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Identification of Nonlinear Systems Using
Generalized Kernel Models

S. Chen, X. Hong, C.J. Harris and X.X. Wang

Abstract—Nonlinear system identification is considered using a gen-
eralized kernel regression model. Unlike the standard kernel model,
which employs a fixed common variance for all the kernel regressors,
each kernel regressor in the generalized kernel model has an individu-
ally tuned diagonal covariance matrix that is determined by maximiz-
ing the correlation between the training data and the regressor using a
repeated guided random search based on boosting optimization. An ef-
ficient construction algorithm based on orthogonal forward regression
with leave-one-out test statistic and local regularization is then used to
select a parsimonious generalized kernel regression model from the re-
sulting full regression matrix. The proposed modeling algorithm is fully
automatic and the user is not required to specify any criterion to ter-
minate the construction procedure. Experimental results involving two
real data sets demonstrate the effectiveness of the proposed nonlinear
system identification approach.

Keywords—Nonlinear system identification, neural networks, regres-
sion, kernel model, orthogonal least squares, cross validation, leave-one-
out test score, correlation.

I. INTRODUCTION

Most systems encountered in the real world are nonlinear
and in many practical applications nonlinear models are re-
quired to achieve an adequate modeling accuracy. A funda-
mental principle in system modeling is that the model should
be no more complex than is required to capture the under-
lying system dynamics. This concept, known as the parsi-
monious principle, is particularly relevant in nonlinear model
building because the size of a nonlinear model can easily be-
come explosively large [1]. Forward selection using the or-
thogonal least squares (OLS) algorithm [2]–[10] is an effec-
tive construction method that is capable of producing par-
simonious linear-in-the-weights nonlinear models with ex-
cellent generalization performance. Alternatively, the state-
of-art sparse kernel modeling techniques, such as the sup-
port vector machine and relevant vector machine [11]–[19],
have been gaining popularity in data modeling applications.
These existing sparse regression modeling techniques typi-
cally place the kernel centers or mean vectors at the training
input data and use a fixed common kernel variance for all the
regressors. The value of this common kernel variance has a
crucial influence on the sparsity level and generalization ca-
pability of the resulting model, and it has to be determined via
cross validation. For example, in [5] a genetic algorithm is
applied to determine the appropriate common kernel variance
through optimizing the model generalization performance us-
ing a separate validation data set.

In this paper, we extend the standard kernel modeling ap-
proach. Specifically, we consider the use of a generalized
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kernel model for nonlinear systems, in which each kernel re-
gressor has an individually tuned diagonal covariance matrix.
Such a generalized kernel regression model has the potential
of enhancing modeling capability and producing sparser final
models, compared with the standard approach of single fixed
common variance. The difficult issue however is how to de-
termine these kernel covariance matrices. We note that the
correlation function between a kernel regressor and the train-
ing data defines the “similarity” between the regressor and
the training data and it can be used to “shape” the regressor
by adjusting the associated kernel covariance matrix in order
to maximize the absolute value of this correlation function. A
guided random search method, referred to as the weighted op-
timization algorithm, is considered to perform the associated
optimization task. This weighted optimization algorithm has
its root from boosting [20]-[23]. Since the solution obtained
by this weighted optimization algorithm may depend on the
initial choice of population, the algorithm is augmented into
a repeated weighted optimization method to provide a robust
optimization and guarantee stable “global” solutions regard-
less the initial choice of population. The determination of
kernel covariance matrices basically provides the pool of re-
gressors or the full regression matrix, from which a parsimo-
nious subset model can be selected using a standard kernel
model construction approach.

The construction algorithm that we adopt to select a sparse
generalized kernel model is the one that uses an OLS selec-
tion with the leave-one-out (LOO) test score and local regu-
larization (LR) [10], which will be referred to as the LROLS
with LOO score for short. The motivation of this construc-
tion algorithm is twofold. Firstly, the objective of model-
ing should be to optimize model generalization capability or
test performance, rather than aiming to minimize the training
mean square error (MSE). Moreover, it is highly desired that
the model building process is automatic without the need for
the user to specify some additional termination criterion. The
so-called delete-one cross validation with its associated LOO
score [8],[24]-[29]provides the capability to achieve this aim,
without resorting to use a separate validation data set. Sec-
ondly, the computational efficiency and level of sparsity are
crucial to the model construction process. The computational
efficiency of adopting the LOO test score is ensured by us-
ing the OLS algorithm, as is shown in [8],[10], and multiple-
regularizers or LR is known to be capable of providing very
sparse solutions [6],[9],[10],[15]. The previous work [10] has
shown that the LROLS with LOO score offers considerable
advantages in realizing these two critical objectives of sparse
modeling over several other state-of-art methods. The outline
of the paper is as follows. Section II presents the generalized
kernel regression model for nonlinear system identification.
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Section III describes the proposed approach for the construc-
tion of sparse generalized kernel models. Section IV gives
our modeling experiments, while Section V offers our con-
clusions.

