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Abstract— This paper introduces a new orthogonal forward regression
(OFR) model identification algorithm using D-optimality for model struc-
ture selection and is based on an M-estimators of parameters estimates.
M-estimator is a classical robust parameter estimation technique to
tackle bad data conditions such as outliers. Computationally M-estimator
can be derived using an iterative re-weighted least squares (IRLS)
algorithm. D-optimality is a model structure robustness criterion in
experimental design to tackle ill-conditioning in model structure. The
orthogonal forward regression (OFR), often based on the modified Gram-
Schmidt procedure, is efficient method incorporating structure selection
and parameter estimation simultaneously. The basic idea of the proposed
approach is to incorporate an IRLS inner loop into the modified Gram-
Schmidt procedure. In this manner the OFR algorithm for parsimonious
model structure determination is extended to bad data conditions with
improved performance via the derivation of parameter M-estimators
with inherent robustness to outliers. Numerical examples are included
to demonstrate the effectiveness of the proposed algorithm.

Index Terms— Forward regression, M-estimator, Gram-Schmidt, model
structure selection, identification.

I. INTRODUCTION

Various neural networks such as radial basis function (RBF)
networks, can be expressed as a linear-in-the-parameters model
structure where the system output is a linear combination of non-
linear basis functions. Provided that there is a separate mechanism
for determining centres/widths of these basis functions, the basis
weights/parameters can be trained using linear optimization tech-
niques. The architecture or topology of the class of linear-in-the-
parameters modelling networks enables them to be readily assessed
in terms of their modelling capability, structure, learning, construction
and numeric stability, since the results of quadratic optimization and
linear algebra are directly applicable. Moreover by applying linear
regression statistical techniques to the identification of this type of
neural networks, it is possible to model the observational data in a
statically optimal sense so as to achieve improved performance for
a wide range of applications/tasks in the field of signal processing,
dynamical system modelling and control.

The general method of M-estimation [1] is well established in
order to tackle outliers in observational data. As a generalization
of maximum-likelihood estimation method for data with outliers, M-
estimator uses some cost functions which increase less rapidly than
that of least squares estimators as the residuals departs from zero, so
the parameters estimator is more robust to outliers. Computationally
M-estimator can be derived using an iterative reweighted least squares
(IRLS) algorithm. M-estimation has been applied successfully to
time series prediction, image processing and pattern recognition
[2], [3], [4]. Two major aspects of system identification are model
structure determination and parameter estimation. While M-estimator
is concerned with parameter robustness, conventional optimum exper-
imental designs are concerned with model structure robustness [5].
In optimum experimental design, model adequacy is evaluated by
statistical measures of goodness via experimental design criteria, e.g.
A- and D-optimality. By quantitatively measuring the model adequacy
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as function of the eigenvalues of the design matrix, design efficiency
and experimental effort of designs can be optimized.

The orthogonal forward regression (OFR) is an efficient algorithm
to determine a parsimonious model structure [6]. Driven by require-
ments for improved model generalization, a few variants of OFR have
been introduced in order to tackle ill-conditioning problem that may
be associated with least squares parameter estimates [7], [8], [9], [10],
[11]. Recently variants of the forward OFR algorithms have been
introduced by modifying the selective criteria to include A- and D-
optimality in forward regression [12], [13] to form hybrid approaches
applicable to neural networks modelling. Although these methods do
not generally need the assumption of a normal error distribution, the
parameter estimator may not be statistically optimal if the data exhibit
bad conditions such as outliers.

Alternatively there exists a vast amount of work on sparse mod-
elling including the well known support vector machine (SVM) [14],
which is often used in classification tasks [15] and can also be
used in sparse regression modelling [16]. SVM is regarded as a
robust modelling approach and based on a structural risk minimisation
(SRM) principle, that is to minimize an estimate of the upper bound
of model generalization. The model sparsity and robustness of SVM
can be achieved by incorporating an � -insensitive function in the
loss function, as proposed by Vapnik [14]. The � -insensitive function
and Huber loss function used in M-estimator shares a similarity
of using

���
norm (see Section II-A). Because the implementation

of SVM sparse modelling with the � -insensitive function, is solved
via constrained quadratic programming (QP), it is computationally
expensive. It has been shown that OFR algorithm can be combined
with SVM to improve model sparseness [16].

