
Minimum Symbol-Error-Rate Equalisation

Sheng Chen

Department of Electronics and Computer Science
University of Southampton, Southampton SO17 1BJ, U.K.

The equalisation topic is well researched and a variety of
solutions are available. The MAP sequence detector pro-
vides the lowest symbol error rate (SER) attainable, and the
MLSE offers a near optimal solution. However, these opti-
mal techniques are not yet practical for high-level modula-
tion schemes, due to their computational complexity. Lin-
ear equaliser or linear-combiner DFE are practical schemes
for high-level modulation systems, as they readily meet real-
time computation requirements. This research re-visits the
linear equaliser and conventional DFE. Classically, the min-
imum mean square error (MMSE) solution is regarded as
the “optimal” solution for the linear equaliser or DFE. For
the MMSE to be optimal, the probability distribution of the
equaliser soft output must be Gaussian. As the PDF of
the equaliser output is clear non-Gaussian (a sum of mixed
Gaussians), the MMSE solution can be far away from the
optimal solution. Adopting the non-Gaussian approach nat-
urally leads to the optimal minimum SER (MSER) equaliser.

We will first consider the real-valued channel which gen-
erates the received signal sample of:r(k) = nh�1Xi=0 his(k � i) + n(k) (1)

wherehi are the CIR taps,nh is the CIR length, the AWGNn(k) has variance�2n, and theL-PAM symbols(k) 2 S 4=fsl = 2l � L� 1; 1 � l � Lg. The linear equaliser with an
orderm has the form:y(k) = wT r(k) (2)

where r(k) = [r(k) r(k � 1) � � � r(k � m + 1)℄T , andw = [w0 w1 � � �wm�1℄T is the weight vector. The equaliser
outputy(k) is passed to a threshold detector which provides
an estimatês(k � d) of the transmitted symbols(k � d),
where0 � d � m+ nh � 2 is the decision delay.

The received signal vector can be expressed as:r(k) = �r(k) + n(k) =Hs(k) + n(k) (3)

wheren(k) = [n(k) n(k � 1) � � �n(k �m+ 1)℄T , them�(m + nh � 1) CIR matrixH = [Hi;q ℄ is a Toeplitz matrix
satisfyingHi;q = hq�i if 0 � q � i � nh � 1 andHi;q =0 otherwise. Ass(k) hasNs = Lm+nh�1 combinations,
denoted assq, 1 � q � Ns, �r(k) takes values from the
channel state setR 4= f�rq = Hsq; 1 � q � Nsg : (4)

Similarly, expressy(k) asy(k) = wT (�r(k) + n(k)) = �y(k) + e(k) (5)

where e(k) is Gaussian with zero mean and variancewTw�2n, and �y(k) takes values from the setY 4= f�yq =wT �rq ; 1 � q � Nsg, which can be divided intoM subsetsYl 4= f�yq 2 Yjs(k � d) = slg; 1 � l � L : (6)

Let the combined impulse response of the equaliser and
channel be, which is given byT = wTH = [0 1 � � � m+nh�2℄ (7)

Theny(k) can be expressed asy(k) = ds(k � d) +Xi 6=d is(k � i) + e(k) : (8)

The first term in (8) is the desired signal, and the second term
is the residual ISI. Thus the optimal decision making isŝ(k � d) = 8>><>>: s1; if y(k) � (s1 + 1)d ;sl; if (sl � 1)d < y(k) � (sl + 1)d

for l = 2; � � �L� 1 ;sL; if y(k) > (sL � 1)d :
(9)

Observe that the PDF ofy(k) is given bypy(x) = 1p2��npwTw 1Ns LXl=1 NsbXi=1 exp0B���x� �y(l)i �22�2nwTw 1CA
(10)

whereNsb = Ns=L and �y(l)i 2 Yl. Using the propertyYl+1 = Yl+2d and noting the symmetric distribution ofYl
around the symbol pointdsl, it can be shown that the SER
is: PE(w) = Nsb NsbXi=1 Q(gl;i(w)) (11)

where = 2(L� 1)=L, andgl;i(w) = �y(l)i � d(sl � 1)�npwTw : (12)

The MSER solutionwMSER that minimizes the SER (11)
can readily be obtained using a gradient-based numerical op-
timization algorithm, such as the simplified conjugated gra-
dient algorithm with reseting the search direction to the neg-
ative gradient�rPE(w) everyI iterations. As the SER is



invariant to a positive scaling ofw, it is computationally ad-
vantageous to normalize the weight vector towTw = 1.

For block-data adaptation, a channel estimate can be iden-
tified and the MSER solution is obtained by optimization.
Alternatively, a kernel density or Parzen window estimate
approach can be adopted. An estimated PDF ofpy(x) isp̂y(x) = 1p2��npwTw 1K KXk=1 exp � (x� y(k))22�2nwTw !

