu-
lative distribution function (CDF) calculated from the training
data and the CDF based on the PDF estimator also calculated from
the training data are minimised. The optimisation in the SVM
method is to solve a constrained quadratic optimisation problem.
This yields the sparsity inducing property, i.e. at the optimality,
many kernels’ weights are driven to zeros. Alternatively a novel
regression-based PDF estimation method has been introduced
[17], in which the empirical CDF is constructed, in the same
manner as in the SVM density estimation approach, to be used as
the desired response. The orthogonal forward regression (OFR)
approach is an efficient supervised regression model construction
method [18]. In order to automatically determine the model
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structure with the improved model generalisation, the OFR
method has been combined with a leave-one-out test score and
local regularisation [19,20]. The regression-based idea of [17]
and the approach in [19,20] have been extended to yield a new
OFR based sparse density estimation algorithm [21] which is
capable of automatically constructing very sparse kernel density
estimate, with comparable performance to that of the PW
estimate. In [17,21], the regressors are the CDFs of the kernels
and the target response is the empirical CDF. The calculation of
CDFs becomes inconvenient and difficult for many types of
kernels whose corresponding CDFs are difficult to compute.
A simple and viable alternative approach has been proposed to
use kernels directly as regressors by adopting the PW estimate as
the target response [22].

The desirable property of sparsity inducing also happens in the
interesting approach of reduced set density estimator (RSDE) [23].
The RSDE is different from the SVM in that it is based on the
minimisation of the integrated square error (ISE) between the
estimator and the true density. The minimum integrated square
error (MISE) is a classical goodness of fit criterion for probability
density estimation [2,23,24]. The optimisation problem in RSDE is
a constrained quadratic optimisation one, and two efficient
optimisation algorithms of both multiplicative updating of the
weighting coefficients and sequential minimisation optimisation
were introduced for the RSDE that has a complexity of OðN2

Þ per
iteration, where N is the number of data samples and OðMÞ
denotes the order of M, compared to a standard quadratic
optimisation solver at OðN3

Þ. Note that the RSDE is mainly
restricted to using the Gaussian kernel, but the sparse density
estimators of [21,22] do not have this restriction. The complexity
of the sparse density estimators [21,22] is also OðN2

Þ scaled by the
number of regressors selected, which is generally very small. Our
extensive experience has shown that all the sparse density
estimators [15,16,21–23] discussed here are capable of automa-
tically producing sparse PDF estimates with comparable perfor-
mance to that of the PW estimate, but the density estimators of
[21–23] produce much sparser estimates than the SVM based
density estimator.

Against this background, this paper introduces a new algo-
rithm for sparse kernel density estimation based on the MISE
and the forward constrained regression (FCR) [25]. In our pro-
posed new sparse kernel density estimator, referred to as the
FCR-MISE algorithm, a kernel term is selected one at a time which
has the minimum ISE value among all the candidate kernels
formed from the data points. Within the FCR framework, the
mixing weights are computed using a recursion linking the
weight for the newly selected kernel and the set of the mixing
weights of the previous stages [25]. Thus the parameter estima-
tion problem is reduced to a one-dimensional one, which is
shown to have a closed-form solution using the MISE criterion.
The proposed density estimation algorithm is very efficient due to
the recursive computation and the closed-form solution of only
one parameter per step. Specifically, the complexity of our
proposed new algorithm is OðNÞ scaled by the squared number
of kernels selected. Numerical examples are employed to demon-
strate that our new sparse kernel density estimator is capable of
producing very sparse PDF estimates with comparable accuracy
to those of the PW estimator and other existing sparse kernel
density estimators.