This paper presents a new model identification algorithm that com-
bines the M-estimator with forward regression. Based on the modified
Gram-Schmidt procedure for orthogonal forward regression (OFR),
the proposed algorithm incorporates an IRLS inner loop into the
modified Gram-Schmidt procedure to derive a M-estimator of model
parameters. In combination with D-optimality for model structure
selection, the proposed algorithm simultaneously derive robust model
structure and parameter estimates for bad data conditions.

The paper is organized as follows. Section II initially introduces
methodologies relevant to the proposed algorithm, including general
nonlinear regression modelling based on OFR algorithm with D-
optimality and the concept of M-estimator. Section III introduces
the model identification algorithm using forward regression with M-
estimation. Numerical examples are used to demonstrate the efficacy
of the algorithm in Section IV and conclusions are given in Section
V.

II. PRELIMINARIES

A linear regression model (RBF neural network, B-spline neuro-
fuzzy network) can be formulated as [17], [18]
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where ������ "!# %$&$&$& 
' , and ' is the size of the estimation data
set. �����
	 is system output variable, �(���
	)�+* , � ���
	" &$&$&$& �,.-����
	0/ 1
is system input vector with an assumed known dimension of 2 .

�
�
�03�	 is a known nonlinear basis function, such as RBF, or B-spline

fuzzy membership functions.

�
���
	 is an uncorrelated model residual

sequence with zero mean and variance of 4�5 . �
�

is model parameter,
and 6 is the number of regressors.

Eq.(1) can be written in the matrix form as78�:9<;
�>=

(2)



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, PART B: CYBERNETICS, VOL. ?, NO. ?, ? 2

where 7 � * ����� 	" &$&$&$& �����'�	0/ 1 is the output vector. ; �* � �  &$&$&$& "� 
 / 1 is parameter vector,

=
� *

�
��� 	" &$%$&$& 

�
��'�	0/ 1 is the

residual vector, and 9 is the regression matrix
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	 � �

�
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	�	 . Denote the column vectors in 9 as � � �* �

�
��� 	" &$&$%$& �

�
��'�	0/ 1 , � � �� %$&$&$& 6 . An orthogonal decomposition

of 9 is 9)�
	�� (3)

where � ��
���� ��� is an 6���6 unit upper triangular matrix and	 is an ' ��6 matrix with orthogonal columns that satisfy	 1 	+�
��������
 � �  %$&$&$& !� 
 � (4)

with � � �#" 1� " �  � � �� %$&$&$& 6 (5)

so that (2) can be expressed as7 � ��9$�&% � 	 ���(' 	 �>= �
	*) �>= (6)

where ) � * + �  &$&$&$& ,+ 
 / 1 is an auxiliary vector. The above or-
thogonal decomposition can be realized by the modified Gram-
Schmidt algorithm [6], in which least squares parameter estimates
are usually used. Based on the modified Gram-Schmidt algorithm,
a few variants of forward OLS algorithms have been introduced
to improve model generalization capability based on the concepts
from Bayesian regularization/basis pursuit [9], experimental design
and leave-one-out (LOO) score respectively [10], [11]. Although
these methods do not generally need normality error distribution
assumption, the parameter estimator may not be statistically optimal
if the data exhibit bad conditions such as outliers, or are heavy tailed.
The general method of tackling this problem is well established as
M-estimation [1], which is a generalization of maximum-likelihood
estimation method for data with outliers. The M-estimator [1] is
described in the following section.

A. M-estimators

The M-estimators have been well studied [1]. Considering the
linear regression model given by (1), M-estimator minimizes the cost
function - 
 �/.� 0 � �21 �

�
���
	�	 (7)

where the function 1 � � ���
	�	 is some predetermined nonnegative
functionals for different types of estimators, e.g. for least squares1 � � ���
	�	 � 143 � � ���
	�	 � �

5 ���
	 . Typically 1 � � ���
	�	 is an even function
and nondecreasing with respect to the absolute value of

�
���
	 . The

problem of least squares estimator is that

- 
 will be influenced
by any outlier typified by a large absolute value

�
���
	 . The general

M-estimator can tolerate undetected outliers by assigning a smaller
weight to observations with residuals with large absolute values, so
the parameter estimates are less vulnerable to unusual data. The most
common types of M-estimators are the Huber estimator given by [1]