II. GENERALIZED KERNEL REGRESSION MODEL

Consider a general discrete stochastic nonlinear system
represented by [30]:����� ���	�
������	�������������	����������������������������������! #"�$&%(')�� � � �
* �  #"�$+%(' � (1)

where � � and � � are the system input and output vari-
ables, respectively, ,&- and ,&. are positive integers repre-
senting the known lags in ��� and �/� , respectively, the ob-
servation noise ' � is uncorrelated with zero mean, * � �0 � ���� ������� ����� �1� �	�� �����2� ����� ��354 denotes the system input
vector with a known dimension , � ,&. % ,�- , ���	�76�$ is a
priori unknown system mapping, and " is an unknown pa-
rameter vector associated with the appropriate, but yet to be
determined, model structure. The system model (1) is to be
identified from an 8 -sample system observational data set9;: �=<�*&�����/��> :�)?+ , using some suitable functional which
can approximate � � �76�$ with arbitrary accuracy. One class of
such functionals is the regression model of the form:���@�BA���C%(')�D� :FEG H ?+&I HKJ�H �
*&��$+%(')� (2)

where A� � denotes the model output given the input * � , I H
are the model weight parameters,

J/H �L6�$ are the model regres-
sors, and 8NM is the total number of candidate regressors. The
model (2) is very general and includes all the kernel based
models, the polynomial-expansion model [2] and the general
linear-in-the-weights nonlinear model [31]. In particular, for
a kernel based model, the kernel mean vectors are placed at
the training input data points giving rise to 8;M � 8 , and the
regressor

J H �O*&$ takes the formJ�H �O*&$P�RQTS�U �
*WVX* H $ 4 �O*YVX* H $�Z�[�\�]^�`_baTcPa 8 (3)

where * H are the training input vectors, [ \ is a common ker-
nel variance and Qd�76�$ a chosen kernel function.

We will model the unknown dynamical process (1) by us-
ing a generalized kernel regression model. Specifically, we
allow the kernel regressor

J/H �
*&$ defined in (3) to be extended
to: J�H �
*&$e�fQ S U �
*WVg* H $ 4ih ��H �
*WVg* H $ ] (4)

where the c th kernel covariance matrix takes the form ofh H � diag <�[ \H
j  ���������k[ \HOj � > . For example, the generalized
Gaussian kernel model adopts a general Gaussian function
regressor

J�H �O*&$P�mln�
*o �* H � h H $ withln�
*o �* H � h H $P�qp�rtsuS�V _v �
*WVX* H $ 4 h ��H �
*WVX* H $2] (5)

This generalized kernel model will have better modeling ca-
pability than the standard kernel model. However, it is more

difficult to construct, as all the diagonal kernel covariance
matrices must be specified.

With the regressor taking the form of (4), the regression
model (2) becomes a generalized kernel model. This kernel
model for the data point �
*+�t������$xw 9;: can be expressed as�/�b�yA���C%(')�@�fz 4 �|{}$�"1%~')� (6)

with the following notations"Y� 0 I  I \ ����� I : 3 4 (7)zi�7{}$�� 0 J ��O*&��$ J \ �
*&��$������ J : �
*&��$�3 4 (8)

Furthermore, this generalized kernel model over the training
set
9 :

can be written in the matrix form as�g���W"1%~� (9)

by defining the following additional notations�g� 0 �/o� \ �����2� : 3 4 (10)�D� 0 '  ' \ ������' : 3 4 (11)�y� 0 z��z \ ������z : 3 (12)z H � 0 J�H �
*+�$ J�H �
* \ $������ J�H �
* : $L3 4 �x_Da�c�a 8 (13)

Note that z � denotes the { th column of the regression matrix� , while zi�|{�$ is the { th row of � .
Let an orthogonal decomposition of the regression matrix� be �y����� (14)

where �B��������
_��} j \ ����� �t j :� _ . . .

...
...

. . .
. . . � : �� j :� ����� � _

������� (15)

and ��� 0 �  � \ ����� � : 3 (16)

with orthogonal columns that satisfy
� 4H ��� � �

, if c����� .
The regression model (9) can alternatively be expressed as�g�m����%(� (17)

where the weight vector ��� 0 �  � \ ����� � : 3K4 , defined in
the new space � , satisfy the triangular system��"W�f� (18)

Knowing � and � , " can readily be solved from (18). The
space spanned by the original model bases z H , _Ya c¡a 8 ,
is identical to the space spanned by the orthogonal bases

� H
,_Ra¢c£a 8 , and the model output A�/� is equivalently ex-

pressed by A� � � � 4 �7{}$�� (19)

where
� �7{}$P� 0 ¤ � j  ¤ � j \ ����� ¤ � j : 354 is the { th row of � .
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III. A CONSTRUCTION ALGORITHM FOR GENERALIZED

KERNEL MODELS

The objective of sparse modeling is to construct a subset
model consisting of 8 � ��� 8 $ significant regressors only
from the full set of regressors defined in (13), which can ad-
equately model the underlying system (1).

