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Abstract

Using the classical Parzen window (PW) estimate as the desired response, the kernel density estimation is formulated as a regression

problem and the orthogonal forward regression technique is adopted to construct sparse kernel density (SKD) estimates. The proposed

algorithm incrementally minimises a leave-one-out test score to select a sparse kernel model, and a local regularisation method is

incorporated into the density construction process to further enforce sparsity. The kernel weights of the selected sparse model are finally

updated using the multiplicative nonnegative quadratic programming algorithm, which ensures the nonnegative and unity constraints for

the kernel weights and has the desired ability to reduce the model size further. Except for the kernel width, the proposed method has no

other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction

procedure. Several examples demonstrate the ability of this simple regression-based approach to effectively construct a SKD estimate

with comparable accuracy to that of the full-sample optimised PW density estimate.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this contribution, we consider the nonparametric
approach for estimating the probability density function
(PDF) based on a realisation sample drawn from the
underlying density [2,18,21]. The best-known nonpara-
metric density estimation technique is perhaps the classical
Parzen window (PW) estimate [18], which is remarkably
simple and accurate. As the PW estimate, also known as
the kernel density estimate, employs the full data sample
set in defining density estimate for subsequent observation,
its computational cost for testing scales directly with the
sample size. In today’s data-rich environment, this may
become a practical difficulty in employing the PW
estimator. It also motivates the research on the so-called

sparse kernel density (SKD) estimation techniques. The
support vector machine (SVM) method with its ability to
perform function approximations in high-dimensional
spaces from finite data using sparse representations has
been proposed as a promising tool for SKD estimation
[16,24,25]. More recently, an interesting SKD estimation
technique referred to as the reduced set density estimator
(RSDE) is proposed [9]. Similar to the SVM methods, this
technique employs the full data sample set as the kernel set
and tries to make as many kernel weights to (near) zero as
possible, and thus to obtain a sparse representation. The
difference with the SVM approach is that it adopts directly
the criterion of the integrated squared error between the
unknown underlying density and the kernel density
estimate, calculated on the training sample set.
A regression-based SKD estimation method was reported

in [8]. By converting the kernels into the associated
cumulative distribution functions and using the empirical
distribution function calculated on the training data sample
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set as the desired response, just like the SVM-based density
estimation [16,24,25], this technique transfers the kernel
density estimation into a regression problem and it selects
SKD estimates based on an orthogonal forward regression
(OFR) algorithm that incrementally minimises the usual
training mean square error (MSE). This sparse density
estimation algorithm is computationally efficient, and the
results shown in [8] have demonstrated the potential of this
method. In order to terminate the kernel density construc-
tion procedure at an appropriate stage, this method requires
additional termination criteria, and it was suggested in [8]
that the minimum descriptive length [11] or Akaike’s
information criterion [1] is adopted to help terminating
the density construction process. However, the empirical
results in [8] showed that models so obtained were still often
oversized and at the end, a maximum model size was
imposed in order to avoid an over-fitted model. Motivated
by our previous work on sparse regression modelling [5,7],
recently we have extended the work of [8] and proposed an
efficient construction algorithm for SKD estimation using
the OFR based on a leave-one-out (LOO) test score and
local regularisation [6]. This method is capable of con-
structing very SKD estimates with comparable accuracy to
that of the full-sample optimised PW density estimate.
Moreover, the process is fully automatic and the user is not
required to specify any additional criterion to terminate the
density construction procedure [6].

In this contribution, we propose a simple regression-
based alternative for SKD estimation. In the works of
Choudhury [8] and Chen et al. [6], the ‘‘regressors’’ are the
cumulative distribution functions of the corresponding
kernels and the desired response is the empirical distribu-
tion function calculated on the training data sample set.
Computing the cumulative distribution functions from the
kernels can be inconvenient and may be difficult for certain
types of kernels. We propose to directly use the kernels as
the regressors and to view the PW estimate as the desired
response. The same OFR algorithm based on the LOO test
score and local regularisation [6,7] can readily be employed
to select an SKD estimate. As a probability density
estimate, the kernel weights must satisfy nonnegative and
unity constraints. In the work of Chen et al. [6], the unity
constraint is met by normalising the kernel weight vector of
the selected model, and the nonnegative constraint is
ensured by adding a test to the OFR selection procedure of
Chen et al. [7]. In each selection stage, a candidate that
causes the resulting kernel weight vector to have negative
elements, if included, will not be considered at all. This
nonnegative test imposes considerable computational cost
to the OFR procedure. In our proposed alternative, we
simply use the efficient OFR selection procedure of Chen et
al. [7] to construct a sparse model. The kernel weights of
the final sparse model are then computed using the
multiplicative nonnegative quadratic programming
(MNQP) algorithm [20], which will ensure that the kernel
weights meet the required nonnegative and unity con-
straints. The MNQP algorithm additionally has a desired

property that it will force some kernel weights to (near)
zero values [9,20] and thus further makes the model
sparser. Our empirical results involving several numerical
examples show that the proposed method offers a viable
simple alternative to the regression-based SKD estimation.
The remainder of the paper is organised as follows.