The paper is organised as follows. Section 2 introduces the idea
of sparse kernel density estimator construction via the FCR
framework. Section 3 proposes the new algorithm of joint kernel
selection and mixing weight estimation based on the MISE
and FCR. Numerical experiments are utilised to illustrate the
effectiveness of the proposed algorithm in Section 4 and our
conclusions are given in Section 5.
2. Sparse kernel density estimator construction via forward
constrained regression

Given the finite data set DN ¼ fxjg
N
j ¼ 1 consisting of N data

samples, where the data vector xjARm follows an unknown PDF
pðxÞ, the problem under study is to find a sparse approximation of
pðxÞ based on DN. A general kernel based density estimate of pðxÞ
is given by

bpðNÞðx;bN ,rÞ ¼
XN

j ¼ 1

bjKrðx,xjÞ ð1Þ

subject to

bjZ0, 1r jrN, and bT
N1N ¼ 1, ð2Þ

where bjs are the kernel weights, bN ¼ ½b1b2 . . .bN�
T, and 1N is the

N-dimensional vector whose elements are all equal to one, while
Krðx,xjÞ is a chosen kernel function with the kernel centre vector
xj and a suitable kernel width r. In this study, we use the
Gaussian kernel of

Krðx,xjÞ ¼
1

ð2pr2Þ
m=2

exp �
Jx�xjJ

2

2r2

 !
ð3Þ

but many other kernels can also be used. The sparse kernel
density estimation involves the determination of the model
structure of (1) where most elements in bN become zeros. This
can be achieved either by solving the constrained quadratic
optimisation problem which initially works on the full model
set of all the N kernels [15,16,23], or alternatively by selecting
significant model terms one at a time forwardly which initially
works on an empty model set [17,21,22].

The proposed sparse kernel density estimation algorithm also
initially works on an empty model set, as in the cases of [17,21,22].
Specifically, in our proposed algorithm, the kernel functions Krðx,xjÞ

with nonzero weights bj are included into the model set selected
in a forward regression manner. The final sparse kernel density
estimator are based on the kernels formed from the subset Ds ¼

fx01,x02, . . . ,x0sg of s data samples selected from DN in this way. For
example, if x6 is selected to form the first kernel, it is denoted as x01
in the selected data subset. Let the superscript (l) denote the lth
forward selection step. At the lth forward selection step, further
denote the intermediate kernel density estimator bpðlÞðx;bðlÞl ,rÞ asbyðlÞðxÞ, that is,

byðlÞðxÞ ¼Xl

j ¼ 1

bðlÞj Krðx,x0jÞ, ð4Þ

where bðlÞj , 1r jr l, are the kernels weights at the lth forward
selection step, and bðlÞl ¼ ½b

ðlÞ
1 b
ðlÞ
2 . . .bðlÞl �

T.
The proposed algorithm uses the FCR procedure [25] described

below:
(i)
 At the first step, the PDF estimator is simply the first selected
kernel

byð1ÞðxÞ ¼ Krðx,x01Þ: ð5Þ

This means that bð1Þ1 ¼ 1.

(ii)
 At the lth step, where lZ2, the PDF estimator is constructed

by adding the lth selected kernel Krðx,x0lÞ to byðl�1Þ
ðxÞ via

byðlÞðxÞ ¼ llbyðl�1Þ
ðxÞþð1�llÞKrðx,x0lÞ, ð6Þ

where 0rllr1, 8l, and l1 ¼ 0.
It is a straightforward matter to verify that the model con-
structed using the FCR procedure satisfies the convex constraint
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conditions of (2), namely, bðlÞj Z0, 1r jr l, and
Pl

j ¼ 1 b
ðlÞ
j ¼ 1,

8lZ1, see [25]. If ll and bðl�1Þ
l�1 are given, bðlÞl can be recursively

computed via

bðlÞl ¼
llb
ðl�1Þ
l�1

1�ll

" #
, ð7Þ

where l41 and bð1Þ1 ¼ bð1Þ1 ¼ 1.
It can be seen that the key issues are how to select the kernel

Krðx,x0lÞ as well as how to compute ll and hence the kernel
weights bðlÞl , which are addressed in the next section.
3. Joint kernel selection and weight estimation based
on the MISE

The MISE between a PDF estimator and the true density is a
classical goodness of fit criterion for both nonparametric density
estimation [2,23] and parametric density estimation [24]. In the
following, we introduce a new algorithm integrating the kernel
term selection and the kernel weight estimation based on the
MISE measure, within the general FCR framework described in the
previous section. More specifically, the joint kernel selection and
weight estimation at the lth forward selection stage is detailed in
this section. We initially formulate the kernel weight estimation
problem using the MISE criterion for a given kernel per forward
selection step, and following this, we present the full algorithm
including the kernel selection also based on the MISE.

