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Applications
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Abstract— Many signal processing applications poses optimiza-
tion problems with multimodal and nonsmooth cost functions.
Gradient methods are ineffective in these situations, and op-
timization methods that require no gradient and can achieve
a global optimal solution are highly desired for tackling these
difficult problems. The paper proposes a guided global search
optimization technique, referred to as the repeated weighted
boosting search. The proposed optimization algorithm is ex-
tremely simple and easy to implement, involving a minimum
programming effort. Heuristic explanation is given for the global
search capability of this technique. Comparison is made with
the two better known and widely used guided global search
techniques, known as the genetic algorithm and adaptive sim-
ulated annealing, in terms of the requirements for algorithmic
parameter tuning. The effectiveness of the proposed algorithm as
a global optimizer are investigated through several application
examples.

Index Terms— Adaptive simulated annealing, boosting, evolu-
tionary computation, genetic algorithm, global search, multistart,
optimization, stochastic algorithm

I. INTRODUCTION

Optimization problems with multimodal and/or nonsmooth
cost functions are commonly encountered in a variety of signal
processing applications. Gradient-based algorithms become
ineffective in these applications due to the problem of local
minima or the difficulty in calculating gradients. Optimization
methods that require no gradient and can arrive at a global
optimal solution offer considerable advantages in solving these
difficult problems. Various research communities have always
been interested in the topic of global optimization, due to its
importance, and a variety of global optimization techniques
have been developed, see for example [1]-[14]. Within the
wide field of engineering, two well-known classes of such
global optimization methods are the genetic algorithm (GA)
[7]-[10] and adaptive simulated annealing (ASA) [11]-[14].
Both the GA and ASA have attracted considerable attention
in signal processing applications, see for example [15]-[23].
The GA and ASA belong to a class of so-called guided ran-
dom search methods. The underlying mechanisms for guiding
optimization search process are, however, very different for
the two methods. The GA is population based, and evolves a
solution population according to the principles of the evolution
of species in nature. It is by far the most widely applied global
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optimization scheme in machine learning and engineering
applications. The ASA by contrast evolves a single solution
in the parameter space with certain guiding principles that
imitate the random behaviour of molecules during the an-
nealing process. Unlike the conventional simulated annealing
[11],[24], the ASA adopts an important mechanism called the
reannealing scheme, which not only speeds up the search
process but also makes the optimization process robust to
different problems.

The motivation of this work comes out of our experience
with the GA and ASA. In line with many other researchers’
experience, we have found that the two algorithms generally
perform well in very different problems, and have similarly
good convergence speeds. The search mechanisms of the GA
are complicated, as it is difficult to understand exactly how
the search space is being explored. A carefully designed GA
requires major programming efforts. This difficulty may be
circumvented by simply using an existing GA software packet.
Tuning a GA however is by no means an easy task and requires
considerable experience, as there are a number of algorithmic
parameters that need to be chosen carefully in order to achieve
fast global convergence. The ASA to some extent is easier to
implement and has less parameters that require tuning. Even
so, it is always advisable to design the ASA algorithm with
cares. In particular, the reannealing scheme and annealing
schedule require carefully design and tuning. What motivates
this research is the desire to have a general global optimization
algorithm that is very simple to programming, easy to tuning
and yet has convergence speed comparable to those of the GA
and ASA. To this end, we propose a guided random search
algorithm as a global optimization tool, which we refer to as
the repeated weighted boosting search (RWBS).

The proposed algorithm is remarkably simple, requiring
a minimum software programming effort and algorithmic
tuning. The basic process evolves a population of initially
randomly chosen solutions by performing a convex combina-
tion of the potential solutions and replacing the worst member
of the population with it until the process converges. The
weightings used in the convex combination are adapted to
reflect the “goodness” of corresponding potential solutions
using the idea from boosting [25]-[28]. The process is repeated
a number of times or “generations” to improve the probability
of finding a global optimal solution. An elitist strategy is
adopted by retaining the best solution found in the current
generation in the initial population of the next generation. The
inner iteration loop, the weighted boosting search process, is
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designed to efficiently find a minimum point within the convex
hull defined by the initial population members. This capability
as a local optimizer can be explained by the theory of weak
learnability associated with boosting [25],[26]. Keeping the
best solution found in the previous generation as a member
of the initial population ensures that the information obtained
regarding the previous search region is not lost. By repeating
the weighted boosting search a number of generations, the
algorithm resembles a random search algorithm called the
multistart [1]. However, there are important differences be-
tween the multistart and the proposed RWBS algorithm. In the
multistart, a single point is randomly generated and, starting
from this point, a local optimizer is used to find a minimum.
The process is then repeated. Note that drawing randomly a
number of points adopted by the proposed algorithm is also
the sampling strategy used in a class of global optimization
methods referring to as clustering methods [1]. A number of
experiments are performed, involving three different signal
processing applications, to demonstrate the effectiveness of
this proposed RWBS algorithm as a global optimization tool.
Comparisons with the GA and ASA, in terms of software pro-
gramming effort, algorithmic tuning and convergence speed,
are given.