A. Determination of the full regression matrix

To specify the pool of regressors or the full regression ma-
trix � , one needs to determine all the associated diagonal co-
variance matrices h H , _@a�cPa 8 . The correlation between a
regressor z H and the training data is defined by� � h H $�� �&4Fz H� � 4 � � z 4H z H (20)

This correlation represents the “similarity” between z H and� , and it is a function of the regressor’s kernel covariance
matrix. Thus we can adopt this correlation function as the
optimization criterion to determine the regressor’s kernel co-
variance matrix. Specifically, we should choose h H so that� � � h H $ � is maximized. We now explain why this is a good
strategy to specify the pool of regressors. Let us first de-
fine the least squares cost or MSE associated with an � -term
model as � M � _8 :G��?+ �|��� V A�/��$ \ (21)

where for the notational simplicity the same notation A� � is
also used for representing the � -term model output. Obvi-
ously

� � � � 4 �FZ 8 �	�)�
� \ Z 8 . Assuming that z H is se-
lected to form a one-term model, the associated reduction in
the MSE value can be shown to be� � � � � V � C�� �&4Fz H�� \z 4H z H (22)

which can be rewritten as� � � � � 4 � � � �&4Fz H�� \�
� 4 �+$ � z 4H z H�� ���)�
� \ � � � h H $ � \ (23)

Since �)��� \ is a constant, maximizing
� � � h H $ � leads to a max-

imum reduction in the MSE value.
With the correlation function as the optimization criterion,

we now turn our attention to optimization algorithm. We pro-
pose a repeated guided random search method to perform the
associated optimization tasks. This method adopts ideas from
boosting [20]-[23]. The basic component of the proposed op-
timizer is the weighted optimization algorithm, which is a
simple guided random search method with boosting mecha-
nism. Given the training data

9 :
and for fitting the � th re-

gressor’s covariance matrix, the algorithm is summarized as
follows.

Weighted optimization algorithm

Initialization: Set iteration index � � � , give the � randomly
chosen initial values for h�� , h�� ��� � � $�� h�� \ �� � � $ , ������� h���� �� � � $ ,

with the associated weightings � ��� �H � � for _ a cba � , and
specify a small positive value  for terminating the search.

Step 1: Boosting
1. Calculate the loss of each point in the population, namely

cost

H � _CV � � � h!� H �� � � $�$ � �d_Da�cea �
2. Find h#"%$'&)(� � � $��+*-,/.103254�< cost

H �P_@a�cPa � >
and h7698/:)&;(� � � $��+*-,/.<0=*�r�< cost

H �x_Da�cea � >
3. Normalize the loss

loss

H � cost

H> �� ?F cost
� �P_@a�cPa �

4. Compute a weighting factor ? � according to@ � � �G H ?+ � ��� �H loss

H � ? � � @ �_CVA@ �
5. Update the weighting vector

� ���)B ��H �DC � ��� �H ? loss E� for ? � a�_��� ��� �H ? )� loss E� for ? �GF _�� _@a~cea �
6. Normalize the weighting vector

� ���)B ��H � � ���)B H�H> �� ?+ � ���)B H�� �x_Da�c�a �
Step 2: Parameter updating
1. Construct the � � %R_�$ th point using the formulah ���IB ��� � � $�� �G H ?+ � ���)B ��H h � H �� � � $
2. Construct the � � % v $ th point using the formulah �J�KB \ �� � � $�� h "L$'&;(� � � $+%�M h "L$'&;(� � � $iV h ���IB ��� � � $�N
3. Choose a better point (smaller loss value) fromh ���IB ��� � � $ and h ���IB \ �� � � $ to replace h#698O:)&)(� � � $ , which will in-

herit the weighting � value from h#698/:)&;(� � � $ .
Set � � � %f_ and repeat from Step 1 untilPPP h ���IB ��� � � $iV h ���IB H�� � � V�_	$ PPPRQ  

Then choose the � th regressor covariance matrix as h3� �h "L$'&;(� � � $ .
The algorithmic parameter that needs to be set appropriately
is the population size � . The above weighted optimization
algorithm performs a guided random search. However, the
solution obtained may depend on the initial choice of popula-
tion. To derive a robust algorithm that guarantees a “global”
optimal solution, we augment the algorithm into the follow-
ing repeated weighted optimization algorithm.
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Repeated weighted optimization algorithm

Initialization: Give a positive integer number � for con-
trolling the maximum repeating times, and choose a small
positive number   for terminating the search.

First generation: Randomly choose the � number of the ini-
tial population h�� H�� ��������� h���� �� , and call the weighted opti-
mization algorithm to obtain a solution h "L$'&;(� .

Repeat loop: For co� _�� �
Set h�� ��� � h "L$'&;(� , and randomly generate the other � V _
points h�� H �� for

v aTc�a � .
Call the weighted optimization algorithm to obtain a solutionh "L$'&;(� .

If
PPP h � H�� V h "L$'&;(� PPP Q  

Exit loop;
End if
End for
Choose the � th regressor’s covariance matrix as h � � h "L$'&;(� .