3.1. Kernel weight estimation

Assuming that at the lth forward selection stage Krðx,x0lÞ has
been selected, we consider the problem of determining ll based
on the global accuracy measure for density estimate, the inte-
grated square error (ISE) which is given as (see for example [23])

IðbðlÞl Þ ¼

Z
pðxÞ�

Xl

j ¼ 1

bðlÞj Krðx,x0jÞ

0@ 1A2

dx

¼

Z
p2ðxÞ dxþ

Z Xl

j ¼ 1

bðlÞj Krðx,x0jÞ

0@ 1A2

dx

�2E
Xl

j ¼ 1

bðlÞj Krðx,x0jÞ

24 35¼ Z p2ðxÞ dx

þ
Xl

i ¼ 1

Xl

j ¼ 1

bðlÞi b
ðlÞ
j

Z
Krðx,x0iÞKrðx,x0jÞ dx

�2
Xl

j ¼ 1

bðlÞj E½Krðx,x0jÞ�

¼

Z
p2ðxÞ dxþQ ðlÞðllÞ, ð8Þ

in which E½�� denotes the expectation with respect to the true
density pðxÞ. Since the unknown term

R
p2ðxÞ dx is independent of

bðlÞl , it can be dropped from the objective function. We write the
argument directly as ll for the last term Q ðlÞðllÞ, which becomes
our objective function. We point out that since our algorithm is
based on the FCR framework, this is the only parameter that
needs to be estimated at the lth selection stage. bðlÞl depends on ll

and bðl�1Þ
l�1 , i.e. the sequence fl1,l2, . . . ,ll�1g, that have already been

obtained from the previous forward selection steps (see (7)).
Using the following unbiased estimator of E½Krðx,x0jÞ�:

E½Krðx,x0jÞ� �
1

N

XN

i ¼ 1

Krðxi,x
0
jÞ, ð9Þ
as well as noting the Gaussian kernel yield

Q ðlÞðllÞ ¼
Xl

i ¼ 1

Xl

j ¼ 1

bðlÞi b
ðlÞ
j K ffiffi

2
p

rðx
0
i,x
0
jÞ

�
2

N

Xl

j ¼ 1

bðlÞj

XN

i ¼ 1

Krðxi,x
0
jÞ: ð10Þ

For the first forward selection step, since we only have one kernel
with l1 ¼ 0, the only problem is to do with kernel selection but
not with parameter estimation. For the convenience of derivation,
we specifically write Q ð1Þðl1Þ as