145 � � 	��76 �
5
�
5 for 8 � 8:9<;;=8 � 8 > �

5 ;.5 for 8 � 8:?<; (8)

or the Turkey bisquare estimator, given by

14@ � � 	��76BA�CD 
 � > * � > �FEA 	 5 / G � for 8 � 8:9<;�D ;.5 for 8 � 8:?<; (9)

where the parameter ; is called a tuning constant, e.g. it is common
to choose ; � �IH JFK�L 4 for the Huber estimator and ; �MKNH OIP�L 4 for
the Turkey bisquare estimator1.

The M-estimator can be derived by settingQ - 
Q ' 8 R �TSR2U �#V (10)

to yield Q - 
Q ' �:9 1XW �#V (11)

where V is zero vector.W � * Q - 
Q � ��� 	  YH H H  Q - 
Q � ��'�	 / 1� * Z � � ��� 	�	" YH H H  [Z � � ��'�	�	0/ 1 (12)

where Z � � 	 is the derivative of 1 � � 	 with respect to

�
. Define the

weight function \
���
	�� Z � � ���
	�	�

���
	  for �(� �� YH H H  '(H (13)

Equation (11) can be written as9 1=] = �#V (14)

where ] � diag 
 \ ��� 	" \ �0!�	" YH H H \ ��'�	!� , whose solution is given as
the weighted least squares^' 
 ��
 9 1 ] 9_��% � 9 1 ] 7 (15)

Because

\
���
	 ’s are a prior unknown, an iteratively reweighted least

square (IRLS) is required. The M-estimator IRLS procedure is as
follows:

Denote ` as the iteration step. Initially set ` � � , ]Ta �cb �#d (i.e.
least squares) to derive an initial model residuals

� a �cb ���
	 , then for` � !# YH H H  `fe ,\ a g b ���
	�� Z � � a g % �cb ���
	�	� a g % �cb ���
	  for �(� �� YH H H  "'(H (16)

From (8) and (9), the weight functions of Huber and the Turkey
bisquare estimator can be explicitly given by\ a g b5 ���
	��76 � for 8 � a g % �cb ���
	 8�9<;Ah E[i jlk�mon a 0 b h for 8 � a g % �cb ���
	 8�?<; (17)

and\ a g b@ ���
	��76 * � > � E i jlk�mon a 0 bA 	 5 / 5 for 8 � a g % �cb ���
	 8�9<;p
for 8 � a g % �cb ���
	 8�?<; (18)

respectively. Let ]qa g b � diag 
 \ a g b ��� 	" \ a g b �0!�	" YH H H \ a g b ��'�	!� , then^' a g b
 ��
 9 1 ] a g b 9_��% � 9 1 ] a g b 7 (19)= a g b � 7 > 9 ^' a g b
 (20)

where

= a g b � *
� a g b ��� 	" &$&$&$& � a g b ��'�	0/ 1 are ready for next iteration

step. The above procedure iterates until the parameter estimator

^' 

converges at ` � `fe .^' 
 ��
 9 1 ] a glr b 9_��% � 9 1 ] a glr b 7 (21)

1The theoretic foundation of choosing these values is due to [1] in that
these values offer robustness against outliers, but yet produce s�t u efficiency
when the errors are normal. These values are default values in commercial
software e.g. Matlab statistics toolbox by v$w:xzy|{ }�wN~�������� and S-PLUS
of �����!���Fw�}o���N� . Readers are referred to references within the documentations
available at the web sites of these companies.
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The asymptotic covariance matrix of

^' 
 is given by [1]

var *
^' 
 /.� � � Z 5 	� 5 * ��Z�� � � / ��9 1 9 	 % � (22)

From (22), it is seen that the efficiency of the M-estimator depends on
the full rank of the ��9 1 9 	 % � . However this usually may not be true
for an oversized 9 , unless there is some robustness measure in place
to select a parsimonious model structure. Robust model structure
selection can be achieved via experimental design criteria that selects9 1 � 9

�
, where 9

�
is a subset of 9 , if 9 1 9 is ill conditioned. The

basic OFR model structure detection algorithm using D-optimality
[13] is initially given below, which will be incorporated in the
proposed algorithm of section III.