The important algorithmic parameters that need to be cho-
sen appropriately are the maximum repeating times � and
the termination criterion   . To further simplify control, we
may simply let the loop repeat � times. Then we only
needs to set an appropriate value for � . We have applied
this repeated weighted optimization algorithm as a generic
global optimizer in several difficult optimization applications
[32], and analysis and empirical results given in [32] have
shown that this guided random search algorithm is effec-
tive. The need to determine the diagonal covariance matrices
of every candidate regressors represents additional computa-
tional complexity of the proposed generalized kernel model-
ing approach, in comparison with the standard kernel method.
However, the standard kernel approach would typically re-
quire cross validation for specifying the common single ker-
nel variance, and this may involve additional validation data
set and can also be computationally expensive. The proposed
method does not require cross validation to tune kernel pa-
rameters, which is an important practical advantage.

B. The LROLS algorithm with LOO test score for subset
model selection

Once the full regression matrix � has been designed, the
LROLS algorithm with the LOO test score [10] can be used
to select a subset model. In this construction algorithm, the
weight parameter vector � is the regularized least squares so-
lution obtained by minimizing the following regularized error
criterion ��� �
������$P�R� 4 �C% :G H ?+ � H � \H (24)

where � � 0 �  � \ ����� � : 354 is the regularization parameter
vector, which is optimized based on the evidence procedure
[33] with the iterative updating formulas [9],[10]

�
	 $�6H � � 8� �H8 V � 8�� � ��4&�� \H �`_Da�cea 8 (25)

where

�
H � � 4H � H� H % � 4H � H and � � :G H ?+ � H (26)

Usually a few iterations (typically less than 10) are sufficient
to find a local optimal � . The criterion (24) has its root in the
Bayesian learning framework. This Bayesian interpretation
of
� � �O������$ together with the full derivation of the updating

formulas (25) and (26) can be found in [9].
A forward selection procedure is used to construct a sparse

model by incrementally minimizing the LOO test score. As-
sume that an � -term model is selected from the full model
(17). Then the LOO test error [24],[27]-[29], denoted as' � M j ���K�� , for the selected � -term model can be shown to be
[8],[10] ' � M j ��� �� � ' � M ��@ � M �� (27)

where ' � M �� is the � -term modeling error and @ � M �� is the as-
sociated LOO error weighting given by@ � M �� � _CV MG H ?+ ¤ \ � j H� 4H � H % � H (28)

The mean square LOO error for the model with a size � is
defined by

� M ��� � M ' � M j ��� �� N \�� � _8 :G�)?F M ' � M �� N \M @ � M �� N \ (29)

This LOO test score is a measure of the model generalization
performance and it can be computed efficiently due to the fact
that the � -term model error ' � M �� and the associated LOO

error weighting @ � M �� can be calculated recursively according
to ' � M �� �R��� V MG H ?+ ¤ � j H � H �R' � M ��H�� V ¤ � j M � M (30)

and @ � M �� � _CV MG H ?+ ¤ \ � j H� 4H � H % � H� @ � M ����� V ¤ \ � j M� 4M � M % � M (31)

respectively. For the benefits of those readers who are unfa-
miliar with the LOO statistics, the idea of delete-one cross
validation and the computation of the LOO test error are ex-
plained in Appendix A.

The subset model selection procedure can be carried as fol-
lows: at the � th stage of the selection procedure, a model
term is selected among the remaining � to 8 candidates if
the resulting � -term model produces the smallest LOO test
score

� M . It has been shown in [8] that the LOO statistic
� M

is convex with respect to the model size � . That is, there ex-
ists an “optimal” model size 8 � such that for � a 8 � � M de-
creases as � increases while for ,��q8 � %(_ � M increases as� increases. This property is extremely useful, as it enables
the selection procedure to be automatically terminated with
an 8 � -term model when

�/:�� B  F ��:��
, without the need for
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the user to specify a separate termination criterion. The iter-
ative procedure for constructing a sparse generalized kernel
model based on the LROLS with the LOO test score can now
be summarized:

Initialization. Set
� H

, _@a~cea 8 , to the same small positive
value (e.g. 0.0001). Set iteration index � � _ .

Step 1. Given the current � and with the following initial
conditions ' � � �� �f� � and @ � � �� � _��x_Daq{�a 8� � � : �&4+�g� : > : ��?+ � \� (32)

use the procedure described in Appendix B to select a subset
model with 8�� terms.

Step 2. Update � using (25) and (26) with 8 � 8�� . If �
remains sufficiently unchanged in two successive iterations
or a pre-set maximum iteration number (e.g. 10) is reached,
stop; otherwise set � %m� _ and go to Step 1.
The computational complexity of the above algorithm is
dominated by the 1st iteration. After the 1st iteration, the
model set contains only 8  ��� 8 $ terms, and the complex-
ity of the subsequent iteration decreases dramatically. It is
worth emphasizing that regressor selection is based on the
LOO statistic, not the usual training MSE. Thus, the subset
model selection is directly based on the model generaliza-
tion capability using a single training set, with the local reg-
ularization further enforcing sparsity. Moreover, the subset
model selection is fully automatic, and the user does not re-
quire to specify a termination criterion.