Q ð1Þðl1Þ ¼ Cð1Þ1 �2pð1Þ1 , ð11Þ

with

pð1Þ1 ¼
1

N

XN

i ¼ 1

Krðxi,x
0
1Þ, ð12Þ

Cð1Þ1 ¼ K ffiffi
2
p

rðx
0
1,x01Þ ¼ g, ð13Þ

where g¼ 1=ð4pr2Þ
m=2. Using matrix expression, we can easily

obtain the general recursive form of Q ðlÞðllÞ for lZ2 given by

Q ðlÞðllÞ ¼ ðb
ðlÞ
l Þ

TCðlÞl bðlÞl �2ðbðlÞl Þ
TpðlÞl , ð14Þ

with

pðlÞl ¼ ðp
ðl�1Þ
l�1 Þ

T 1

N

XN

i ¼ 1

Krðxi,x
0
lÞ

" #T

, ð15Þ

CðlÞl ¼
Cðl�1Þ

l�1 bðlÞl�1

ðbðlÞl�1Þ
T g

24 35, ð16Þ

where bðlÞl�1 ¼ ½K
ffiffi
2
p

rðx
0
1,x0lÞ . . .K

ffiffi
2
p

rðx
0
l�1,x0lÞ�

T .
By substituting (7), (15) and (16) into (14), we have

Q ðlÞðllÞ ¼
llb
ðl�1Þ
l�1

1�ll

" #T
Cðl�1Þ

l�1 bðlÞl�1

ðbðlÞl�1Þ
T g

24 35 llb
ðl�1Þ
l�1

1�ll

" #

�2½llðb
ðl�1Þ
l�1 Þ

T1�ll�

pðl�1Þ
l�1

1
N

XN

i ¼ 1

Krðxi,x
0
lÞ

2664
3775

¼ l2
l m
ðlÞ þð1�llÞ

2gþ2llð1�llÞðb
ðlÞ
l�1Þ

Tbðl�1Þ
l�1

�2llnðlÞ�
2ð1�llÞ

N

XN

i ¼ 1

Krðxi,x
0
lÞ, ð17Þ

where

mðlÞ ¼ ðbðl�1Þ
l�1 Þ

TCðl�1Þ
l�1 bðl�1Þ

l�1 ,

nðlÞ ¼ ðbðl�1Þ
l�1 Þ

Tpðl�1Þ
l�1 :

8<: ð18Þ

It happens that Q ðlÞðllÞ is a quadratic function with respect to ll.
Hence there exists a unique minimum of Q ðlÞðllÞ, which can be
found by setting ð@=@llÞQ

ðlÞ
ðllÞ ¼ 0, followed by the constraint

satisfaction operation. This yields the closed-form solution for ll

given as

ll ¼minfmaxful,0g,1g, ð19Þ

with

ul ¼

g�ðbðlÞl�1Þ
Tbðl�1Þ

l�1 þn
ðlÞ�

1

N

PN
i ¼ 1 Krðxi,x

0
lÞ

mðlÞ þg�2ðbðlÞl�1Þ
Tbðl�1Þ

l�1

: ð20Þ
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It is easy to verify that the constraint satisfaction operator

minfmaxfu,0g,1g ¼

1, u41,

0, uo0,

u, 0ouo1:

8><>: ð21Þ

Therefore, 0rllr1 is guaranteed. By plugging ll back to (17), we
obtain the MISE value Q ðlÞðllÞ for this given kernel. The computa-
tional cost of parameter estimation for a given kernel per forward
selection step is in the order of OðlÞ, which is extremely low owing
to the recursive computation and the closed-form solution for the
only parameter ll.

3.2. Joint kernel selection and weight estimation algorithm

The basic idea for kernel selection is to select the subset Ds of s

data samples one at a time from the full data set DN and to form
the kernels Krðx,x0jÞ so that the ISE is minimised sequentially.
Specifically, at the lth forward selection stage a data sample is
selected from the remaining ðN�lþ1Þ candidate data samples. We
review the contribution of each candidate data sample according
to its associated MISE value to decide if this sample is to be added
to the model. The data point producing the smallest MISE value
amongst all the candidate data samples is assigned as x0l and is
used to form Krðx,x0lÞ.

First define Xðl�1Þ
N ARm�N as

Xðl�1Þ
N ¼ ½x01 . . . x

0
l�1xðl�1Þ

l . . . xðl�1Þ
N �, ð22Þ

and qðl�1Þ
N AR1�N as

qðl�1Þ
N ¼

1

N

XN

i ¼ 1

Krðxi,x
0
1Þ . . .

1

N

XN

i ¼ 1

Krðxi,x
0
l�1Þ

"
1

N

XN

i ¼ 1

Krðxi,x
ðl�1Þ
l Þ . . .

1

N

XN

i ¼ 1

Krðxi,x
ðl�1Þ
N Þ

#
, ð23Þ

with

Xð0ÞN ¼ ½x
ð0Þ
1 xð0Þ2 . . . xð0ÞN � ¼ ½x1x2 . . . xN�, ð24Þ

qð0ÞN ¼
1

N

XN

i ¼ 1

Krðxi,x1Þ
1

N

XN

i ¼ 1

Krðxi,x2Þ

"