B. Model structure selection by D-optimality

A significant advantage due to orthogonalisation is that the con-
tribution of model regressors to the model can be evaluated. The
OFR estimator involves selecting a set of 2�� variables � � �* �
�
��� 	" &$&$%$& �

�
��'�	0/ 1 , � ���� &$%$&$& 2�� , from 6 regressors to form

a set of orthogonal basis " � , � � �� &$&$&$% 2�� , in a forward regression
manner. As the orthogonality property " 1� "z� � p

for ����	� holds,
if (6) is multiplied by itself and then the time average is taken, the
following equation is easily derived

�' 7 1 78� �'

� �
� � + 5

� " 1� " ��� �'
=
1
=

(23)

The most relevant 2�� regressors can be forward selected according

to the value of an error reduction ratio * ��
�
 /
�

(defined as � C
����
�� 
� � �
, see [6]). At the � th selection, a candidate regressor is selected
as the � th basis of the subset if it produces the largest value of* ��
�
 /

�
from the remaining � 6*> � � � 	 candidates. This procedure

can automatically select a subset of 2�� regressors to construct a
parsimonious model. Equivalently, this procedure can be expressed
as � a � b � � a � % �cb > �' + 5� � � (24)

where

� a � b �:7 1 7 . At the � th forward regression stage, a candidate
regressor is selected as the � th regressor if it produces the smallest� a � b . (24) can be modified to form an alternative model selective
criterion to enhance model robustness. The D-optimality criterion [5]
maximizes the determinant of the design matrix defined as 	 1� 	 �

,

������
 ��� �	���! � 	 1� 	 �
	�� -#"$�

� � �
� � (25)

where 	 �&%(' .*) -#" denotes the resultant regression matrix,
consisting of 2�� regressors selected from 6 regressors in 	 . It
can be easily verified that the selection of a subset of 	 �

from 	
is equivalent to the selection of the a subset of 2�� regressors from 9
[13]. In order to include D-optimality as a model selective criterion
for improved model robustness, construct an augmented cost function
as � � �'

= 1 = � �,+ -/..� ���� 	
� �' ��7 1 7 > -#"� �

� � + 5
� � � 	 � � -#"� �

� � + -/.�*
�� � / (26)

where � is a positive small number. Note that this composite cost
function simultaneously minimizes (24) and maximizes (25) [13].
Eq.(26) can be directly incorporated into the OFR algorithm to select

the most relevant � th regressor at the � th forward regression stage,
via � a � b � � a � % �cb > �' + 5� � � � �,+ -/..* �� � / (27)

At the � th forward regression stage, a candidate regressor is selected
as the � th regressor if it produces the smallest

� a � b and further
reduction in

� a � % �cb . Because + -/..� �0�1 	 is an increasing function if� ��2 � , which is true for some � ?43 , the selection procedure will
terminate if

� a � b65 � a � % �cb at the derived model size 2�� if an proper� is set. This is significant because this means that the proposed
approach can detect a parsimonious model size in an automatic
manner.

A method of orthgonalization as required in above procedure is
the modified Gram-Schmidt procedure [6]. In [13], + � are derived as
least squares estimates. In the following, we propose a new algorithm
as how to incorporate D-optimality model structure selection with
M-estimator (section II-A). The basic idea is to extend the modified
Gram-Schmidt algorithm to include, at every forward regression step,
an IRLS procedure inner loop that derives the M-estimator for the
auxiliary vector ) .

III. MODEL IDENTIFICATION ALGORITHM USING FORWARD

REGRESSION WITH M-ESTIMATION

The modified Gram-Schmidt procedure can be used to perform the
orthogonalization and parameter estimation, usually with parameters
derived as least squares parameters. In this section a new model
identification algorithm that combines M-estimator with forward
regression is introduced based on the modified Gram-Schmidt proce-
dure. Geometrically the system output vector 7 , is projected onto a set
of orthogonal basis vectors, 
�" �  YH H H  !" �  YH H H � . For the modified Gram-
Schmidt algorithm, the model residual is decreased by projecting
the system output vector 7 onto a new basis " � at step � . Denote
model residual vector as

= a � b , where the subscript denotes forward
regression step � . Initially model residuals

= a � b is 7 . The procedure
at forward regression step � , can be explicitly interpreted as fitting
the previous model residual vector

= a � % �cb (as derived from forward
regression step � � > � 	 ) using a single variable " � to solve a new
model residual vector

= a � b . Because M-estimator can enhance model
parameter robustness in bad data conditions such as outliers, the
proposed algorithm in the following, as a variant of modified Gram-
Schmidt procedure, include the IRLS inner loop so as to derive the
M-estimators of the auxiliary vector ) .