IV. MODELING EXAMPLES

Two real-data sets were used to demonstrate the effective-
ness of the proposed approach for constructing sparse gener-
alized kernel models. The population size � and the maxi-
mum repeating times � for fitting kernel covariance matri-
ces were chosen empirically to ensure that the subset selec-
tion procedure could produce consistent final models with the

TABLE I

SUBSET GENERALIZED GAUSSIAN KERNEL MODEL GENERATED FOR THE ENGINE DATA SET BY THE LROLS ALGORITHM WITH THE LOO TEST

SCORE. THE KERNEL COVARIANCE MATRICES ARE DETERMINED BY MAXIMIZING THE CORRELATION CRITERION USING THE REPEATED WEIGHTED

OPTIMIZATION ALGORITHM.

term � mean vector * � diagonal covariance h�� weight I �
1 4.72520e+0 5.02450e+0 5.80060e+0 4.87424e+0 1.32234e+2 1.37096e+1 -6.82324e+1
2 4.61830e+0 5.00510e+0 5.80060e+0 4.24816e+0 2.10933e+2 1.42741e+1 2.14508e+2
3 4.59540e+0 5.82000e+0 5.82000e+0 3.70595e+0 1.87710e+1 3.87729e+2 -5.91563e+1
4 4.51140e+0 5.00510e+0 5.80060e+0 3.56184e+0 1.37055e+2 1.49309e+1 -1.47935e+2
5 3.11380e+0 4.53940e+0 4.53940e+0 4.00000e+2 4.00000e+2 4.00000e+2 -2.21061e+2
6 4.16770e+0 5.80060e+0 5.80060e+0 1.76914e+0 7.20294e+1 3.54250e+2 3.90802e+1
7 4.39680e+0 5.80060e+0 5.02450e+0 3.12161e+2 7.14241e+0 4.67573e+0 4.30384e+0
8 4.55720e+0 5.80060e+0 5.00510e+0 4.72670e+0 1.20541e+1 1.53883e+1 -2.08342e+1
9 2.86180e+0 3.74390e+0 4.52000e+0 4.00000e+2 4.00000e+2 4.00000e+2 2.15294e+2

10 4.63360e+0 5.80060e+0 5.00510e+0 4.03028e+0 1.56167e+1 9.56584e+1 8.30105e+1
11 4.12190e+0 4.50060e+0 4.50060e+0 1.63687e+0 3.34953e+2 1.12488e+2 -2.44486e+1
12 4.61830e+0 5.02450e+0 5.80060e+0 3.50205e+0 1.12860e+1 2.81422e+2 -9.63619e+0
13 3.16730e+0 5.80060e+0 3.74390e+0 3.62482e+2 5.98815e+0 2.43691e+2 4.47388e+0
14 4.39680e+0 5.80060e+0 5.00510e+0 3.86510e+0 7.20823e+0 7.31132e+1 -1.11560e+1
15 4.31280e+0 5.00510e+0 5.00510e+0 2.27494e+0 9.24282e+0 2.39816e+2 7.25891e+0
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Fig. 1. The engine data set: (a) system input ��� , and (b) system output ��� .

same levels of modeling accuracy and model sparsity for re-
peating runs. Empirically, it was found that the values of �
and � did not critically influence the modeling result.
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TABLE II

SUBSET GENERALIZED GAUSSIAN KERNEL MODEL GENERATED FOR THE GAS FURNACE DATA SET BY THE LROLS ALGORITHM WITH THE LOO

TEST SCORE. THE KERNEL COVARIANCE MATRICES ARE DETERMINED BY MAXIMIZING THE CORRELATION CRITERION USING THE REPEATED

WEIGHTED OPTIMIZATION ALGORITHM.

term � mean vector * � weight I �
diagonal covariance h �

1 5.80000e+1 5.56000e+1 5.35000e+1 -2.33000e+0 -2.47300e+0 -2.49900e+0 -7.13848e+1
4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2

2 5.54000e+1 5.52000e+1 5.53000e+1 -1.14900e+0 -1.61900e+0 -1.62800e+0 7.74589e+1
4.00000e+2 4.00000e+2 4.00000e+2 1.70286e+2 1.75048e+2 8.44736e+1

3 5.71000e+1 5.65000e+1 5.60000e+1 -7.00000e-3 -1.60000e-1 -4.88000e-1 -2.79416e+2
3.30424e+2 3.30759e+2 3.81122e+2 4.91483e+1 4.00000e+2 3.23049e+2

4 5.85000e+1 5.86000e+1 5.80000e+1 1.95000e-1 2.53000e-1 2.04000e-1 6.14813e+2
3.99072e+2 3.99094e+2 3.99603e+2 1.45628e+2 7.63318e+1 8.58759e+1

5 5.04000e+1 5.02000e+1 5.04000e+1 -6.03000e-1 -5.53000e-1 -1.61000e-1 -6.37936e+1
3.96396e+2 3.96400e+2 3.95757e+2 1.86644e+1 3.92835e+2 2.40638e+2

6 5.73000e+1 5.78000e+1 5.83000e+1 -1.82000e-1 1.70000e-2 1.31000e-1 -5.59610e+2
3.96126e+2 3.90090e+2 3.91998e+2 2.66949e+2 5.14039e+1 7.70242e+1