Section 2 formulates the kernel density estimation directly
as a regression problem, where we also point out why it is
more desirable to use the PW estimate as the target function
of the unknown true PDF than to use the empirical
distribution function as the target function of the unknown
true cumulative distribution function. Our proposed
combined OFR-LOO-LR and MNQP algorithm for SKD
estimation is detailed in Section 3. Several numerical
examples are experimented in Section 4 to illustrate the
effectiveness of the proposed simple algorithm in construct-
ing an SKD estimate with comparable accuracy to that of
the PW estimate. The paper concludes at Section 5.

2. A regression-based approach for kernel density estimation

Based on a finite data sample set D ¼ fxkg
N
k¼1 drawn

from a density pðxÞ, where xk 2 Rm, the task is to estimate
the unknown density pðxÞ using the kernel density estimate
of the form

p̂ðx; b;rÞ ¼
XN

k¼1

bkKrðx; xkÞ (1)

with the constraints

bkX0; 1pkpN, (2)

and

bT1N ¼ 1, (3)

where b ¼ ½b1b2 � � �bN �
T is the kernel weight vector, 1N

denotes the vector of ones with dimension N, and Krð�; �Þ
is a chosen kernel function with the kernel width r. In this
study, we use the Gaussian kernel of the form

Krðx; xkÞ ¼
1

ð2pr2Þm=2
e�kx�xkk

2=2r2 . (4)

However, many other types of kernel functions can also be
used in the density estimate (1).
The well-known PW estimate p̂ðx;bPar;rParÞ is obtained

by setting all the elements of bPar to 1=N. The optimal
kernel width rPar is typically determined via cross valida-
tion [17,22]. The PW estimate in fact can be derived as the
maximum likelihood estimator using the divergence-based
criterion [14]. The negative cross-entropy or divergence
between the true density pðxÞ and the estimate p̂ðx; b;rÞ is
defined asZ

Rm

pðuÞ log p̂ðu; b; rÞdu

�
1

N

XN

k¼1

log p̂ðxk; b;rÞ
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¼
1

N

XN

k¼1

log
XN

n¼1

bnKrðxk; xnÞ

 !
. ð5Þ

Minimising this divergence subject to the constraints (2)
and (3) leads to bn ¼ 1=N for 1pnpN, i.e. the PW
estimate. Because of this property, we may view the PW
estimate as the ‘‘observation’’ of the true density con-
taminated by some ‘‘observation noise’’, namely

p̂ðx; bPar; rParÞ ¼ pðxÞ þ ~�ðxÞ. (6)

Thus the generic kernel density estimation problem (1) can
be viewed as the following regression problem with the PW
estimate as the ‘‘desired response’’

p̂ðx; bPar; rParÞ ¼
XN

k¼1

bkKrðx;xkÞ þ �ðxÞ (7)

subject to the constraints (2) and (3), where �ðxÞ is the
modelling error at x.

Define yk ¼ p̂ðxk; bPar;rParÞ, /ðkÞ ¼ ½Kk;1Kk;2 � � �Kk;N �
T

with Kk;i ¼ Krðxk; xiÞ, and �ðkÞ ¼ �ðxkÞ. Then model (7) at
the data point xk 2 D can be expressed as

yk ¼ ŷk þ �ðkÞ ¼ /T
ðkÞbþ �ðkÞ. (8)

Model (8) is obviously a standard regression model, and
over the training data set D it can be written in the matrix
form

y ¼ Ubþ e (9)

with the following additional notations U ¼ ½Ki;k� 2 RN�N ,
1pi; kpN, e ¼ ½�ð1Þ�ð2Þ � � � �ðNÞ�T, and y ¼ ½y1y2 � � � yN �

T.
For convenience, we will denote the regression matrix U ¼
½/1/2 � � �/N � with /k ¼ ½K1;kK2;k � � �KN ;k�

T. Note that
/k is the kth column of U, while /T

ðkÞ is the kth row
of U.

Let an orthogonal decomposition of the regression
matrix U be

U ¼WA, (10)

where

A ¼

1 a1;2 � � � a1;N

0 1 . .
. ..

.

..

. . .
. . .