Starting from � � � , the columns � � , � � � 9 � 9 6 are made
orthogonal to the � th column at the � th stage. The D-optimality
criterion (27) for each of � � , � � � 9 � 9 6 columns is evaluated,
and the most relevant column is selected to be interchanged with
the � th column. The M-estimator for the � th regressor (the selected
regressor) is then derived, as shown below, via the proposed Re-
weighted least squares (IRLS) inner loop. The operation is repeated
for � 9 � 9 2��

2
� 6 > � 	 .

The Algorithm:

1) Initially denote � a � b� � � � , � 9 � 9 6 and 9 a � b �* � a � b�  &$&$&$& � a � b
 / ,
= a � b � 7 ,

� a � b � 7 1 7 .
2) The � th stage of the forward regression selection procedure

with D-optimality is given below. For � 9 � 9 6 , compute+ a � 7 � b � � � a � % �cb� 	 1
= a � % �cb� � a � % �cb� 	 1 � a � % �cb�� a � b� � � � a � % �cb� 	 1 � a � % �cb�
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� a � b� � � a � % �cb > �' * + a � 7 � b / 5 � a � b� � �,+ -/..* �� a � b� / (28)

(29)

3) Find � a � b � � a � b� 
 � � � � 
 � a � b�  � 9 � 9 6 � (30)

The �
�
th column of 9 a � % �cb is then interchanged with the � th

column of 9 a � % �cb , and the �
�
th column of � up to the � �2> � 	 th

row is interchanged with the � th column of � . For notational
convenience, the resultant 9 a � % �cb is still be referred to as9 a � % �cb . This effectively selects the �

�
th candidates as the � th

regressor in the subset model. Then set + a �cb� �*+ a � 7 � 
 b , and
derive model residual vector as= a �cba � b � = a � % �cb > + a �cb� " � (31)

(NB. The objective of (28)-(30) is to realize the D-optimality
selective criterion of (26).)

4) " � � � a � % �cb�
� � � " 1� " �� � � � " 1� � a � % �cb�� �  � � � 9 � 9 6� a � b� � � a � % �cb� > � � � " �  � � � 9 � 9 6 (32)

Denote 9 a � b � * " �  &$%$&$& " �  � a � b� � �  &$%$&$& � a � b
 / .
5) The following IRLS algorithm inner loop which aims to derive

either Huber or bisquare M-estimator for the � th element of
the auxiliary vector ) , which is initialized as + a �cb� �� p

.

Iterated Re-weighted least squares (IRLS) inner loop:

i. Initialize ` � ! . Note that model residual vector is initialized
as

= a �cba � b from Step 2.

ii. For Huber M-estimator, set ; � ; 5a � b � �IH JFK�L std �
= a g % �cba � b 	 ,

where std �03�	 denotes standard deviation. Use (17) to construct] a g b5 � diag 
 \ a g b5 �
� a g % �cba � b ��� 	�	" 

\ a g b5 �
� a g % �cba � b �0!�	�	" H H H  \ a g b5 �

� a g % �cba � b ��'�	�	!��H (33)

or for bisquare M-estimator, set ; � ; @a � b �KNH OIP�L std �
= a g % �cba � b 	 . Then use (18) to construct] a g b@ � diag 
 \ a g b@ �

� a g % �cba � b ��� 	�	" 
\ a g b@ �

� a g % �cba � b �0!�	�	
 YH H H  \ a g b@ �

� a g % �cba � b ��'�	�	!� (34)

iii. Denote] a g b �76 ] a g b5 for Huber M-estimator] a g b@ for bisquare M-estimator
(35)

and + a g b� � " 1� ]qa g b = a � % �cb" 1� ] a g b " � (36)= a g ba � b �
= a � % �cb > + a g b� " � (37)

where

= a g ba � b � *
� a g ba � b ��� 	" � a g ba � b �0!�	" YH H H  � a g ba � b ��'�	0/ 1 .

