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1.1 Description of the problem
For real matrix X = [z;;], denote

Xl = max | (11)

For real matrices X = [z;;] and Y = [y;;] of the same dimension, denote the
Hadamard product of X and Y as

X oY = [ziyi]- (1.2)
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A square real matrix is said to be stable if its eigenvalues are all in the interior
of the unit disc.

Consider a stable discrete-time closed-loop control system, consisting of a
linear time invariant plant P(z) and a digital controller C'(z). The plant model
P(z) is assumed to be strictly proper with a state-space description

{ xp(k+1) = Apxp(k) + Bpu(k) (1.3)
y(k) = Cpxp(k) '
where Ap € R™™ Bp € R™*! and Cp € RI*™. The controller C(z) is
described by
{ xc(k +1) = Acxc(k) + Bey(k) (1.4)
ll(k) = C(jX(j(k) + Dcy(k) ’

where Ac € R™™, Be € R™¥9, Co € RY*™ and D¢ € RY¥9. It can be shown
easily that the transition matrix of the closed-loop system is

Ap+BpDcCp BpCc

(m+n)x(m+n)
B ol lem . (1.5)

|

It is well known that a discrete-time closed-loop system is stable if and only if
its transition matrix is stable. Since the closed-loop system, consisting of (1.3)
and (1.4), is designed to be stable, A is stable. Let

B — [ Bp 0 :| ER(m+n)X(l+n), (1.6)
0 I
c - [Cr O ] € Rlatm)x(min) (1.7)
0 I
_ [Dc Ce (14+n) x (¢+n)
W = Be Ac eER , (1.8)

where 0 and I denote the zero and identity matrices of appropriate dimensions,
respectively. Define the set

S={A:AcRHFM*@+M) A L B(W o A)C is stable} (1.9)
and further define
v = inf{||Al|max : A € REFM*0F1) A o S} (1.10)

The open problem is: calculate the value of v.

1.2 Motivation of the problem

The classical digital controller design methodology often assumes that the con-
troller is implemented exactly, even though in reality a control law can only
be realized with a digital processor of finite word length (FWL). It may seem



1.2. MOTIVATION OF THE PROBLEM 3

that the uncertainty resulting from finite-precision computing of the digital con-
troller is so small, compared to the uncertainty within the plant, such that
this controller “uncertainty” can simply be ignored. Increasingly, however, re-
searchers have realized that this is not necessarily the case. Due to the FWL
effect, a casual controller implementation may degrade the designed closed-loop
performance or even destabilize the designed stable closed-loop system, if the
controller implementation structure is not carefully chosen [1, 2].

With decreasing in price and increasing in availability, the use of floating-
point processors in controller implementations has increased dramatically. When
a real number z is implemented in a floating-point format, it is perturbed to
z(1 + 0) with |0] < n, where 7 is the maximum round-off error of the floating-
point representation [3]. It can be seen that the perturbation resulting from
finite-precision floating-point arithmetic is multiplicative.

For the closed-loop system described in section 1.1, when C(z) is imple-
mented in finite-precision floating-point format, the controller realization W is
perturbed to W + W o A. Each element of A is bounded by +n, that is,

|A | max < 7- (1.11)

With the perturbation A, the transition matrix of the closed-loop system be-
comes A + B(W o A)C. If an eigenvalue of A + B(W o A)C is outside the
open unit disc, the closed-loop system, designed to be stable, becomes unstable
with the FWL floating-point implemented W.

It is therefore critical to know the ability of the closed-loop stability to
tolerate the coefficient perturbation A in W resulted from finite-precision im-
plementation. This means that we would like to know the largest “cube” in the
perturbation space, within which the closed-loop system remains stable. The
measure v defined in (1.10) gives the exact size of the largest “stable pertur-
bation cube” for W. If the value of v can be computed, it becomes a simple
matter to check whether W is “robust” to FWL errors, because A+B(WoA)C
remains stable when v > 7.

Furthermore, W or (A¢, B¢, C¢, D¢) is a realization of the controller C'(z).
The realizations of C'(z) are not unique. Different realizations are all equivalent
if they are implemented in infinite precision. In fact, if (A2, B2, C2,D?) is a
realization of C(z), all the realizations of C(z) form a set
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where the transformation matrix T € R™*" is an arbitrary non-singular matrix.
A useful observation is that different W have different values of v. Provided that
the value of v is computationally tractable, an optimal realization of C(z), which
has a maximum tolerance to FWL errors, can be obtained via optimization.

The open problem defined in section 1.1 was first seen in [3]. At present, there
exists no available result. An approach to bypass the difficulty in computing v is
to define some approximate upper bound of v using a first-order approximation,
which is computationally tractable (see [3]).
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One of the thorny items in the open problem is the Hadamard product
W o A. The form of structured perturbation, which was adopted in p-analysis
methods [4], may be used to deal with this Hadamard product: A can be
transformed into a generalized perturbation A which has certain structure such
as block-diagonal. The fixed matrices A, B and C may be obtained such that
the stability of A + BAC is equivalent to that of A + B(W o A)C. Although
the stability of A + BAC can be treated satisfactorily by p-analysis methods,
the open problem cannot be solved successfully by p-analysis methods. This
is because p-analysis methods are concerned about the maximal singular value
7(A) of A. In fact, the distance between 7(A) and || A||max can be quite large,
and ||Al|max is the other thorny item which makes the open problem difficult.
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