II. THE PROPOSED GUIDED RANDOM SEARCH METHOD

Many signal processing applications pose the following
generic optimization problem:

min
u∈U

J(u) (1)

where u = [u1 u2 · · · un]T is the n-dimensional parameter
vector to be optimized, and U defines the feasible set of u.
The cost function J(u) can be multimodal and nonsmooth.
We propose a guided global search method to find a global
minimum solution of this optimization problem. The basic
component of the proposed guided random search method is
the following weighted boosting search algorithm.

A. Weighted boosting search as a local optimizer

Consider a population of PS points, ui ∈ U for 1 ≤
i ≤ PS . These points can be randomly chosen. Let ubest =
arg min J(u) and uworst = arg max J(u), where u ∈
{ui, 1 ≤ i ≤ PS}. Now a (PS + 1)th point is generated
by performing a convex combination of ui, 1 ≤ i ≤ PS , as

uPS+1 =

PS
∑

i=1

δiui (2)

where the weightings satisfy δi ≥ 0 and

PS
∑

i=1

δi = 1 (3)

Obviously, the point uPS+1 is always within the convex hull
defined by the PS values ui, 1 ≤ i ≤ PS . A mirror image of
uPS+1 is then generated with respect to ubest and along the
direction defined by ubest − uPS+1 as

uPS+2 = ubest + (ubest − uPS+1) (4)

u1 u2 u3u4u5

u

u
J(

  )

Fig. 1. Illustration of a simple weighted search optimization process.

If uPS+1 or uPS+2 are outside U , they can always be projected
back to U . According to their cost function values, the best
of uPS+1 and uPS+2 then replaces uworst. The process is
repeated until the population converges. The convergence can
be assumed for example if

‖uPS+1 − uPS+2‖ < ξB (5)

where the small positive scalar ξB is the chosen accuracy.
A simple illustration is depicted in Fig. 1 for a one-

dimensional case, where there are PS = 3 points, u1, u2

and u3, and ubest = u2 and uworst = u1. The 4th point
u4 is a weighted combination of u1, u2 and u3, and u5 is
the mirror image of u4. As u4 is better than u5 (a smaller
cost function value), it replaces u1 in the population. Clearly,
how the convex weighted combination is performed is critical.
The weightings δi for ui, 1 ≤ i ≤ PS , should reflect the
“goodness” of ui, and the process should be capable of self-
learning or adapting these weightings. This is exactly the
basic idea of boosting [25]-[28]. Specifically, the AdaBoost
algorithm of [26] is modified to adapt the weightings δi,
1 ≤ i ≤ PS , in this weighted boosting search process. The
weighted boosting search can be seen as an optimizer that
finds an optimal solution within the convex region defined by
the initial population. Although a rigorous proof remains to be
worked out, a heuristic explanation of this capability as a local
optimizer can be given using the theory of weak learnability
[25],[26]. The members of the population ui, 1 ≤ i ≤ PS ,
can be seen to be produced by a “weak learner”, as they
are generated “cheaply” and do not guarantee certain optimal
property. Schapire [25] showed that any weak learning pro-
cedure can be efficiently transformed (boosted) into a strong
learning procedure with certain optimal property. In our case,
this optimal property is the ability of finding an optimal point
within the defined search region. Boosting is a general method
for improving the accuracy of any given learning algorithm,
and the effectiveness of the boosting strategy for a wide rang
of machine learning applications is well documented, see for
example [25]-[28].

B. Repeated weighted boosting search as a global optimizer

The aforementioned weighted boosting search is a local
optimizer, as the solution obtained depends on the initial
choice of population. An effective strategy to “convert” a
local optimizer to a global optimizer is to repeat it multiple
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times with some random sampling initialization. This for
example is the strategy adopted in a stochastic algorithm for
global optimization called the multistart [1]. We employ this
proven strategy and repeat the weighted boosting search a
number of times. Each run of the weighted boosting search
process is referred to as a generation. An elitist initialization
of the population for each generation is adopted, where each
generation retains the solution found in the previous generation
and fill the rest of the population randomly. This repeated
weighted boosting search (RWBS) algorithm can now be
summarized as follows.