.
aN�1;N

0 � � � 0 1

2
666664

3
777775 (11)

and

W ¼ ½w1w2 � � �wN � (12)

with orthogonal columns satisfying wT
i wj ¼ 0, if iaj. The

regression model (9) can alternatively be expressed as

y ¼Wgþ e, (13)

where the weight vector g ¼ ½g1g2 � � � gN �
T defined in the

orthogonal model space satisfies the triangular system
Ab ¼ g. The space spanned by the original model bases /i,
1pipN, is identical to the space spanned by the
orthogonal model bases wi, 1pipN, and the model ŷk is

equivalently expressed by

ŷk ¼ wTðkÞg, (14)

where wTðkÞ ¼ ½wk;1 wk;2 � � �wk;N � is the kth row of W.
Before turning to the proposed SKD estimation algo-

rithm, a comparison with the previous regression-based
approach for SKD estimation is offered. In most of the
SKD estimation techniques [6,8,16,24,25], the kernel
density estimation problem (1) is reformulated into a
regression problem by using the empirical distribution
function as the desired response of the true cumulative
distribution function, which is defined as

F ðxÞ ¼

Z x

�1

pðuÞdu, (15)

and converting the kernels into corresponding cumulative
distribution functions, that is,

qrðx; xkÞ ¼

Z x

�1

Krðu; xkÞdu. (16)

The empirical distribution function F̂ ðx;NÞ is defined by

F̂ ðx;NÞ ¼
1

N

XN

k¼1

Ym
j¼1

yðxj � xj;kÞ (17)

with

yðxÞ ¼
1; x40;

0; xp0;

(
(18)

where xk ¼ ½x1;kx2;k � � � xm;k�
T 2 D. Thus, the regression

modelling for density estimation is expressed as

F̂ ðx;NÞ ¼
XN

k¼1

bkqrðx;xkÞ þ �ðxÞ. (19)

Our regression-based approach can use any type of kernel
function and it is computationally simpler, as it does not
need to compute the values of ‘‘regressors’’ (16) on the
training data set D. Computing the values of the PW
estimator on D is no more complex than calculating the
values of F̂ ðx;NÞ onD. The only drawback of using the PW
estimate is that the kernel width for the PW estimator must
be determined. The most significant observation, however,
is that the use of the PW estimate as the target function of
the unknown true PDF is theoretically more sound than the
use of the empirical distribution function as the target
function of the unknown true cumulative distribution
function. As mentioned previously, p̂ðx; bPar; rParÞ is the
maximum likelihood estimator of pðxÞ based on the
divergence between the true density and the PW estimate,
while there exists no similar optimality property between
F̂ ðx;NÞ and F ðxÞ.

3. The proposed regression-based technique for sparse

density estimation

Our aim is to seek a sparse representation for p̂ðx; b;rÞ
with most elements of b being zero and yet maintaining a
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comparable test performance or generalisation capability
to that of the full-sample PW estimate. Since this density
construction problem is formulated as a constrained
regression one, we can apply the OFR algorithm based
on the LOO test score and local regularisation [7] to select a
sparse model and use the MNQP algorithm [9,20] to
calculate the kernel weights for the selected model. This
combined OFR-LOO-LR and MNQP algorithm for SKD
estimation is now summarised.

3.1. Orthogonal forward regression with leave-one-out test

score and local regularisation

First, we point out that the local regularisation aided
least squares solution for the weight parameter vector g is
obtained by minimising the following regularised error
criterion [3]

JRðg; kÞ ¼ eTeþ
XN

i¼1

lig
2
i , (20)

where k ¼ ½l1l2 � � � lN �
T is the regularisation parameter

vector, which is optimised based on the evidence procedure
[13] with the iterative updating formulas [3,5,7]

lnewi ¼
goldi

N � gold
eTe

g2
i

; 1pipN, (21)

where

gi ¼
wT

i wi

li þ wT
i wi

and g ¼
XN

i¼1

gi. (22)

Usually a few iterations (typically less than 10) are
sufficient to find a (near) optimal k. The detailed derivation
of the updating formulas (21) and (22) can be found in [3].
The use of multiple-regularisers or local regularisation is
known to be capable of providing very sparse solutions
[3,23].

It is highly desired to select a sparse model by directly
optimising the model generalisation capability, rather than
minimising the training MSE. The algorithm achieves this
objective by incrementally minimising the LOO test score,
which is a measure of the model’s generalisation perfor-
mance [10,12,15,17]. At the nth stage of the OFR
procedure, an n-term model is selected. It can be shown
that the LOO test error, denoted as �n;�kðkÞ, for the selected
n-term model is [7,12]

�n;�kðkÞ ¼
�nðkÞ

ZnðkÞ
, (23)

where �nðkÞ is the n-term modelling error and ZnðkÞ is the
associated LOO error weighting. The mean square LOO
error for the model with a size n is defined by

Jn ¼
1

N

XN

k¼1

�2n;�kðkÞ ¼
1

N

XN

k¼1

�2nðkÞ

Z2nðkÞ
. (24)

This LOO test score can be computed efficiently due to the
fact that the n-term model error �nðkÞ and the associated

LOO error weighting ZnðkÞ can be calculated recursively
according to [7,12]