. . .
1

N

XN

i ¼ 1

Krðxi,xNÞ

#
: ð25Þ

If the jlth column, where lr jlrN, and the lth column of Xðl�1Þ
N

are interchanged, Xðl�1Þ
N becomes XðlÞN . Similarly, if the jlth column

and the lth column of qðl�1Þ
N are interchanged, qðl�1Þ

N becomes qðlÞN .
Further define the jth element of qðl�1Þ

N as qðl�1ÞðjÞ ¼ ð1=NÞPN
i ¼ 1 Krðxi,x

ðl�1Þ
j Þ for lr jrN. We are now ready to present our

proposed algorithm.
Initialisation: At the 1st stage of the selection procedure, set

bð1Þ1 ¼ bð1Þ1 ¼ 1 and l1 ¼ 0. For 1r jrN, compute

Q ð1,jÞ
ðl1Þ ¼ g�2pð1,jÞ

1 , ð26Þ

where pð1,jÞ
1 ¼ qð0ÞðjÞ. Next find

Q ð1,j1Þðl1Þ ¼minfQ ð1,jÞ
ðl1Þ,1r jrNg: ð27Þ

Then the j1th column and the first column of Xð0ÞN are interchanged
to yield Xð1ÞN , and the j1th column and the first column of qð0ÞN are
interchanged to yield qð1ÞN . This effectively selects the first kernel.
Update Q ð1Þðl1Þ ¼Q ð1,j1Þðl1Þ with Cð1Þ1 ¼ g and pð1Þ1 ¼ pð1,j1Þ

1 .
The lth stage of the selection procedure, where lZ2:
Step (1). Calculate mðlÞ and nðlÞ according to (18). Then, for

lr jrN, compute

bðl,jÞl�1 ¼ ½K
ffiffi
2
p

rðx
0
1,xðl�1Þ

j Þ . . .K ffiffi
2
p

rðx
0
l�1,xðl�1Þ

j Þ�T,
dðl,jÞ ¼ ðbðl,jÞl�1Þ
Tbðl�1Þ

l�1 ,

lðjÞl ¼min max
g�dðl,jÞ þnðlÞ�qðl�1ÞðjÞ

mðlÞ þg�2dðl,jÞ
,0

( )
,1

( )
,

Q ðl,jÞðlðjÞl Þ ¼ ðl
ðjÞ
l Þ

2mðlÞ þð1�lðjÞl Þ
2g

þ2lðjÞl ð1�l
ðjÞ
l Þd

ðl,jÞ
�2lðjÞl n

ðlÞ

�2ð1�lðjÞl Þq
ðl�1ÞðjÞ:

Step (2): Find

Q ðl,jlÞðlðjlÞ

l Þ ¼minfQ ðl,jÞðlðjÞl Þ,lr jrNg: ð28Þ

Then the jlth column and the lth column of Xðl�1Þ
N are interchanged

to yield XðlÞN . Also the jlth column and the lth column of qðl�1Þ
N are

interchanged to yield qðlÞN . This effectively selects the lth kernel.
Update ll ¼ lðjlÞ

l and Q ðlÞðllÞ ¼ Q ðl,jlÞðlðjlÞl Þ as well as

bðlÞl ¼
lðjlÞ

l bðl�1Þ
l�1

1�lðjlÞ

l

24 35,

pðlÞl ¼ ½ðp
ðl�1Þ
l�1 Þ

TqðlÞðlÞ�T,

and

CðlÞl ¼
Cðl�1Þ

l�1 bðl,jlÞ

l�1

ðbðl,jlÞ

l�1 Þ
T g

24 35:
Termination: The selection procedure is terminated at the

(sþ1)th stage when the following condition is detected:

9Q ðsþ1Þ
ðlsþ1Þ�Q ðsÞðlsÞ9rdQ ,

where dQ is a predetermined very small positive number, and this
produces a subset model with the s significant kernels.

An appropriate value of dQ is problem dependent and can be
found empirically. Basically, dQ provides a trade off between the
fitting accuracy and the sparsity of the kernel estimator obtained.
Alternatively, cross-validation may be employed to determine dQ .

The computational cost of our proposed algorithm is extre-
mely low. In fact, the lth stage of the selection procedure has the
complexity of 2lðN�lþ1Þ. Therefore, the overall computational
complexity of our proposed algorithm is approximately s2N, that
is, OðNÞ scaled by s2, where s is the number of kernels selected,
which in general will not necessarily increase with the data
set size. Note that for large data sets s5N. This computation
complexity compares very favourably with the existing efficient
sparse kernel density estimators, e.g. the RSDE which has a
complexity of OðN2

Þ scaled by the number of iterations as well
as the sparse kernel density (SKD) estimators of [21,22] which
also have the complexity of OðN2

Þ.