Specify the following algorithmic parameters: PS – popula-
tion size, NG – number of generations in the repeated search,
NB – number of iterations in the weighted boosting search and
ξB – accuracy for terminating the weighted boosting search.

?? Outer loop: generations For g = 1 : NG

• Generation initialization: Initialize the population by
setting u

(g)
1 = u

(g−1)
best and randomly generating rest of

the population members u
(g)
i , 2 ≤ i ≤ PS , where u

(g−1)
best

denotes the solution found in the previous generation. If
g = 1, u

(g)
1 is also randomly chosen

• Weighted boosting search initialization: Assign the initial
distribution weightings δi(0) = 1

PS
, 1 ≤ i ≤ PS , for the

population, and calculate the cost function value of each
point

Ji = J(u
(g)
i ), 1 ≤ i ≤ PS

? Inner loop: weighted boosting search For t = 1 : NB

• Step 1: Boosting

1) Find
ibest = arg min

1≤i≤PS

Ji

iworst = arg max
1≤i≤PS

Ji

Denote u
(g)
best = u

(g)
ibest

and u
(g)
worst = u

(g)
iworst

2) Normalize the cost function values

J̄i =
Ji

∑PS

j=1 Jj

, 1 ≤ i ≤ PS

3) Compute a weighting factor βt according to

ηt =

PS
∑

i=1

δi(t − 1)J̄i, βt =
ηt

1 − ηt

4) Update the distribution weightings for 1 ≤ i ≤ PS

δi(t) =

{

δi(t − 1)βJ̄i

t , for βt ≤ 1

δi(t − 1)β1−J̄i

t , for βt > 1

and normalize them

δi(t) =
δi(t)

∑PS

j=1 δj(t)
, 1 ≤ i ≤ PS

• Step 2: Parameter updating

1) Construct the (PS + 1)th point using the formula

uPS+1 =

PS
∑

i=1

δi(t)u
(g)
i
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Fig. 2. Experimenting with a one-dimensional multimodal function mini-
mization using the repeated weighted boosting search: (a) the cost function,
where the number 100 beside the solution (point in the graph) indicates
the convergence to the global minimum in all the 100 experiments, and (b)
convergence performance averaged over 100 experiments.

2) Construct the (PS + 2)th point using the formula

uPS+2 = u
(g)
best +

(

u
(g)
best − uPS+1

)

3) Compute the cost function values J(uPS+1) and
J(uPS+2) for these two points and find

i∗ = arg min
i=PS+1,PS+2

J(ui)

4) The pair (ui∗ , J(ui∗)) then replaces
(u

(g)
worst, Jiworst

) in the population1

• If ‖uPS+1 − uPS+2‖ < ξB , exit inner loop
? End of inner loop

The solution found in the gth generation is u = u
(g)
best

?? End of outer loop
This yields the solution u = u

(NG)
best

To guarantee a global optimal solution as well as to achieve
a fast convergence, the algorithmic parameters, PS , NG, NB

and ξB , need to be set carefully. The appropriate values
for these algorithmic parameters depends on the dimension
of u and how hard the objective function to be optimized.
Generally, these algorithmic parameters have to be found

1It will keep the weighting δiworst
(t). This weighting value will be updated

anyway in the next round according to the new cost function value.
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TABLE I

COMPARISON OF ALGORITHMIC TUNING REQUIREMENTS FOR THE

GENETIC ALGORITHM (GA), ADAPTIVE SIMULATED ANNEALING (ASA)

AND REPEATED WEIGHTED BOOSTING SEARCH (RWBS).

GA GA type
Population size
Number of generations
Mutation type
Probability of mutation
Crossover type
Probability of crossover
Scaling scheme
Genome type
Initialization scheme
Comparison scheme
Encoding/decoding scheme
Selection scheme
Elitism

ASA Number of acceptance points for reannealing
Number of generated points for annealing
Annealing rate control parameter
Step size in calculating sensitives

RWBS Population size
Number of weighted boosting iterations
Accuracy for stopping weighted boosting search
Number of generations

empirically, just as in any global optimization algorithm. The
elitist initialization is very useful, as it keeps the information
obtained by the previous search generation, which otherwise
would be lost due to the randomly sampling initialization.
In the inner loop optimization, there is no need for every
members of the population to converge to a (local) minimum,
and it is sufficient to locate where the minimum lies. Thus,
the number of weighted boosting iterations, NB , can be set
to a relatively small integer and the accuracy for stopping the
weighted boosting search, ξB , can be set to a relatively large
value. This makes the search efficient, achieving convergence
with a small number of the cost function evaluations. It
should be obvious, although the formal proof is still required,
that with sufficient number of repeats or generations, the
algorithm will guarantee to find a global optimal solution. The
question is: will this strategy of repeating weighted boosting
search be efficient, in terms of the required total number of
the cost function evaluations? This will be investigated in
the experiments of Section III. Here, we use a simple one-
dimensional optimization problem to gain some experience
with this RWBS algorithm.