�nðkÞ ¼ yk �
Xn

i¼1

wk;igi ¼ �n�1ðkÞ � wk;ngn (25)

and

ZnðkÞ ¼ 1�
Xn

i¼1

w2
k;i

wT
i wi þ li

¼ Zn�1ðkÞ �
w2

k;n

wT
nwn þ ln

, (26)

respectively.
The subset model selection procedure is carried as

follows: at the nth stage of the selection procedure, a
model term is selected among the remaining n to N

candidates if the resulting n-term model produces the
smallest LOO test score Jn. The selection procedure is
terminated when

Jnsþ1XJns
, (27)

yielding an ns-term sparse model. It has been shown in [12]
that the LOO statistic Jn is at least locally convex with
respect to the model size n. That is, there exists an
‘‘optimal’’ model size ns such that for npns Jn decreases as
n increases while condition (27) holds. This property is
extremely useful, as it enables the selection procedure to be
automatically terminated with an ns-term model, without
the need for the user to specify a separate termination
criterion. The sparse model selection procedure is sum-
marised as follows.

Initialisation: Set li ¼ 10�6 for 1pipN, and set iteration
index I ¼ 1.

Step 1: Given the current k and with the following initial
conditions

�0ðkÞ ¼ yk and Z0ðkÞ ¼ 1; 1pkpN,

J0 ¼
1

N
yTy ¼

1

N

XN

k¼1

y2
k, ð28Þ

use the procedure described in Appendix A to select a
subset model with nI terms.

Step 2: Update k using (21) and (22) with N ¼ nI . If k

remains sufficiently unchanged in two successive iterations
or a pre-set maximum iteration number (e.g. 10) is reached,
stop; otherwise set Iþ ¼ 1 and go to Step 1.

3.2. Multiplicative nonnegative quadratic programming for

kernel weights

After the structure determination using the above
OFR-LOO-LR algorithm, we obtain an ns-term subset
kernel model, where ns � N. Let Ans

denote the subset
matrix of A, corresponding to the selected ns-term subset
model. The kernel weight vector bns

, computed from
Ans

bns
¼ gns

, may not satisfy the nonnegative constraint
(2) and the unity constraint (3). We propose to use the
MNQP algorithm [9,20] to calculate bns

instead. Since ns is
very small, the extra computation involved is small.
Formally, this task is defined as follows. Find bns

for the
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regression model

y ¼ Uns
bns
þ � (29)

subject to the constraints

biX0; 1pipns, (30)

bT
ns
1ns
¼ 1, (31)

where Uns
is the selected subset regression matrix and

bT
ns
¼ ½b1b2 � � � bns

�. The kernel weight vector can be
obtained by solving the following constrained nonnegative
quadratic programming

min
bns

f1
2
bT

ns
Bns

bns
� vTns

bns
g

s.t.bT
ns
1ns
¼ 1 and biX0; 1pipns, ð32Þ

where Bns
¼ UT

ns
Uns
¼ bi;j

� �
2 Rns�ns is the related design

matrix and vns
¼ UT

ns
y ¼ ½v1 v2 � � � vns

�T. Although there
exists no closed-form solution for this optimisation
problem, the solution can readily be obtained iteratively
using a modified version of the MNQP algorithm [20].

Since the elements of Bns
and vns

are strictly positive, the
Lagrangian for the above problem can be formed as [9]

L ¼ 1
2

Xns

i¼1

Xns

j¼1

bi;j

bðtÞj bðtþ1Þi

� �2
bðtÞi

�
Xns

i¼1

vib
ðtþ1Þ
i

� hðtÞ
Xns

i¼1

bðtþ1Þi � 1

 !
, ð33Þ

where the superindex ðtÞ denotes the iteration index and h is
the Lagrangian multiplier. Setting

qL

qbðtþ1Þi

¼ 0 and
qL

qhðtÞ
¼ 0 (34)

leads to the following updating equations

ct
i ¼ bt

i

Xns

j¼1

bi;jb
ðtÞ
j

 !�1
; 1pipns, (35)

hðtÞ ¼
Xns

i¼1

c
ðtÞ
i

 !�1
1�

Xns

i¼1

c
ðtÞ
i vi

 !
, (36)

bðtþ1Þi ¼ c
ðtÞ
i vi þ hðtÞ
� �

. (37)

It is easy to check that if bðtÞns
meets the constraints (30) and

(31), bðtþ1Þns
updated according to (35)–(37) also satisfies (30)

and (31). The initial condition can be set as bð0Þi ¼ 1=ns,
1pipns, or chosen to be the normalised kernel weight
vector obtained by the OFR-LOO-LR algorithm with
those negative elements replaced by a small positive
number. During the iterative procedure, some of the kernel
weights may be driven to (near) zero. The corresponding
kernels can then be removed from the kernel model,
leading to a further reduction in the subset model size.