Remark. For all the kernel density estimation algorithms con-
sidered in this papers, including the PW estimator of [8], the
sparse kernel density estimators of [15–17,21–23] as well as our
proposed FCR-MISE estimator, the kernel width r is fixed.
Appropriate value for r can be determined empirically through
trial and error based on cross-validation. More specifically, a
suitable value for r can be found using a line search based on
the cross-validation performance. Let the number of line search
points carried out to find an appropriate kernel width r be Llsp.
The total computational complexity of a sparse density estima-
tion procedure is approximately equal to the complexity of
constructing a sparse kernel density estimate given the kernel
width scaled by the number of line search points Llsp, since the
complexity imposed in evaluating the cross-validation perfor-
mance of a sparse density estimate is negligible compared with
the complexity imposed in constructing a sparse kernel density
estimate.



Table 1
Performance comparison of five kernel density estimators for Examples 1 and 2.

Method L1 test error (mean7STD) Kernel number (mean7STD)

(a) Example 1

PW ð4:1870:8Þ � 10�3 50070

SKD estimator [21] ð3:8370:8Þ � 10�3 11.972.6

SKD estimator [22] ð3:8470:8Þ � 10�3 15.373.9

RSDE [23] ð4:2470:8Þ � 10�3 129.4735.7

Proposed FCR-MISE ð3:3370:8Þ � 10�3 25.172.7

(b) Example 2

PW ð3:1870:13Þ � 10�5 60070

SKD estimator [21] ð4:4871:2Þ � 10�5 14.972.1

SKD estimator [22] ð3:1170:5Þ � 10�5 9.471.9

RSDE [23] ð3:6770:7Þ � 10�5 29.4710.1

Proposed FCR-MISE ð2:8270:1Þ � 10�5 19.470.9

X. Hong et al. / Neurocomputing 115 (2013) 122–129126
4. Simulation study

The first two examples are pure PDF estimation examples.
In each of these two examples, a data set of N samples was randomly
drawn from a distribution pðxÞ and used to construct the PDF
estimator bpðsÞðx;bs,rÞ using the proposed FCR-MSIE approach.
A separate test data set of Ntest ¼ 10 000 samples was used for
evaluating the density estimate according to the L1 test error

L1 ¼
1

Ntest

XNtest

k ¼ 1

9pðxkÞ�bpðsÞðxk;bs,rÞ9: ð29Þ

The experiment was repeated for 100 different random runs. The
benchmark PDF estimators used for comparison include the non-
sparse PW estimator as well as the three efficient existing sparse
PDF estimators, the SKD estimator of [21], the SKD estimator of
[22], and the RSDE of [23]. The Gaussian kernel was used for all
the algorithms.

It is worth emphasising that all the three sparse PDF estimator
benchmarks are known to be very efficient with the complexity
of OðN2

Þ in constructing a PDF estimate. However, our proposed
FCR-MSIE estimator is even more efficient with the complexity of
OðNÞ. The RSDE is also particularly relevant to our FCR-MSIE
algorithm, as the both methods are based on the MISE criterion
and, therefore, mainly restricted to use the Gaussian kernel.

Example 1. The density to be estimated for this 2-dimensional
(2-D) example was given by the mixture of two densities of a
Gaussian and a Laplacian, as defined by

pðxÞ ¼
1

4p exp �
ðx1�2Þ2

2

 !
exp �

ðx2�2Þ2

2

 !

þ
0:35

8
expð�0:79x1þ29Þexpð�0:59x2þ29Þ: ð30Þ

The estimation data set contained N¼500 points.

Example 2. The density to be estimated for this 6-D example was
defined by

pðxÞ ¼
1

3

X3

i ¼ 1

1

ð2pÞ3
ffiffiffiffiffiffiffiffiffi
9Ci9

q exp �
1

2
ðx�liÞ

TC�1
i ðx�liÞ

� �
, ð31Þ

with

l1 ¼ ½1:0 1:0 1:0 1:0 1:0 1:0�T,

C1 ¼ diagf1:0,2:0,1:0,2:0,1:0,2:0g,

l2 ¼ ½�1:0 �1:0 �1:0 �1:0 �1:0 �1:0�T,

C2 ¼ diagf2:0,1:0,2:0,1:0,2:0,1:0g,

l2 ¼ ½0:0 0:0 0:0 0:0 0:0 0:0�T,

C2 ¼ diagf2:0,1:0,2:0,1:0,2:0,1:0g,

where 9C9 denotes the determinant of C. The estimation data set
contained N¼600 points.