The cost function to be optimized, depicted in Fig. 2 (a), is
given by

J(u) =



















− sin(6(u+5))
2(u+5) + 4, −8 ≤ u ≤ −2

−4 exp
(

−5(u + 1)2
)

+ 4.16, −2 < u ≤ 0

− sin(6(u−4))
2(u−4) + 4, 0 < u ≤ 8

Uniformly random sampling in [−8, 8] was adopted for
population initialization. With a population size PS = 4,
number of weighted boosting iterations NB = 6 and stopping
accuracy for weighted boosting search ξB = 0.02 as well
as by setting number of generations to NG > 6, the RWBS
algorithm consistently converged to the global minimum point

Σ
e(k)

Σ output

noise

plant
plant

unknown

adaptive
IIR filter

+

+

+

-

d(k)

x(k)

y(k)

Fig. 3. Schematic of adaptive IIR filter for system identification, where x(k)
is the system input, y(k) the filter output and d(k) the noisy plant observation.

at u = −1 in all the 100 experiments conducted, as can be
seen from the convergence performance shown in Fig. 2 (b).
The averaged number of cost function evaluations required
for the algorithm to converge to the global optimal solution is
around 110.

C. Implementation comparison with the GA and ASA

Because the GA and ASA are popular choices for global
optimization in machine learning and engineering applica-
tions, we compare the implementation considerations of the
proposed RWBS algorithm with the GA and ASA. The first
implementation issue is the software programming effort re-
quired to code an algorithm. It is self-evident that the RWBS is
extremely simple, requiring a minimum programming effort.
The GA is anything but simple, in terms of programming
efforts. The ASA, in the form presented in [21], is much easier
to programme than the GA, but still cannot compete with
the simplicity of the RWBS. The difficulty with programming
a GA can be circumvented by simply using some existing
GA software packets written by experts. But the same cannot
be said with tuning a GA. To tune a GA for a successful
application requires considerable expertise, as there are a
large number of the algorithmic parameters that need to
be set/chosen carefully. The ASA has very few algorithmic
parameters to tune, compared with the GA, but tuning a
successful ASA is still much harder than the RWBS. This
is because the choices of these algorithmic parameters have
critical influence on the reannealing scheme and annealing
schedule that ensure fast global convergence. The RWBS
too has very few algorithmic parameters and, moreover, the
choices of these parameters are relatively straightforward, in
comparison with the GA and ASA. In Table I, we compare the
tuning issue of these three global optimization algorithms by
listing their algorithmic parameters. Since operations involved
in the RWBS are straightforward and much simpler than
those for the GA or ASA, the computational complexity
of this algorithm will be much simpler than those for the
GA and ASA, provided that the convergence speed of the
algorithm, in terms of the number of total cost function calls, is
comparable to those of the GA and ASA. Theoretical analysis
of convergence speed of a generic global optimizer is very
difficult if not impossible. We therefore turn to experiments
for investigating this critical issue.
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Fig. 4. Convergence performance averaged over 100 experiments for IIR
filter design Example 1: (a) using the repeated weighted boosting search, and
(b) using the adaptive simulated annealing.

III. OPTIMIZATION APPLICATIONS

The versatility of the proposed guided random search algo-
rithm as potentially a global optimization tool is investigated
using three very different signal processing application prob-
lems. The first two applications are typically global optimiza-
tion problems and the previous results involving the GA and
ASA are available. These results are used as benchmarkers to
compare with the convergence performance of the proposed
RWBS algorithm.

A. IIR filter design

Adaptive infinite-duration impulse response (IIR) filter is a
classical research area, and many properties of IIR filters are
well known [29],[30]. Because the cost function of IIR filters is
generally multimodal with respect to the filter coefficients and
the usual gradient-based algorithm can easily be stuck at local
minima, global optimization methods have been applied to
IIR filter design, see for example [15],[16],[31]-[34]. Consider
the use of IIR filter in system identification application, as
depicted in Fig. 3, where the IIR filter with the model transfer
function