4. Numerical examples

Six examples were used in the simulation to test the
proposed combined OFR-LOO-LR and MNQP algorithm
and to compare its performance with the PW estimator.
Comparisons with other existing SKD estimation techni-
ques were also given by quoting the results from the
existing literatures. The value of the kernel width r used
was determined by test performance via cross validation.
The first five cases were the density estimation problems. In
each of these cases, a data set of N randomly drawn
samples was used to construct kernel density estimates, and
a separate test data set of N test ¼ 10; 000 samples was used
to calculate either the L2 test error or the L1 test error for
the resulting estimate according to

L2 ¼
1

N test

XN test

k¼1

jpðxkÞ � p̂ðxk; b;rÞj2, (38)

and

L1 ¼
1

N test

XN test

k¼1

jpðxkÞ � p̂ðxk; b;rÞj, (39)

respectively. The experiment was repeated by Nrun different
random runs for each example. The sixth example was a
two-class two-dimensional classification problem taken
from [19].

Example 1. This was a one-dimensional example, and the
density to be estimated was the mixture of eight Gaussian
distributions given by

pðxÞ ¼ 1
8

X7
i¼0

1ffiffiffiffiffiffi
2p
p

si

e�ðx�miÞ
2=2s2i (40)

with

si ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

3

	 
i
s

; mi ¼ 3
2

3

	 
i

� 1

 !
; 0pip7. (41)

The number of data points for density estimation was
N ¼ 200. The experiment was repeated Nrun ¼ 200 times.
The optimal kernel widths were found to be r ¼ 0:17 and
0.3 empirically for the PW estimate and the SKD estimate
obtained using the combined OFR-LOO-LR and MNQP
algorithm, respectively. Table 1 compares the performance
of the two kernel density estimates, in terms of the L2 test
error and the number of kernels required. Fig. 1(a) depicts

ARTICLE IN PRESS

Table 1

Performance of the Parzen window estimate and the sparse kernel density

estimate in terms of L2 test error and number of kernels required for the

one-dimensional example of eight Gaussian mixture, quoted as mean 	

standard deviation over 200 runs

Method L2 test error kernel number

PW estimate ð2:9311	 2:0601Þ � 10�3 20070

Proposed SKD estimate ð3:0181	 2:0991Þ � 10�3 10.271.6

S. Chen et al. / Neurocomputing 71 (2008) 931–943 935
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the PW estimate obtained in a run while Fig. 1(b) shows
the SKD estimate obtained in a run, in comparison with
the true distribution. For this one-dimensional example, it
can be seen that the accuracy of the SKD estimate was
comparable to that of the PW estimate, and the combined
OFR-LOO-LR and MNQP algorithm realised sparse
estimates with an average kernel number less than 6% of
the data samples. The maximum and minimum numbers of
kernels over 200 runs were 15 and 5, respectively, for the
SKD estimator.

This example was used by Girolami and He [9] to test
their RSDE algorithm. Under the same experimental
conditions, the median value and the interquartile range
for the L2 test error obtained by the RSDE were 0.0035 and
0.0030, respectively, while the median value of the nonzero
kernel weights was 13, with the maximum and minimum
values of nonzero kernel weights over the 200 runs being 42
and 5, respectively. It can be seen that our proposed SKD
estimator achieved a slightly better test performance with a
sparser kernel density estimate, compared with the RSDE.

Example 2. The density to be estimated for this one-
dimensional example was the mixture of Gaussian and
Laplacian given by

pðxÞ ¼
1

2
ffiffiffiffiffiffi
2p
p e�ðx�2Þ

2=2 þ
0:7

4
e�0:7jxþ2j. (42)

The number of data points for density estimation was
N ¼ 100. The optimal kernel widths were found to be r ¼
0:54 and 1.1 empirically for the PW estimate and the
proposed SKD estimate, respectively. The experiment was
repeated Nrun ¼ 200 times. Table 2 compares the perfor-
mance of these two kernel density estimates, in terms of the
L1 test error and the number of kernels required. Fig. 2(a)
plots a PW estimate obtained while Fig. 2(b) illustrates an
SKD estimate obtained, in comparison with the true
distribution. Again it can be seen that the accuracy of
our proposed SKD estimate was comparable to that of the
PW estimate for this one-dimensional example, and the
combined OFR-LOO-LR and MNQP algorithm achieved
sparse estimates with an average kernel number less than

6% of the data samples. The maximum and minimum
numbers of kernels over 200 runs were 9 and 2,
respectively, for the SKD estimator.

Our previous SKD estimator using the empirical
distribution function as the desired response [6] was
also applied to this example. Under the identical experi-
mental conditions, the results obtained by this SKD
estimator are also given in Table 2, where it can be seen
that the both SKD estimators had the similar performance.
The current SKD estimator had a slightly better L1 test
error performance than the previous SKD estimator, while
the latter achieved a slightly sparser estimator than the
former.