7 5.24000e+1 5.20000e+1 5.20000e+1 -1.05500e+0 -5.88000e-1 -1.80000e-1 -2.41017e+1
3.31951e+2 4.00000e+2 3.95641e+2 2.96358e+1 2.00516e+2 6.99495e+1

8 5.43000e+1 5.30000e+1 5.26000e+1 -5.28000e-1 -7.40000e-1 -8.24000e-1 3.25157e+2
3.97725e+2 3.98725e+2 3.96916e+2 3.37194e+1 3.96999e+2 3.96236e+2

9 5.70000e+1 5.60000e+1 5.43000e+1 3.40000e-2 -2.04000e-1 -5.28000e-1 -5.50658e+2
4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2

10 5.86000e+1 5.80000e+1 5.70000e+1 2.53000e-1 2.04000e-1 3.40000e-2 -3.76651e+1
4.00000e+2 4.00000e+2 2.97354e+2 1.84745e+2 4.20406e+1 3.26347e+2

11 5.03000e+1 4.97000e+1 4.93000e+1 -1.55100e+0 -1.08000e+0 -2.80000e-1 -1.77366e+2
4.00000e+2 4.00000e+2 4.00000e+2 4.91252e+1 3.30374e+1 4.00000e+2

12 5.40000e+1 5.30000e+1 5.24000e+1 -1.52000e+0 -1.42100e+0 -1.05500e+0 1.11535e+2
3.75376e+2 3.93381e+2 3.82803e+2 2.40545e+2 4.74020e+1 3.67877e+2

13 4.97000e+1 4.93000e+1 4.92000e+1 -1.08000e+0 -2.80000e-1 2.55000e-1 5.93483e+1
3.94282e+2 3.94917e+2 3.96847e+2 2.53283e+1 1.82365e+2 4.27622e+1

14 5.80000e+1 5.70000e+1 5.60000e+1 2.04000e-1 3.40000e-2 -2.04000e-1 4.46719e+2
4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2

15 5.40000e+1 5.30000e+1 5.18000e+1 3.30000e-2 -6.76000e-1 -1.17500e+0 1.99946e+1
3.08446e+2 3.91400e+2 3.91666e+2 3.90699e+2 3.83084e+2 3.76996e+1

16 5.20000e+1 5.00000e+1 5.00000e+1 1.03200e+0 9.22000e-1 3.82000e-1 3.27588e+2
4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2

17 4.87000e+1 4.85000e+1 4.88000e+1 5.77000e-1 5.77000e-1 6.48000e-1 -1.73100e+2
3.84430e+2 3.87019e+2 2.98609e+2 8.10929e+1 3.60865e+2 3.67886e+2

18 4.97000e+1 4.93000e+1 4.94000e+1 -1.09900e+0 -7.14000e-1 -2.37000e-1 5.04839e+1
4.00000e+2 3.99841e+2 4.00000e+2 4.00000e+2 1.46008e+1 4.00000e+2

19 4.94000e+1 4.81000e+1 4.72000e+1 6.71000e-1 1.64000e-1 9.00000e-3 -5.81335e+1
3.78884e+2 3.92997e+2 3.96774e+2 2.96011e+2 9.75484e+1 3.48400e+1

20 4.93000e+1 4.94000e+1 5.00000e+1 -7.14000e-1 -2.37000e-1 2.18000e-1 9.82482e+1
4.00000e+2 4.00000e+2 4.00000e+2 4.00000e+2 2.69222e+1 4.00000e+2

21 5.00000e+1 5.00000e+1 5.04000e+1 9.22000e-1 3.82000e-1 2.50000e-2 -9.01877e+1
2.79438e+2 4.00000e+2 4.00000e+2 2.41774e+2 1.42912e+2 4.00000e+2
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Fig. 2. Performance of the 15-term generalized Gaussian kernel model for
the engine data set: (a) the model prediction ���� (dashed) superimposed
on the system output � � (solid), and (b) the model prediction error � ���
� ��� �� � .

Example 1. This example constructed a model represent-
ing the relationship between the fuel rack position (input �&� )
and the engine speed (output � � ) for a Leyland TL11 tur-
bocharged, direct injection diesel engine operated at a low
engine speed. Detailed system description and experimental
setup can be found in [34]. The data set, depicted in Fig. 1,
contained 410 samples. The first 210 data points were used in
training and the last 200 points in model validation. The pre-
vious study [34] has shown that this data set can be modeled
adequately by a nonlinear model of the form:���@�R�����
*&��$+%(')� (33)

with ���	�L6�$ describing the unknown underlying system and
the system input vector defining by*&�D� 0 �����������������	� \ 3 4 (34)

Since every training input data points were considered as a
candidate regressor’s center, there were 8 � v _ � regressors
for the full regression model. The previous results [9],[10]
had shown that when fitting a Gaussian kernel model with a
single common variance, [ \ �¢_�� ��	 was the optimal value
for this kernel variance. Various kernel modeling techniques
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Fig. 3. Performance of the 15-term generalized Gaussian kernel model for
the engine data set: (a) the iterative model output ���
� � (dashed) superim-
posed on the system output � � (solid), and (b) the iterative model error� 
� ��� � ��� �� 
�� � .

were employed in [10] to fit this data set, and the best Gaus-
sian kernel model was provided by the LROLS with the
LOO test score, which consisted of 22 terms. The MSE val-
ues of this model over the training and validation sets were� � ����������� and

� � ������� 	 � , respectively.