HM (z) =

∑L

i=0 aiz
−i

1 +
∑M

i=1 biz−i
(6)

is used to model the unknown plant with the system transfer
function HS(z). The IIR filter design can be formulated as an
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Fig. 5. Distribution of the solutions (a0, b1) (small circles) obtained in 100
experiments for IIR filter design Example 1 by the repeated weighted boosting
search: (a) showing the entire search space, and (b) zooming in the global
minimum, where the large square indicate the global minimum and the large
circle the local minimum.

optimization problem with the mean square error (MSE) as
the cost function:

J(u) = E[e2(k)] = E[(d(k) − y(k))2] (7)

where d(k) is the filter’s desired response, y(k) the filter’s
output, e(k) = d(k) − y(k) is the filter’s error signal, and
u = [a0 a1 · · · aL b1 · · · bM ]T denotes the filter coefficient
vector. The goal is to minimize the MSE (7) by adjusting u.
In practice, ensemble operation is difficult to realize, and the
cost function (7) is usually substituted by the time-averaged
cost function:

JN (u) =
1

N

N
∑

k=1

e2(k) (8)

When the filter order M(≥ L) is smaller than the system order,
local minima problems can be encountered [30]. To maintain
the stability during optimization, we convert the direct-form
IIR filter coefficients bi, 1 ≤ i ≤ M , to the lattice-form
reflection coefficients κi, 0 ≤ i ≤ M − 1, and make sure
that all the κi have magnitudes less than 1. Thus, the filter
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Fig. 6. Convergence performance for IIR filter design Example 2: (a)
averaged over 500 experiments using the repeated weighted boosting search,
and (b) averaged over 100 experiments using the adaptive simulated annealing.

coefficient vector used in optimization is

u = [a0 a1 · · · aL κ0 · · ·κM−1]
T (9)

Converting the reflection coefficients back to the direct-form
coefficients is straightforward [35].
Example 1. This example is taken from [30]. The system and
filter transfer functions are respectively

HS(z) =
0.05 − 0.4z−1

1 − 1.1314z−1 + 0.25z−2
, HM (z) =

a0

1 + b1z−1

(10)
The analytical MSE (7) in this case is known when the input is
a white sequence and the noise is absent. The cost function has
a global minimum at uglobal = [−0.311 − 0.906]T with the
value of the normalized MSE 0.2772 and a local minimum
at ulocal = [0.114 0.519]T with the normalized MSE value
0.9762. In the population initialization, the parameters were
uniformly randomly chosen as (a0, b1) ∈ (−1.0, 1.0) ×
(−0.999, 0.999) (−1.0 < b1 < 1.0 for stability considera-
tion). It was found empirically that the population size PS = 4,
the number of weighted boosting iterations NB = 5, the
stopping accuracy for weighted boosting search ξB = 0.05
and the number of generations NG > 15 were appropriate for
this example, and Fig. 4 (a) depicts convergence performance
of the RWBS algorithm averaged over 100 experiments. The
previous study [21],[34] has applied the ASA to this example.
The result of using the ASA is reproduced in Fig. 4 (b) for
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Fig. 7. Distribution of the solutions obtained with the repeated weighted
boosting search algorithm in 500 experiments for IIR filter design Example
2: (a) showing (a0, a1) as circles and (κ0, κ1) as crosses, and (b) showing
(a0, a1) as circles, (b1, b2) as squares, and (κ0, κ1) as crosses.

comparison. It can be seen from Fig. 4 that both the RWBS
and ASA have the same fast convergence speed, requiring
an average of 200 cost function calls to reach the global
minimum. The work [15] has applied a GA to the same
example. The result given in [15] shows that the GA is slower
to converge to the global minimum, requiring an average of
600 cost function evaluations to do so. The distribution of the
solutions obtained in 100 experiments by the RWBS algorithm
is shown in Fig. 5.
Example 2. This is a third order system with the system
transfer function given by

HS(z) =
−0.3 + 0.4z−1 − 0.5z−2

1 − 1.2z−1 + 0.5z−2 − 0.1z−3
(11)

In the simulation, the system input x(k) was a uniformly
distributed white sequence, taking values from (−1, 1), and
the signal to noise ratio was SNR=30 dB. The data length
used in calculating the MSE (8) was N = 2000. When a
reduced-order filter with M = 2 and L = 1 was used, the MSE
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Fig. 8. Mean square error (a) and mean tap error (b) against number of VA
evaluations averaged over 100 experiments, with 2-PAM symbols and data
samples N = 50, using the repeated weighted boosting search algorithm.

was multi-modal and the gradient-based algorithm performed
poorly as was demonstrated clearly in [34]. It was found out
that for the proposed RWBS algorithm, PS = 5, NB = 10,
ξB = 0.05 and NG > 20 were appropriate. Fig. 6 (a) depicts
convergence performance of the RWBS algorithm averaged
over 500 experiments. In [21][34], convergence performance
using the ASA was obtained by averaging 100 experiments2,
and this result is also re-plotted in Fig. 6 (b). Again, it is seen
from Fig. 6 that both the RWBS and ASA have the same fast
global convergence speed. The distribution of the solutions
obtained in 500 experiments by the RWBS is illustrated in
Fig. 7. It is clear that for this example there are infinitely
many global minima, and the global minimum solutions for
(b1, b2) form a one-dimensional space.