(NB. The orthogonal forward regression can be explicitly
interpreted as fitting the previous model residual vector

= a � % �cb
using the selected orthogonal basis " � . While + a �cb� derived
in Step 3 is associated with " � as least squares parameter
estimates, (36)-(37) are the direct application of (19)-(20)

to derive Re-weighted least square parameter estimates for
M-estimators.)

iv. If � + a g b� > + a g % �cb�
�
5��

, where
�

is arbitrarily small number,
then set ` � ` �

� , and goto step ii. Otherwise, set

= a � b �= a g ba � b , + � � + a g b�
. Finish the IRLS inner loop.

6) update � a � b � � a � % �cb > �' + 5� � � � �,+ -/..* �� � / (38)

7) The procedure is monitored and terminated at the derived � �2�� step, when

� a � b�5 � a � % �cb , for a predetermined � ? p
.

Otherwise, set � � � � � , go to step 2.
8) The original model coefficient vector ' � * � �  %$&$&$& 
� -#"%/ 1 can

then be calculated from �(':�#) through back substitution.
Note that in OFR based algorithms it is important to make a

clear distinction between model selective criteria and the parameter
estimation cost function. The model selective criteria is used to decide
which term to be included into the model, and parameter estimation
cost function is used to derive parameters for a given model. It is
possible to incorporate M-estimator in model selective criterion by
using IRLS loop at step 2, but this will be computationally expensive.
The proposed algorithm can still detect ill-conditioning as a model
term with deterioration in model conditioning will not be selected.

Relations to SVM regression

The support vector machine (SVM) regression is an alternative
robust modelling approach [14], [15] based on the following model
structure �����
	��������(���
	�	 1
	

�
�
� �

���
	 (39)

where 	 ,
�

are parameters, and ����� 	
%
�
% ' .�
 denotes a mapping

from data � into a feature space
�

. By Mercers condition [14], it
is possible that the inner product in some feature space

�
can be

efficiently represented by some kernel functions, given by� ���(� � 	" ��(� �#	�	(�������(� � 	 1 �����(� �#	�	 % ' (40)

in which � ,� are data labels. Note that some RBF functions, e.g.
Gaussian, belong to Kernel functions family [15].

The � -insensitive function is defined as1�� � � 	��76 p
for 8 � 8:9 �8 � 8F> � for 8 � 8:? � (41)

where � is a predetermined nonnegative parameter that is effectively
used in controlling model complexity. Based on the SRM principle
the SVM regression modelling usually uses a composite functional

� 	 � 5
�
� .� 0 � �21�� �

�
���
	�	 (42)

as the objective function, where
�

is a predetermined smoothing pa-
rameter. The minimization of (42) based on (39) can be reformulated
as a constrained convex quadratic programming problem to derive a
‘global’ parameter optimal solution under the condition that both

�
and � are appropriately chosen [14], [15]. Increasing � will reduce
final model size, but taking � � p

, results in model size to be equal to
number of data points ' . To formulate a constrained convex quadratic
programming problem [14], [15], some slack variables associated
with the bounds of 1�� are initially introduced, followed by the re-
formulation of the functional (42) into a Langrangian form including
some additional Langrangian parameters � � , ���� , �<� �� �H H H  "' [14].
The derived SVM regression model is the optimal solution given by

�����
	�� .� � � � � ��� > � �� 	 � ���(���
	" ��(� � 	�	 � � � � ���
	 (43)
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Fig. 1. Cost functions for different estimators; (a)Least squares; (b)Vapnik’s� -insensitive; (c)Huber and (d) Turkey Bisquare.

in which ��� , ���� are the derived Langrangian parameters. The
simultaneous parameter and structure identification can be achieved
because some of � ��� > ���� 	���� are derived as zeros, by controlling
the size of � . The SVM usually generates excellent model, but the
computation expense is much higher than that of OFR algorithm [16].
By comparing (43) with (1), it is seen that the SVM is a linear-in-the-
parameters model with the parameter associated with each kernel as� ��� > ���� 	 . However in (1) the basis functions �

�
�03�	 are not restricted

to be kernel functions.
Various cost functions described in this paper are shown in Fig.