The results of the five density estimators for Examples 1 and 2
are listed in Table 1(a) and (b), respectively. For the PW PDF
estimator, the kernel width was determined by the MSIE criterion
(see for example [2]). For the RSDE and the proposed FCR-MSIE
estimator, the kernel widths were empirically set through trial and
error. The results for the other two SKD estimators are quoted from
[21,22], respectively. It is seen that the proposed algorithm can
construct sparse kernel density estimates with the competitive
accuracy to the PW estimator and the other three existing SKD
estimators. Our proposed FCR-MSIE estimator has a significant
advantage in that it offers a much lower complexity in constructing
PDF estimate than the three existing SKD estimators of [21–23].

To illustrate the application of the proposed method, the three
two-class classification examples are also presented. For each of
these three examples, the training data set is provided, which is
divided into the two-class training data sets, C0 and C1, respec-
tively. The proposed method can readily be applied to estimate
the two conditional PDFs, bpðx;bC0

,rC0
9C0Þ and bpðx;bC1

,rC1
9C1Þ,

based on the data sets C0 and C1, respectively. The Bayes decision
rule given by

xAC0 if bpðx;bC0
,rC0

9C0ÞZbpðx;bC1
,rC1

9C1Þ,

xAC1 otherwise,

(
ð32Þ

can be applied to the test data set to obtain the corresponding
classification error rate. Gaussian kernel was adopted in all the
following three examples.

Example 3. This was the synthetic two-class classification pro-
blem in a 2-D feature space [26]. The data set was taken from
[27]. The training set contained 250 samples with 125 points for
each class. The test set had 1000 points with 500 samples for each
class. The optimal Bayes error rate based on the true probability
distribution is known to be 8%. For the same data set, the
test error rates of 10.6% and 9.3% were reported in [28], using a
SVM classifier with 38 Gaussian kernels and a relevance vector
machine classifier with four Gaussian kernels, respectively.

Table 2 lists the test classification results obtained by the PW
estimator and the proposed FCR-MISE estimator. The widths of
the two class conditional PDF estimates for the both algorithms
were empirically set to minimise the test error rate. Fig. 1(a) and
(b) depicts the classification boundaries obtained using the PW
estimate and that of the proposed FCR-MISE, together with the
locations of the four selected kernels for the FCR-MISE. We point
out that the proposed FCR-MISE algorithm selected only two
kernels for each class conditional PDF estimate, while the each
PW based conditional PDF estimate contained the 125 kernels of
the full training data set. Clearly, the proposed FCR-MISE algo-
rithm achieved a comparable classification performance to the
PW estimator, both are very close to the known optimal Bayes
test error rate. The SKD estimators of [21,22] were also applied to
this example in [22], and we quote the results of these two
SKD estimators in Table 2 for comparison. It can be seen that the
FCR-MISE algorithm achieved a comparable classification test
performance to these two existing SKD estimators.

Example 4. The breast cancer data, taken from [29], has the input
dimension of m¼9. The data set contained 100 realisations, each
having 200 training patterns and 77 test patterns. In [30], six
state-of-the-arts classifiers were applied to the data set, and we
quote the results of [30] in Table 3. For the first five classifiers
studied in [30], the nonlinear Gaussian radial basis function (RBF)
network with five optimised RBF units was used. For the SVM



Table 2
Performance comparison of four kernel density estimators for Example 3.

Method bpð�9C0Þ bpð�9C1Þ Test error rate (%)

Kernel number Kernel width Kernel number Kernel width

PW 125 0.24 125 0.24 8.1

Proposed FCR-MISE 2 0.13 2 0.13 8.3

SKD estimator [21] 5 0.20 4 0.20 8.3

SKD estimator [22] 6 0.28 5 0.28 8.0
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Fig. 1. Decision boundaries for the synthetic 2-class 2-D data set with circles and

diamonds representing respectively the two class data points: (a) PW estimator

using the full training data set for two class conditional PDF estimates, and (b) the

proposed FCR-MISE using 4 selected kernels, 2 for each class conditional PDF

estimate, represented by þ and n, respectively.