B. ML joint channel and data estimation

Consider the digital communication channel, whose re-
ceived signal at sample k is modelled by

r(k) =

na−1
∑

i=0

ais(k − i) + e(k) (12)

where na is the channel length, ai are the channel impulse
response taps, the symbol sequence {s(k)} is independently

2There was a typing error in [21][34]: The input sequence x(k) was
uniformly distributed in (−1, 1), not in (−0.5, 0.5).
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Fig. 9. Mean square error (a) and mean tap error (b) against number of VA
evaluations averaged over 100 experiments, with 4-PAM symbols and data
samples N = 100, using the repeated weighted boosting search algorithm.

identically distributed with an M -PAM symbol constellation,
and e(k) is a channel Gaussian white noise. Let

r = [r(1) r(2) · · · r(N)]T

s = [s(−na + 2) · · · s(0) s(1) · · · s(N)]T

a = [a0 a1 · · · ana−1]
T







(13)

be the vector of N received data samples, the corresponding
transmitted data sequence and the channel tap vector, respec-
tively. The joint maximum likelihood (ML) estimate of a and s

is obtained by maximizing the conditional probability density
function of r given a and s. Equivalently, the ML solution is
the minimum of the cost function:

JML(â, ŝ) =
N
∑

k=1

(

r(k) −

na−1
∑

i=0

âiŝ(k − i)

)2

(14)

that is,

(â∗, ŝ∗) = arg

[

min
â,ŝ

JML(â, ŝ)

]

(15)

This joint ML estimate, however, is too expensive to compute
except for the simplest case. In practice, suboptimal solutions
are sought for computational purpose. The algorithm based on
a blind trellis search technique [36] is such an example.

The joint minimization process (15) can also be performed
using an iterative loop first over the data sequences ŝ and then
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Fig. 10. Mean square error (a) and mean tap error (b) against number of VA
evaluations averaged over 100 experiments, with 2-PAM symbols and data
samples N = 50, using the adaptive simulated annealing algorithm.

over all the possible channels â

(â∗, ŝ∗) = arg

[

min
â

(

min
ŝ

JML(â, ŝ)

)]

(16)

The inner optimization can be carried out using the standard
Viterbi algorithm (VA). The previous research has used the
quantized channel algorithm [37], the GA [18] and the ASA
[21] to perform the outer optimization. In this study, we
apply the RWBS algorithm to perform the outer optimization.
Specifically, given the channel estimate â, let the data sequence
decoded by the VA be ŝ∗. Then the cost function used by the
search algorithm is the MSE

J(â) =
1

N
JML(â, ŝ∗) (17)

The search range for each channel tap is −1 ≤ ai ≤ 1,
since the channel can always be normalized. In practice,
Convergence of the algorithm is observed through the MSE
(17). In simulation, the performance of the algorithm can also
be assessed by the mean tap error (MTE) defined as

MTE = ‖a − sgn(a0â0) · â‖
2 (18)

Note that since both (â∗, ŝ∗) and (−â∗,−ŝ∗) are the solutions
of the blind joint ML estimation problem, the channel estimate
â can converge to either the true channel a or −a.

In the simulation study, the channel was given by

a = [0.407 0.815 0.407]T (19)
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Fig. 11. Mean square error (a) and mean tap error (b) against number of VA
evaluations averaged over 100 experiments, with 4-PAM symbols and data
samples N = 100, using the adaptive simulated annealing algorithm.

The algorithmic parameters for the RWBS were set to PS = 5,
NB = 6, ξB = 0.01 and NG > 20. Figs. 8 and 9 show
the evolutions of the MSE and MTE with 2-PAM and 4-
PAM symbols and different values of SNR, respectively. All
the results were averaged over 100 experiments. The previous
research [21] has applied the ASA to the same problem and for
a comparison the results given in [21] are re-plotted in Figs. 10
and Figs. 11, for the 2-PAM and 4-PAM cases, respectively.
Compared the results of using the RWBS and ASA in these
four figures, it can be seen that the two algorithms have the
same convergence speed in terms of the estimated MSE for
this blind ML joint channel and data estimation. The results
also shows that the RWBS is more accuracy than the ASA
in terms of the MTE measure. The study [18] applied a
well tuned micro GA to the same problem, and the results
obtained in [18] showed that the micro GA has slightly faster
convergence speed than the ASA in terms of the MSE, but
has poorer accuracy in terms of the MTE. The accuracy of the
proposed RWBS algorithm is demonstrated by the distribution
of solutions obtained in 100 experiments for the case of 4-PAM
with SNR=30 dB, depicted in Fig. 12.