Example 3. The density to be estimated for this two-
dimensional example was defined by the mixture of
Gaussian and Laplacian given as follows

pðx; yÞ ¼
1

4p
e�ðx�2Þ

2=2e�ðy�2Þ
2=2 þ

0:35

8
e�0:7jxþ2je�0:5jyþ2j.

(43)

Fig. 3 shows this density distribution and its contour plot.
The estimation data set contained N ¼ 500 samples, and
the empirically found optimal kernel widths were r ¼ 0:42
for the PW estimate and r ¼ 1:1 for the proposed SKD
estimate, respectively. The experiment was repeated Nrun ¼

100 times. Table 3 lists the L1 test errors and the numbers
of kernels required for these two density estimates. A
typical PW estimate and a typical SKD estimate are
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Fig. 1. (a) True density (dashed) and a Parzen window estimate (solid) and (b) true density (dashed) and a sparse kernel density estimate (solid), for the

one-dimensional example of eight Gaussian mixture.

Table 2

Performance of the Parzen window estimate and the two sparse kernel

density estimates in terms of L1 test error and number of kernels required

for the one-dimensional example of Gaussian and Laplacian mixture,

quoted as mean 	 standard deviation over 200 runs

Method L1 test error kernel number

PW estimate ð1:9503	 0:5881Þ � 10�2 10070

Proposed SKD estimate ð1:9436	 0:6208Þ � 10�2 5.171.3

SKD estimate of [6] ð2:1785	 0:7468Þ � 10�2 4.870.9
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depicted in Figs. 4 and 5 respectively. Again, for this
example, the two density estimates had comparable
accuracies, but the proposed SKD estimation method
achieved sparse estimates with an average number of
required kernels less than 4% of the data samples. The
maximum and minimum numbers of kernels over 100 runs
were 25 and 8, respectively, for the proposed SKD
estimator.

This example was used in [6] to test our previous SKD
estimator using the empirical distribution function as the
desired response under the same experimental conditions.
The results obtained for this example quoted from [6] are
also listed in Table 3 as a comparison. It can be seen from
Table 3 that for this example both the SKD estimates had a
similar test performance, while the SKD estimator of [6]
achieved a slightly sparser estimate.

Example 4. For this second two-dimensional example, the
true density to be estimated was defined by the mixture of

five Gaussian distributions given as follows

pðx; yÞ ¼
X5
i¼1

1

10p
e�ðx�mi;1Þ

2=2e�ðy�mi;2Þ
2=2 (44)

and the means of the five Gaussian distributions, ½mi;1 mi;2�,
1pip5, were ½0:0 � 4:0�, ½0:0 � 2:0�, ½0:0 0:0�, ½�2:0 0:0�,
and ½�4:0 0:0�, respectively. The true density and its
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Fig. 2. (a) True density (dashed) and a Parzen window estimate (solid) and (b) true density (dashed) and a sparse kernel density estimate (solid), for the

one-dimensional example of Gaussian and Laplacian mixture.

Table 3

Performance of the Parzen window estimate and the two sparse kernel

density estimates in terms of L1 test error and number of kernels required

for the two-dimensional example of Gaussian and Laplacian mixture,

quoted as mean 	 standard deviation over 100 runs

Method L1 test error kernel number

PW estimate ð4:2453	 0:8242Þ � 10�3 50070

Proposed SKD estimate ð3:8379	 0:7797Þ � 10�3 15.373.9

SKD estimate of [6] ð3:8281	 0:8263Þ � 10�3 11.972.6

Fig. 3. True density (a) and contour plot (b) for the two-dimensional example of Gaussian and Laplacian mixture.
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contour plot are depicted in Fig. 6. The number of data
points for density estimation was N ¼ 500. The optimal
kernel widths were found to be r ¼ 0:5 and 1.1 for the PW
estimate and the proposed SKD estimate, respectively. The
experiment was repeated Nrun ¼ 100 times. Table 4 com-
pares the L1 test errors and the numbers of kernels required
for the two density estimates. A typical PW estimate and a
typical SKD estimate are shown in Figs. 7 and 8,
respectively. Again, the two density estimates were seen
to have comparable accuracies, but the proposed SKD
estimation method achieved sparse estimates with an
average number of required kernels less than 3% of the
data samples. The maximum and minimum numbers of
kernels over 100 runs were 22 and 8, respectively, for the
SKD estimator.

Example 5. In this six-dimensional example, the under-
lying density to be estimated was given by

pðxÞ ¼
1

3

X3
i¼1

1

ð2pÞ6=2
1

det1=2jCij
e�1=2ðx�liÞ

TC�1i ðx�liÞ (45)

with

l1 ¼ ½1:0 1:0 1:0 1:0 1:0 1:0�
T,

C1 ¼ diagf1:0; 2:0; 1:0; 2:0; 1:0; 2:0g, ð46Þ

l2 ¼ ½�1:0 � 1:0 � 1:0� 1:0 � 1:0 � 1:0�T,

C2 ¼ diagf2:0; 1:0; 2:0; 1:0; 2:0; 1:0g, ð47Þ

ARTICLE IN PRESS

Fig. 4. A Parzen window estimate (a) and contour plot (b) for the two-dimensional example of Gaussian and Laplacian mixture.