The proposed sparse model construction algorithm was ap-
plied to construct a generalized Gaussian kernel model for
this data set. The kernel covariance matrices were first iden-
tified by optimizing the associated correlation criteria using
the repeated weighted optimization algorithm with � � v _
and � � _ � . The LROLS algorithm based on the LOO test
score then selected a 15-term subset generalized Gaussian
kernel model from the resulting full regression matrix, and
the constructed model is given in Table I. The MSE values of
this model were

� � ���������/v over the training set and
� � ������� 	��

over the validation set, respectively. The model prediction A�t�
and prediction error ' � �f� � VXA� � generated by this model are
illustrated in Fig. 2. The obtained 15-term generalized Gaus-
sian kernel model was used to iteratively generate the model
output according to A��� j �D�m� M � A*�� j ��$ (35)
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Fig. 4. The gas furnace data set: (a) system input � � , and (b) system output
� � .

with A* � j � � 0 A� � j ���� � �	�� � ��� \ 3 4 (36)

where � M �76�$ denotes the model mapping. The iterative
model output A� � j � and the iterative model error '� j �;� ���DVA� � j � , are depicted in Fig. 3. Compared with the standard ker-
nel method, the proposed generalized kernel modeling ap-
proach is able to produce more parsimonious model with a
similar modeling accuracy.
Example 2. This example constructed a model for the gas
furnace data set (Series J in [35]). The data set, illustrated in
Fig. 4, contained 296 pairs of input-output points, where the
input � � was the coded input gas feed rate and the output � �
represented CO \ concentration from the gas furnace. All the
296 data points were used in training, with the model input
vector defined by* � � 0 � ���� � �	� \ � ��� � � ���� � �	� \ � ��� � 3 4 (37)

The number of candidate regressors was 8 � v 	�� for this
data set. The previous experiments had found out that the
existing state-of-art kernel regression techniques failed to fit
a Gaussian kernel regression model using a common kernel
variance [10]. Various existing kernel regression techniques
were then used in [10] to fit a thin-plate-spline regression
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Fig. 5. Performance of the 21-term generalized Gaussian kernel model for
the gas furnace data set: (a) the model prediction �� � (dashed) superim-
posed on the system output � � (solid), and (b) the model prediction error� ��� � � � �� � .

model for this data set, where the regressors were given byJ H �O*&$P� ��*�VX* H � \���� . �/�)*WVX* H ��$��X_DaTcPa 8 (38)

and the best result obtained was again given by the LROLS
with the LOO test score, which yielded a 28-term thin-plate-
spline model with a training MSE of

� � ��������� � .
By adopting a generalized Gaussian kernel model struc-

ture, the LROLS with the LOO test score was able to identify
a 21-term model, as listed in Table II, with a training MSE
of
� � ������� ��v . The candidate regressors’ kernel covariance

matrices were fitted by optimizing the correlation criterion
using the repeated weighted optimization with � � v _ and� � _ � . The model prediction and prediction error gener-
ated by this 21-term generalized Gaussian kernel model are
shown in Fig. 5. The obtained model was also used to itera-
tively produce the model output A� � j � ��� M � A* � j � $ given the
inputA* � j � � 0 A� � j ���� A� � j ��� \ A� � j ��� � � ���� � �	� \ � ��� � 3 4 (39)

The iterative model output and the associated modeling error' � j �D�f��� V A��� j � are illustrated in Fig. 6.
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Fig. 6. Performance of the 21-term generalized Gaussian kernel model for
the gas furnace data set: (a) the iterative model output ��
�� � (dashed)
superimposed on the system output � � (solid), and (b) the iterative model
error � 
� ��� � � � �� 
�� � .

V. CONCLUSIONS

Identification of discrete-time nonlinear systems has been
considered using a generalized kernel regression model struc-
ture. As with the standard kernel model, the kernel mean
vectors are directly placed on the training input points. How-
ever, each regressor in the generalized kernel model has an
individually fitted diagonal covariance matrix. This general-
ized kernel model structure thus has an enhanced modeling
capability and is capable of producing more parsimonious
models for nonlinear systems, compared with the standard
kernel model structure. The design of the pool of regressors
or the determination of the candidate kernel covariance matri-
ces is performed by maximizing a correlation criterion using
a repeated guided random search based on boosting optimiza-
tion. The efficient OLS algorithm based on the leave-one-out
test statistic and local regularization can then automatically
select a sparse model from the resulting pool of candidate re-
gressors. The effectiveness of the proposed nonlinear system
identification approach has been demonstrated by the experi-
mental results involving two real data sets.