C. A novel kernel classifier design approach

The state-of-the-art kernel modelling techniques, such as the
support vector machine (SVM) and relevant vector machine
(RVM) [38]-[41], have widely been adopted in classification
applications. Typically, a kernel classification technique con-
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Fig. 12. Distribution of the solutions obtained in 100 experiments for the
4-PAM case with SNR=30 dB and data samples N = 100: (a) (â0, â1, â2),
and (b) (â0, â1), using the repeated weighted boosting search algorithm.

siders every training input pattern as a candidate kernel center
and uses a single fixed kernel width for every kernel function.
A parsimonious or sparse representation is then sought. The
value of the common kernel width has critical influence on
the performance of the classifier and has to be learned via
cross validation. This subsection reports an alternative kernel
classifier design approach which incrementally constructs a
sparse kernel classifier using the RWBS algorithm [42]. Unlike
most kernel classification methods, which restrict kernel means
to the training input data and use a fixed common variance
for all the kernel terms, the proposed technique can tune
both the mean vector and diagonal covariance matrix of
individual kernel by incrementally maximizing Fisher ratio for
class separability measure. The RWBS algorithm described
in Section II is used to append kernels one by one in an
orthogonal forward selection (OFS) procedure.

Consider the two-class kernel classifier of the form

ĉ(k) = sgn (y(k)) with y(k) =
M
∑

i=1

wigi(x(k)) (20)

where x(k) is an m-dimensional pattern vector with its
associated class label c(k) ∈ {±1}, y(k) is the classifier

output for input x(k), and ĉ(k) is the estimated class label
for x(k); wi, 1 ≤ i ≤ M , denote the classifier weights, M

is the number of kernels, and gi(•), 1 ≤ i ≤ M , denote the
classifier kernels. We allow the kernel function to be chosen
as the general Gaussian function gi(x) = G(x;µi,Σi) with

G(x;µi,Σi) = exp

(

−
1

2
(x − µi)

T Σ−1
i (x − µi)

)

(21)

where the diagonal covariance matrix has the form of Σi =
diag{σ2

i,1, · · · , σ
2
i,m}. Given the N pairs of training data

{x(k), c(k)}N
k=1, let us define the modelling residual as e(k) =

c(k) − y(k). Then the classifier model (20) over the training
data set can be expressed in the matrix form

c = Gw + e (22)

where c = [c(1) c(2) · · · c(N)]T , e = [e(1) e(2) · · · e(N)]T ,
the kernel matrix G = [g1 g2 · · ·gM ] with gl =
[gl(x(1)) gl(x(2)) · · · gl(x(N))]T , and the classifier weight
vector w = [w1 w2 · · ·wM ]T . Let an orthogonal decompo-
sition of G be G = PA, where A is an M × M upper
triangular matrix with unity diagonal elements, and

P = [p1 p2 · · ·pM ] =











p1,1 p1,2 · · · p1,M

p2,1 p2,2 · · · p2,M

...
...

...
...

pN,1 pN,2 · · · pN,M











(23)

with orthogonal columns that satisfy pT
i pj = 0, if i 6= j. The

model (22) can alternatively be expressed as

c = Pθ + e (24)

where the “new” weight vector θ = [θ1 θ2 · · · θM ]T satisfy
the triangular system Aw = θ.

A sparse l-term classifier model can be selected by incre-
mentally maximizing a class separability measure in an OFS
procedure [43],[44]. Define the two class sets C± = {x(k) :
c(k) = ±1}, and let the numbers of points in C± be N±,
respectively, with N+ + N− = N . The means and variances
of training samples belonging to classes C± in the direction
of basis pl are given by

m+,l =
1

N+

N
∑

i=1

δ(c(i) − 1)pi,l

σ2
+,l =

1

N+

N
∑

i=1

δ(c(i) − 1) (pi,l − m+,l)
2 (25)

and

m−,l =
1

N−

N
∑

i=1

δ(c(i) + 1)pi,l

σ2
−,l =

1

N−

N
∑

i=1

δ(c(i) + 1) (pi,l − m−,l)
2 (26)

respectively, where δ(x) = 1 for x = 0 and δ(x) = 0 for x 6=
0. Fisher ratio, defined as the ratio of the interclass difference
and the intraclass spread, in the direction of pl is given by
[45]:

Fl =
(m+,l − m−,l)

2

σ2
+,l + σ2

−,l

(27)
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TABLE II

COMPARISON OF CLASSIFICATION FOR THE SYNTHETIC DATA SET.