(13)
whereK is the length of training samples, and the radius
parameter�n is related to�n. From this estimated PDF, the
estimated SER expression is given byP̂E(w) = K KXk=1Q(ĝk(w)) (14)

where ĝk(w) = y(k)� ̂d(s(k � d)� 1)�npwTw ; (15)̂d = wT ĥd, andĥd an estimate for thed-th columnhd ofH. Given the gradientrP̂E(w), the estimated MSER solu-
tion can be obtained. To derive a sample-by-sample adaptive
algorithm, consider a single-sample estimate ofpy(x)p̂y(x; k) = 1p2��npwTw exp � (x� y(k))22�2nwTw ! : (16)

With a re-scaling after each update to ensurewTw = 1, the
instantaneous stochastic gradient is given byrP̂E(w; k) =p2��n exp�� (y(k)� ̂d(s(k � d)� 1))22�2n ���(y(k)� ̂d(s(k � d)� 1))w � r(k) + (s(k � d)� 1)ĥd� :

(17)
This leads to the least SER (LSER) algorithmw(k + 1) = w(k)� �rP̂E(w(k); k) : (18)

The adaptive gain� and width�n are the two algorithm pa-
rameters that need to be set appropriately.

We next address the DFE defined by:y(k) = wT r(k) + bT ŝb(k) (19)

whereŝb(k) = [ŝ(k � d� 1) � � � ŝ(k � d� nb)℄T is the past
detected symbol vector withnb being the feedback order,
andb = [b1 � � � bnb ℄T the feedback filter coefficient vector.
We will choosed = nh � 1, m = nh andnb = nh � 1,
as this choice of the DFF structure parameters is sufficient to
guarantee linear separability. Definesf (k) = [s(k) � � � s(k�d)℄T and partition the CIR matrixH = [H1 jH2℄, whereH1
has a dimension ofm� (d+1) andH2 a dimension ofm�

nb. Under the assumption that the past decisions are correct,
that is,ŝb(k) = sb(k) = [s(k � d� 1) � � � s(k � d� nb)℄T ,
the received signal vector can be expressed asr(k) = H1sf (k) +H2ŝb(k) + n(k) : (20)

Thus, the decision feedback can be viewed to translate the
original observation spacer(k) into a new spacer0(k):r0(k) 4= r(k)�H2ŝb(k) : (21)

In this translated observation space, the DFE (19) becomes a
“linear equaliser”:y(k) = wT r0(k) = ~y(k) + e(k) : (22)

Notice that the feedback filter coefficients do not disappear.
They in fact have been set to their optimal values, which
are the related channel taps. All the results for the linear
equaliser are readily applicable. The SER expression (11)
gives the lower-bound of the SER for the DFE with the
weight vectorw, under the assumption of correct symbols
being fed back.

We finally turn to the complex-valued channel. ForM =L2, theM -QAM symbol set is defined byS 4= fsl;q = ul + juq; 1 � l; q � Lg (23)

with ul = 2l�L�1 anduq = 2q�L�1. Asd = Rd+jId
generally involves a rotation of the symbol set, it is desired
to perform a de-rotation ofww = jdjwd (24)

so thatId = 0. With this measure, the optimal decision rule
for ŝR(k � d) is according toŝR(k�d) = 8>><>>: u1; if yR(k) � (u1 + 1)Rd ;ul; if (ul � 1)Rd < yR(k) � (ul + 1)Rd

for l = 2; � � �L� 1 ;uL; if yR(k) > (uL � 1)Rd
(25)

and a similar rule is used for̂sI(k � d). Furthermore, the
SER is given byPE(w) = PER(w) + PEI (w)� PER(w)PEI (w) (26)

wherePER(w) = ProbfŝR(k � d) 6= sR(k � d)g andPEI (w) = ProbfŝI(k � d) 6= sI(k � d)g can similarly
be derived based on the PAM result. The MSER is defined
as the solution that minimizes the upper-bound of the SERPEB (w) = PER(w) + PEI (w) (27)

and the adaptive MSER algorithm can similarly be derived.



Example 1: The channel isH(z) = 1:0 + 0:5z�1 with 4-
PAM, the linear equaliser hasm = 2 andd = 0.
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Fig. 1. The SER surface for Example 1 with SNR= 35 dB. The MMSE so-
lutionwMMSE = [0:929 �0:371℄T , which has been normalized, withlog10 PE(wMMSE) = �2:7593. The MSER solutionwMSER =�[0:896 � 0:445℄T , � > 0, with log10 PE(wMSER) = �7:1566.

Example 2: The channel isH(z) = 0:3+ 1:0z�1� 0:3z�2
with 8-PAM, the DFE hasm = 3, d = 2 andnb = 2.
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Fig. 2. Lower-bound symbol error rate comparison for Example 2, assum-
ing correct symbols being fad back.

0

0.5

1

1.5

2

2.5

3

-0.5 0 0.5 1 1.5 2 2.5

co
nd

iti
on

al
 p

df

y

decision
threshold

decision
threshold

(a) MMSE

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5 1 1.5 2 2.5

co
nd

iti
on

al
 p

df

y

decision threshold

(b) MSER

Fig. 3. Conditional PDF of the equaliser output givens(k � d) = 1 for
Example 2 with SNR= 34 dB. The weight vector is normalized to a
unit length.
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Fig. 4. Learning curves of the LSER for Example 2 with SNR= 34 dB, av-
eraged over 100 runs. Initialw = [�0:01 0:01 0:01℄T . Dashed curve:
after 200-sample training, switched to decision-directedadaptation withŝ(k � d) substitutings(k � d).