Table 3
Average misclassification rate in % over the 100 realisations of the Breast Cancer

test data set and model size.

Method Misclassification rate Model size

RBF 27.674.7 5

Adaboost with RBF 30.474.7 5

AdaBoost-Reg 26.574.5 5

LP-Reg-AdaBoost 26.876.1 5

QP-Reg-AdaBoost 25.974.6 5

SVM with RBF kernel 26.074.7 Not available

Proposed FCR-MISE 26.174.7 9270

Table 4
Average misclassification rate in % over the 100 realisations of the Titanic test data

set and model size.

Method Misclassification rate Model size

RBF 23.371.3 4

Adaboost with RBF 22.671.2 4

AdaBoost-Reg 22.671.2 4

LP-Reg-AdaBoost 24.074.4 4

QP-Reg-AdaBoost 22.771.1 4

SVM with RBF kernel 22.471.0 Not available

Proposed FCR-MISE 22.270.4 83.876.8
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classifier with Gaussian kernel, no average model size was

reported in [30], but our experience with the SVM classifier

suggests that it could likely contains around 100 or more kernels.

The classification results obtained by the proposed FCR-MISE

algorithm are also listed in Table 3 for comparison. For the

FCR-MISE algorithm, the two widths in the two conditional PDF

estimates were set empirically as rC0
¼ 1:8 and rC1

¼ 1:9, respec-

tively, for all the 100 realisations of the data set, and the model

size for our method is the sum of the kernels in building the two
conditional PDFs, selected from a total of 400 training patterns.
Clearly the classification accuracy of our FCR-MISE algorithm is
competitive, compared with the six state-of-the-arts classifiers
studied in [30]. It is worth emphasising that the modelling
paradigms of [30] are discriminative models constructed based
on both the input and output (class label) information. By contrast,
the proposed FCR-MISE algorithm only relies on the input
information to construct each conditional PDF, and the total
number of the kernels for constructing the Bayes classifier (32)
is unavoidably larger than the discriminative classifiers of [30].
However, we believe that the classifier model size of our
FCR-MISE algorithm is likely to be smaller than the SVM classifier.
This further demonstrates the efficiency of our proposed FCR-MISE
algorithm for estimating PDF.

Example 5. The Titanic data, also taken from [29], has the input
dimension of m¼3. The data set contained 100 realisations, each
having 150 training patterns and 2051 test patterns. Table 4 lists
the classification results obtained by the proposed FCR-MISE
algorithm in comparison with the results of the six classifiers
quoted from [30]. The two widths used in the proposed
FCR-MISE algorithm were set empirically as rC0

¼ 1:8 and rC1
¼

1:7, respectively, for all 100 realisations. The model size for the
FCR-MISE algorithm denotes the sum of the kernels used for the
two conditional PDF estimates, selected from the total of 300
training patterns. From Table 4, it can be seen that the classifica-
tion accuracy of the FCR-MISE method is competitive, compared
with the six state-of-the-arts classifiers studied in [30]. We point
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out that the size of the Bayes classifier obtained by the FCR-MISE
density estimator is most likely to be smaller than the SVM
classifier, even though the latter is a discriminative model.

5. Conclusions

In this paper, a new sparse kernel density estimator has been
derived using the forward constrained regression procedure. Our
novel contribution is to derive a recursive algorithm which selects
significant kernels one at time based on the minimum integrated
square error criterion within the FCR procedure. The most significant
advantage of our proposed FCR-MISE approach is that it has an
extremely low computational complexity, since at each FCR step, only
a single parameter is estimated using a closed-form solution devel-
oped in this contribution. Specifically, our proposed method has a
computational complexity in the order of N for selecting a sparse
kernel density estimate from the data set of size N. This compares
very favourably with the most efficient existing sparse kernel density
estimators, which have the computational complexity in the order of
N2. Numerical examples have been employed to demonstrate that the
proposed approach can construct sparse kernel density estimates
with competitive accuracy to the existing kernel density estimators.
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