SVM RVM OFS-RWBS
classifier size 38 4 4
test error rate 10.6% 9.3% 8.1%

At the lth stage of incremental modelling, the lth kernel term is
constructed by maximizing the Fisher ratio (27) with respect to
the kernel mean vector µl and the diagonal covariance matrix
Σl. The algorithm presented in Section II is used to perform
this optimization task [42]. The forward selection procedure
is terminated at the lth stage if

Fl
∑l

i=1 Fi

< ξc (28)

is satisfied, where the small positive scalar ξc is a chosen
tolerance that determines the sparsity of the selected classifier
model. The appropriate value for ξc is problem dependent and
has to be found empirically. Alternatively, cross validation can
be employed to terminate the OFS procedure. The least square
solution for the corresponding sparse classifier weight vector
wl is readily available given the least square solution of θl.

The synthetic two-class problem and Diabetes in Pima
Indians, taken from [46], were used to investigate this
proposed kernel classifier design approach, referred to as
the OFS-RWBS, and to compare the results with those
obtained using the existing state-of-the-art methods, the
SVM and RVM [41]. The data sets were obtained from
http://www.stats.ox.ac.uk/PRNN/.
Synthetic data. The dimension of the feature space was m =
2. The training set contained 250 samples and the test set had
1000 points. The optimal Bayes error rate for this example
is around 8%. With the population size PS = 20, number of
weighted boosting iterations NB = 40 (the inner loop simply
runs NB iterations) and number of generations NG = 20, we
applied the OFS-RWBS algorithm to the 250-samples training
set, and Fig. 13 depicts the training and test error rates versus
the size of the selected classifier. The result of Fig. 13 indicates
that the 4-term classifier is sufficient, and Table II compares
this constructed 4-term classifier with the results of using the
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Fig. 13. Training and test error rates versus size of selected classifier for
the synthetic data set using the OFS-RWBS algorithm.

TABLE III

COMPARISON OF CLASSIFICATION FOR THE PIMA DIABETES DATA SET.

SVM RVM OFS-RWBS
classifier size 109 4 4
test error rate 20.1% 19.6% 18.1%

SVM and RVM techniques given in [41]. It can be seen that
the 4-term classifier constructed by the OFS-RWBS algorithm
achieves the optimal Bayes classification performance.
Pima Diabetes data. The dimension of the input space was
m = 7, the training data set contained 200 samples and the test
data set had 332 samples. With the population size PS = 50,
number of weighted boosting iterations NB = 80 and number
of generations NG = 20 for the OFS-RWBS algorithm, Fig. 14
shows the training and test error rates versus the size of the
constructed classifier, which clearly indicates that a 4-term
classifier is sufficient. Table III compares the performance
of this constructed 4-term classifier with those obtained by
the SVM and RVM methods, quoted from [41]. The superior
classification performance of the proposed design approach
over the other two designs is self-evident.

IV. CONCLUSIONS

A guided random search optimization algorithm has been
proposed. The local optimizer in this global search method
evolves a population of the potential solutions by forming a
convex combination of the solution population with boosting
adaptation. A repeating loop involving a combined elitist and
random sampling initialization strategy is adopted to guarantee
a fast global convergence. The proposed guided random search
method, referred to as the repeated weighted boosting search,
is remarkably simple, involving minimum software program-
ming effort, and can easily be adopted to a variety of practical
applications. The versatility of the proposed method has been
demonstrated in three different signal processing applications.
In the two of these applications, IIR filter design and blind
joint ML channel and data estimation, the proposed global
search algorithm is seen to be as efficient as the GA and ASA
in terms of global convergence speed, characterized by the
total number of cost function evaluations required to attend a
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Fig. 14. Training and test error rates versus size of selected classifier for
the Pima Diabetes data set using the OFS-RWBS algorithm.
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global optimal solution. In the third application, a novel incre-
mental construction of sparse kernel classifiers, the proposed
algorithm compares favourably with the existing state-of-the-
art kernel classification techniques, the SVM and RVM. This
study has demonstrated the potential of the proposed algorithm
as a generic global optimizer and further study is warranted
to carried out an in-depth theoretical analysis as well as to
compare it with other global optimization methods in a wider
investigation.
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