1. It is seen from Fig. 1(b) and (c) that the � -insensitive function is
very similar to Huber’s cost function, because both are based on

�0�
norm of errors for larger errors. Note that the � -insensitive function
is not a smooth function, and cannot be fitted into M-estimator
family, in which the derivative information of the loss function is
basic information in evaluating the robustness of M-estimator. It is
also not suitable for many optimization procedures, which require
derivative information, to be applied. Instead of using � -insensitive
cost function, the Huber cost function has been used in support vector
machine (SVM) regression that is solved by using a recurrent neural
network [19].

IV. NUMERICAL EXAMPLES

Example 1: Consider using an RBF network to approximate the
‘sinc’ function

� ��,�	�� � � � ��,�	,  > � p 9 , 9 � p (44)

1000 training data ����,�	 were generated from ����,�	���� ��,�	
� �

, using
uniformly distributed random ,

%
* > � p  %� p / . The additive noise

�
is

a Gaussian mixture that mixes two types of noises, a larger portion
of normal noise with smaller variance and a smaller portion of noise
with higher variance. i.e.

�
�
	 '�� p  p H ! 5 	 � ��� > 	 	�'�� p  p H p L 5 	 ,

where
p 2 	

2 p H ! as a small number to denote the contamination
ratio, such that

�
has the probability ��� > 	 	 of being drawn from'�� p  p H p L 5 	 ( as “normal ”), and a probability 	 of '�� p  p H ! 5 	 (as

“outliers ”).
For various levels of contamination ratio 	 , 1000 noisy obser-

vations were generated and divided into a training data set of 500
data points and a test data set of 500 data points. The 500 training
data points is shown in Fig.2 for different 	 . For each case, the
proposed algorithm is applied based on the RBF network. All the
training data points are used as the candidate centre set � � ’s, with
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Fig. 2. Data generated by ‘sinc ’ function with additive noise of various
levels of outliers in Example 1;(Dotted – ��
�������� ��t 5�� (normal) and Circle –
��
�������� � 5�� (outliers) )

�
�
���(���
	�	 constructed using Gaussian function �

�
� ����,  �

�
	 ��!����
 > � , >��

�
� 5 ��� 5 � . The width � � � is fixed for simplicity.

Note that by removing the IRLS inner loop of the algorithm, the
procedure simply reduces to OFR with D-optimality algorithm [13].
For comparison the SVM regression approach was applied, with
the same Gaussian function � ���� � � 	�� �!��� 
 > � , >��

�
�&5 ��� 5 � , and�:� � , as kernels. The parameters in SVM regression was set as� � p H p O and

� � � , as these values give the best tradeoff between
model sparseness and generalization by trial and error.

With various values of 	 as different level of bad data conditions,
the proposed algorithm is compared with OFR with D-optimality
algorithm using only least squares estimates and SVM regression.
With a predetermined small number � � p H pIp � , all of the derived
models based on OFR algorithm have the number of centers in the
range of 2�� � !#� � !�! , but the model size of SVM regression range
from 2�� � � !FJ � ���FO . The root of mean squares (RMS) errors of
a range of data conditions are listed in Table I. It is seen that the
proposed algorithm is most robust to outliers when the data contains
approximately � p! outliers. To achieve better performance for M-
estimators, it is useful to slightly adjust tuning constants because these
are set for " L  efficiency when data is normal. As data distribution
is unknown these values can be adjusted via iterations and cross-
validation. For the training data set as shown in Fig.2 with 	 �p H � , the model predicted output by using the proposed algorithm
with Turkey bisquare M-estimators is shown in Fig.3. For the best
results in term of sparseness and efficiency, OFR based algorithms
are better than SVM regression. The SVM regression is very robust
even with worst data condition, and gives consistent results for all
data conditions.