Fig. 5. A sparse kernel density estimate (a) and contour plot (b) for the two-dimensional example of Gaussian and Laplacian mixture.
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l3 ¼ ½0:0 0:0 0:0 0:0 0:0 0:0�
T,

C3 ¼ diagf2:0; 1:0; 2:0; 1:0; 2:0; 1:0g. ð48Þ

The estimation data set contained N ¼ 600 samples. The
optimal kernel width was found to be r ¼ 0:65 for the PW
estimate and r ¼ 1:2 for the SKD estimate, respectively,
via cross validation. The experiment was repeated Nrun ¼

100 times. The results obtained by the two density
estimator are summarised in Table 5. For this example,
again, the two density estimates were seen to have
comparable accuracies, but the proposed method achieved
very sparse estimates with an average number of required
kernels less than 2% of the data samples. The maximum
and minimum numbers of kernels over 100 runs were 16
and 7, respectively, for the SKD estimator.

This example was used to test the SKD estimation
method of [6] under the same experimental conditions. The
results obtained by our previous SKD estimator, quoted
from [6], are also given in Table 5 for comparison. It is seen
from Table 5 that for this high-dimensional example the
proposed SKD estimator outperformed our previous SKD
estimator in terms of both the test performance and the
level of sparsity.

Example 6. This was a two-class classification problem in a
two-dimensional feature space [19]. The training set
contained 250 samples with 125 points for each class, and
the test set had 1000 points with 500 samples for each class.
The optimal Bayes test error rate based on the true
underlying probability distribution for this example is
known to be 8%. We first estimated the two conditional
density functions p̂ðx; b; rjC0Þ and p̂ðx; b;rjC1Þ from the
training data, and then applied the Bayes decision rule

if p̂ðx; b;rjC0ÞXp̂ðx; b;rjC1Þ; x belongs to class 0

else; x belongs to class 1

)

(49)

to the test data set and calculated the corresponding error
rate. Table 6 lists the results obtained by the two kernel
density estimates, the PW and the proposed SKD
estimates, where the value of r was determined by
minimising the test error rate. It can be seen that the
proposed SKD estimation method yielded the sparse
conditional density estimates and achieved the optimal
Bayes classification performance. This clearly demon-
strated the accuracy of the density estimates. Fig. 9(a)
and (b) depicts the decision boundaries of the classifier (49)
for the PW estimate and the proposed SKD estimate,
respectively.

The results obtained for this example using our previous
SKD estimator based on the empirical distribution
function as the desired response, quoted from [6], are also
summarised in Table 6. It can be seen from Table 6 that for
this example the proposed SKD estimator was more
accurate than the SKD estimator of [6] but the latter
achieved a sparser density estimate.
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Fig. 6. True density (a) and contour plot (b) for the two-dimensional example of five Gaussian mixture.

Table 4

Performance of the Parzen window estimate and the sparse kernel density

estimate in terms of L1 test error and number of kernels required for the

two-dimensional example of five Gaussian mixture, quoted as mean 	

standard deviation over 100 runs

Method L1 test error kernel number

PW estimate ð3:6204	 0:4394Þ � 10�3 50070

Proposed SKD estimate ð3:6100	 0:5025Þ � 10�3 13.272.9
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5. Conclusions

A simple kernel density estimation method has been
proposed based on a regression approach with the PW
estimate as the desired response. The OFR algorithm has
been employed to select SKD estimates, by incrementally
minimising an LOO test score coupled with local regular-
isation to further enforce the sparseness of density
estimates. The kernel weights of the final selected sparse
model are computed using the MNQP algorithm to meet

ARTICLE IN PRESS

Fig. 7. A Parzen window estimate (a) and contour plot (b) for the two-dimensional example of five Gaussian mixture.

Fig. 8. A sparse kernel density estimate (a) and contour plot (b) for the two-dimensional example of five Gaussian mixture.

Table 5

Performance of the Parzen window estimate and the two sparse kernel

density estimates in terms of L1 test error and number of kernels required

for the six-dimensional example of three Gaussian mixture, quoted as

mean 	 standard deviation over 100 runs

Method L1 test error kernel number

PW estimate ð3:5195	 0:1616Þ � 10�5 60070

Proposed SKD estimate ð3:1134	 0:5335Þ � 10�5 9.471.9

SKD estimate of [6] ð4:4781	 1:2292Þ � 10�5 14.972.1

S. Chen et al. / Neurocomputing 71 (2008) 931–943940
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the required nonnegative and unity constraints for prob-
ability density estimation. The MNQP algorithm also has a
desired property of reducing the model size further. The
proposed method is simple to implement, and except for
the kernel width the algorithm contains no other free
parameters that require tuning. The ability of the proposed
method to construct a SKD estimate with a comparable
accuracy to that of the full-sample optimised PW estimate
has been demonstrated using several examples. The results
obtained have shown that the proposed method offers a
viable alternative for SKD estimation.