APPENDIX A

Consider the model selection problem where a set of �
models have been identified using the training data set

9 :
.

Denote these models, identified using all the 8 data points of9;:
, as A� � � �� and the corresponding modeling errors as' � � �� �f��� V A� � � �� (40)

with index �T� _�� v ��������� � . A commonly used cross vali-
dation for model selection is the delete-one cross validation.
The idea is as follows. For every model, each data point in
the training set

9 :
is sequentially set aside in turn, a model

is estimated using the remaining 8 VR_ data points, and the
prediction error is derived using only the data point that was
removed from training. Specifically, let

9 : j � � be the result-
ing data set by removing the � th data point from

9 :
, and

denote the � th model estimated using
9 : j � � as A� � � j � � �� and

the related predicted model residual at � as' � � j � � �� �q� � V A� � � j � � �� (41)

The mean square LOO test error [24],[27] for the � th modelA� � � �� is obtained by averaging all these prediction errors:

� � M�' � � j ��� �� N \ � � _8 :G��?+ M�' � � j ��� �� N \ (42)

The mean square LOO test error is a measure of the model
generalization capability. To select the best model from the �
candidate models A� � � �� , _naq�ua � , the same modeling pro-
cedure is applied to each of the � predictors, and the model
with the minimum LOO test error is selected.

For linear-in-the-weights models, the LOO test errors can
be generated, without actually sequentially splitting the train-
ing data set and repeatedly estimating the associated mod-
els, by using the Sherman-Morrison-Woodbury theorem [24].
Moreover within the forward model selection procedure us-
ing the OLS algorithm, the LOO test errors for the � -term
model can be computed very efficiently. It can readily be
shown [8],[10] that the computation of the LOO error ' � M j ��� ��
for the � -term model is based on the previously selected� � V _	$ -term model and the currently selected � th model
term via the efficient recursion formulas (30) and (31).

APPENDIX B

The modified Gram-Schmidt orthogonalization procedure
[2] calculates the � matrix row by row and orthogonalizes �
as follows: at the � th stage make the columns z � , � %`_Da`�na8 , orthogonal to the � th column and repeat the operation for_@a � a 8 V�_ . Specifically, denoting z � � �� �Rz � , _Da^�na 8 ,
then for � � _�� v �������)� 8 VT_ ,� � �Rz � � ��H��� � j � � � 4� z � � ����� Z M � 4� � � NN� � %R_Da`� a 8z � � �� �mz � � ����� VX� � j � � � � � %f_@a^�na 8

� ��������
(43)
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The last stage of the procedure is simply
� : �fz � : ����: . The

elements of � are computed by transforming � � � � � � in a
similar way:� � � � 4� � � � ���� Z M � 4� � � % � � N� � � � �R� � � ��H� V � � � � � �

� _@a � a 8 (44)

This orthogonalization scheme can be used to derive a sim-
ple and efficient algorithm for selecting subset models in a
forward-regression manner [2]. First define� � � ���� ��� �  ����� � � �� z � � ��H�� ������z � � ����: � (45)

If some of the columns z � � ����� ����������z � � ��H�: in � � � ��H� have
been interchanged, this will still be referred to as � � � ���� for
notational convenience. Let a very small positive number ���
be given, which specifies the zero threshold and is used to
automatically avoiding any ill-conditioning or singular prob-
lem. With the initial conditions as specified in (32), the � th
stage of the selection procedure is given as follows.

Step 1. For � a`�na 8 :

Test–Conditioning number check. If M z � � ����� N 4 z � � ��H�� Q� � , the � th candidate is not considered.
Compute� � j � � M z � � ����� N 4 � � � ��H� Z;S M z � � ����� N 4 z � � ����� % � � ]
and calculate, for _Daf{ a 8 ,' � � �� j � �f� � � ��H�� V J � � ����� j � � � j �@ � � �� j � � @ � � ����� V ���	��
�������� � ���

��� ��
������ ��� � ��
������ B�� �
� ������

and � � j � � _8 :G�)?+ � ' � � �� j �@ � � �� j ��� \
where � � � ��H�� and

J � � ��H�� j � are the { th elements of � � � ��H� andz � � ��H��
, respectively. Let the index set � � be� � � < � a^�na 8 and � passes Test >

Step 2. Find � � � � � j � 
 � 0 254�< � � j � �;� w � � >
Then the � � th column of � � � ���� is interchanged with the � th
column of � � � ���� , the � � th column of � is interchanged with
the � th column of � up to the � � V _	$ th row, and the � � th
element of � is interchanged with the � th element of � . This
effectively selects the � � th candidate as the � th regressor in the
subset model.

Step 3. The selection procedure is terminated with a � � Vu_	$ -
term model, if

� � F � � �� . Otherwise, perform the orthog-
onalization as indicated in (43) to derive the � th row of �
and to transform � � � ��H� into � � � � ; calculate

� � and update

� � � ���� into � � � � in the way shown in (44); update the LOO
error weightings@ � � �� � @ � � ����� V ¤ \ � j �� 4� � � % � � ��{n� _�� v �������)� 8
and go to Step 1.
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