Example 2: Automobile MPG data. This data concerns city cycle
fuel consumption in miles per gallon (MPG) (ftp.ics.uci.edu/ pub/
machine -learning -databases) and its potential causal relation to
various observed inputs. The original data set of 398 data points
contains 392 complete data points. There are six inputs of various
manufacturers cars; the number of cylinders, displacement, horse
power, weight, acceleration, and model year. In a previous study
[20], it has been shown that three inputs (horse power, weight and
model year) are significant in modelling MPG. These three inputs
are used in this study. In order to test the robustness of the proposed
algorithm, a comparison study was performed based on modelling the
original data, and data with some added outliers respectively. For each
data point, with a probability � p! , a Gaussian noise with zero mean
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TABLE I
RMS ERRORS AND MODEL SIZE OF DERIVED MODELS WITH RESPECTIVE TO TRUE FUNCTION � (EXAMPLE 1).

�

0 0.03 0.05 0.10 0.15 0.20

OFR with D-optimality Training set 0.0102 0.0138 0.0143 0.0157 0.0175 0.0249

and least squares Test set 0.0102 0.0135 0.0139 0.0158 0.0175 0.0254

Model size 22 22 22 22 22 21

OFR with D-optimality Training set 0.0131 0.0139 0.0141 0.0129 0.0140 0.0219

and Huber M-estimator Test set 0.0131 0.0135 0.0136 0.0126 0.0137 0.0219

Model size 22 22 22 22 22 21

OFR with D-optimality Training set 0.0128 0.0131 0.0137 0.0124 0.0135 0.0218

and Bisquare M-estimator Test set 0.0128 0.0128 0.0132 0.0121 0.0133 0.0217

Model size 22 22 22 22 22 21

Support vector Training set 0.0144 0.0151 0.0156 0.0165 0.0176 0.0190

regression (SVR) Test set 0.0158 0.0156 0.0162 0.0169 0.0181 0.0192

Model size 123 134 142 150 161 176

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

Model predictions
True function

Fig. 3. Bisquare M-estimator model predictions with
��� ��� � and true

functions (Example 1).

and standard deviation of 15, was randomly generated and added to
the data to form the contaminated data, if the contaminated data is
greater than � p . (any outlier below the minimum MPG are removed to
generate more feasible outliers). The data was plotted in Fig. 4. With
the input vector � = [horse power, weight, model year], all the training
data points were used as the candidate centre set � � ’s. The standard
deviations of three inputs: 
 horse power, weight and model year �
are 
 38.4912, 849.4026, 3.6837 � , respectively. To achieve a balanced
scale for each input, �

�
���(���
	�	 was constructed using Gaussian func-

tion �
�
� ������ �

�
	 � �!����
 > ��� >�� � 	�1 diag 
FL p  �L pIp  YL��#��� >�� � 	!� ,

i.e. each input has a width with a similar scale of its standard
deviation. For both the original data and modified data, four types of
algorithms were applied and the modelling results were listed in Table
II. In the modelling original data without outliers, a predetermined
small number � � p H p � was used for all OFR based algorithms.
In the modelling data with outliers, it was found that the setting of� � p H p � would terminate at a model with too small model size
with insufficient approximation accuracy, so �:� p H pIpIp � was used
to allow larger models and better approximation accuracy. In the
SVM regression approach, the same Gaussian function � ���� � � 	 ��!����
 > ��� >
�

�
	�1X��������
FL p  [L pIp  YL��#��� >�� � 	!� was used, and the

parameters in SVM regression was set as � � J and
� � � p . It

is shown that the proposed algorithm and SVM are robust to outliers
than least square parameter estimates, in the sense that they are less
vulnerable to the change in data’s deviation from its original data.
The OFR based algorithms produce more sparse models than that of

SVM regression for all cases.

V. CONCLUSIONS

In this paper a new orthogonal forward regression (OFR) model
identification algorithm is introduced. The orthogonal forward regres-
sion (OFR), often based on the modified Gram-Schmidt procedure,
is an efficient method incorporating structure selection and parame-
ter estimation simultaneously. The proposed algorithm includes M-
estimator by using an iterative re-weighted least squares (IRLS) algo-
rithm inner loop based on the modified Gram-Schmidt procedure. D-
optimality as a model structure robustness criterion is used in model
selection. In this manner the proposed approach extends the use of the
OFR algorithm for parsimonious model structure determination even
in bad data conditions via the derivation of parameter M-estimators
with inherent robustness to outliers. Numerical examples have shown
that the proposed algorithm has improved performance than OFR with
least squares parameters as data condition deteriorates.
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