Appendix A. The OFR-LOO-LR algorithm

The modified Gram–Schmidt orthogonalisation proce-
dure [4] calculates the A matrix row by row and
orthogonalises U as follows: at the lth stage make the
columns /j , l þ 1pjpN, orthogonal to the lth column and
repeat the operation for 1plpN � 1. Specifically, denot-
ing /

ð0Þ
j ¼ /j, 1pjpN, then for l ¼ 1; 2; . . . ;N � 1,

wl ¼ /
ðl�1Þ
l ;

al;j ¼ wT
l /
ðl�1Þ
j =ðwT

l wlÞ; l þ 1pjpN;

/
ðlÞ
j ¼ /

ðl�1Þ
j � al;jwl ; l þ 1pjpN:

9>>>=
>>>;

(50)

The last stage of the procedure is simply wN ¼ /
ðN�1Þ
N . The

elements of g are computed by transforming yð0Þ ¼ y in a

similar way

gl ¼ wT
l y
ðl�1Þ=ðwT

l wl þ llÞ

yðlÞ ¼ yðl�1Þ � glwl

)
1plpN. (51)

At the beginning of the lth stage of the OFR procedure, the
l � 1 regressors have been selected and the regression
matrix can be expressed as

Uðl�1Þ ¼ ½w1 � � �wl�1 /
ðl�1Þ
l � � �/

ðl�1Þ
N �. (52)

Let a very small positive number Tz be given, which
specifies the zero threshold and is used to automatically
avoid any ill-conditioning or singular problem. With the
initial conditions as specified in (28), the lth stage of the
selection procedure is given as follows.

Step 1: For lpjpN:

� Test — Conditioning number check. If
ð/
ðl�1Þ
j Þ

T/
ðl�1Þ
j oTz, the jth candidate is not considered.

� Compute

g
ðjÞ
l ¼ ð/

ðl�1Þ
j Þ

T yðl�1Þ=ðð/ðl�1Þj Þ
T/
ðl�1Þ
j þ ljÞ,

�ðjÞl ðkÞ ¼ y
ðl�1Þ
k � fðl�1Þj ðkÞg

ðjÞ
l ;

ZðjÞl ðkÞ ¼ Zl�1ðkÞ �
ðfðl�1Þj ðkÞÞ2

ð/
ðl�1Þ
j Þ

T/
ðl�1Þ
j þ lj

;

9>>>=
>>>;

k ¼ 1; . . . ;N,
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Fig. 9. (a) Decision boundary of the Parzen window estimate and (b) decision boundary of the sparse kernel density estimate for the two-class two-

dimensional classification example, where circles represent the class-1 training data and crosses the class-0 training data.

Table 6

Performance of the Parzen window estimate and the two sparse kernel density estimates for the two-class two-dimensional classification example

Method p̂ð�jC0Þ kernel width p̂ð�jC1Þ kernel width Test error rate (%)

PW estimate 125 kernels 0.24 125 kernels 0.23 8.0

Proposed SKD estimate 6 kernels 0.28 5 kernels 0.28 8.0

SKD estimate of [6] 5 kernels 0.20 4 kernels 0.20 8.3
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J
ðjÞ
l ¼

1

N

XN

k¼1

�ðjÞl ðkÞ

ZðjÞl ðkÞ

 !2

,

where y
ðl�1Þ
k and fðl�1Þj ðkÞ are the kth elements of yðl�1Þ

and /
ðl�1Þ
j , respectively. Let the index set Jl be

Jl ¼ flpjpN and j passes Testg.

Step 2: Find

Jl ¼ J
ðjl Þ

l ¼ minfJ
ðjÞ
l ; j 2 Jlg.

Then the jlth column of Uðl�1Þ is interchanged with the lth
column of Uðl�1Þ, the jlth column of A is interchanged with
the lth column of A up to the ðl � 1Þth row, and the jlth
element of k is interchanged with the lth element of k. This
effectively selects the jlth candidate as the lth regressor in
the subset model.

Step 3: The selection procedure is terminated with a
ðl � 1Þ-term model, if JlXJl�1. Otherwise, perform the
orthogonalisation as indicated in (50) to derive the lth row
of A and to transform Uðl�1Þ into UðlÞ; calculate gl and
update yðl�1Þ into yðlÞ in the way shown in (51); update the
LOO error weightings

ZlðkÞ ¼ Zl�1ðkÞ �
w2

k;l

wT
l wl þ ll

; k ¼ 1; 2; . . . ;N

and go to Step 1.
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