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ABSTRACT

A novel scheme of semi-blind joint maximum likelihood (ML)
channel estimation and data detection is proposed for multiple-
input multiple-output (MIMO) systems by decomposing the
joint ML optimisation over channel and data into an itera-
tive two-level optimisation loop. Particle swarm optimisation
(PSO) is invoked at the upper level to identify the unknown
MIMO channel while an enhanced ML sphere detector is used
at the lower level to detect the transmitted data. The scheme
is semi-blind as a minimum pilot overhead is employed to aid
the initialisation of the PSO based channel estimator.

Index Terms— Multiple-input multiple-output, joint max-
imum likelihood estimation, particle swarm optimisation

1. INTRODUCTION

MIMO technologies are widely adopted in practice to im-
prove the system capacity and/or quality of service [1, 2].
Training-based schemes are capable of accurately estimating
a MIMO channel at the expense of considerable reduction in
system throughput. Blind methods not only impose high com-
plexity and slow convergence but also suffer from unavoid-
able estimation and decision ambiguities [3]. To overcome
this ambiguity problem, a few training symbols are usually
employed, and this leads to many semi-blind methods [4, 5,
6, 7, 8, 9]. In particular, the work [9] developed a semi-blind
scheme of joint ML channel estimation and data detection in
which the joint ML optimisation is decomposed into two lev-
els. At the upper level a global search algorithm, known as
the repeated weighted boosting search (RWBS) [10], searches
for an optimal channel estimate, while at the lower level a ML
detector, called the optimised hierarchy reduced search algo-
rithm (OHRSA) detector [11], recovers the transmitted data.
Joint ML channel estimation and data detection is achieved by
iteratively exchanging information between the RWBS chan-
nel estimator and the OHRSA data detector. A minimum
number of training symbols are used to provide an initial least
squares channel estimate (LSCE) [12] for aiding the RWBS
channel estimator to speed up convergence and to avoid the
ambiguities inherent in pure blind methods.

In this contribution, we propose a PSO aided semi-blind
scheme for joint ML channel estimation and data detection.
PSO is a population based stochastic optimisation technique
inspired by social behaviour of bird flocking or fish school-
ing [13]. The PSO method is popular owing to its simplicity
in implementation, ability to quickly converge to a reason-
ably good solution and robustness against local minima. It
has been successfully applied to wide-ranging optimisation
problems [14, 15, 16, 17, 18]. Because the PSO method is
a very efficient global search algorithm, we achieve consid-
erable complexity saving for the proposed semi-blind joint
ML scheme. Specifically, for the same 4 × 4 MIMO system,
our experimental results show that the PSO aided semi-blind
joint scheme requires 20% less computation than our previous
scheme [9]. Throughout our discussions, boldface capitals
and lower-case letters stand for matrices and vectors, respec-
tively, while IK and 1K×L denote the K ×K identity matrix
and the K × L matrix of unity elements, respectively. E [ ]
denotes the expectation operator, while <[ ] and =[ ] represent
the real and imaginary parts, respectively. Finally, j =

√−1.

2. MIMO SYSTEM MODEL

Consider a MIMO system consisting of nT transmitters and
nR receivers, which communicates over flat fading channels.
The system is described by the well-known MIMO model

y(k) = Hs(k) + n(k), (1)

where k is the symbol index, H denotes the nR × nT MIMO
channel matrix, s(k) = [s1(k) s2(k) · · · snT

(k)]T is the trans-
mitted symbols vector of the nT transmitters with the sym-
bol energy given by E

[|sm(k)|2] = σ2
s for 1 ≤ m ≤ nT ,

y(k) = [y1(k) y2(k) · · · ynR(k)]T denotes the received signal
vector, and n(k) = [n1(k) n2(k) · · ·nnR(k)]T is the complex-
valued Gaussian white noise vector associated with the MIMO
channels with E

[
n(k)nH(k)

]
= 2σ2

nInR
.

The modulation scheme is assumed to be quadrature phase
shift keying (QPSK). The narrowband MIMO channel ma-
trix is defined by H = [hp,m], for 1 ≤ p ≤ nR and 1 ≤
m ≤ nT , where hp,m denotes the channel coefficient link-
ing the mth transmitter to the pth receiver. The fading is as-
sumed to be sufficiently slow, so that during the time period



of a short block of L symbols, all the entries in the MIMO
channel matrix H may be deemed unchanged. From frame to
frame, the channel impulse response taps hp,m are indepen-
dently and identically distributed complex-valued Gaussian
processes with zero mean and E

[|hp,m|2
]

= 1. The signal-
to-noise ratio (SNR) is defined by Eb/No = σ2

s/2σ2
n.

3. PSO AIDED SEMI-BLIND SCHEME

Let Y = [y(1) y(2) · · ·y(L)] be the nR × L matrix of re-
ceived data and S = [s(1) s(2) · · · s(L)] the nT ×L matrix of
transmitted symbols. The probability density function of re-
ceived data matrix Y conditioned on MIMO channel matrix
H and transmitted symbol matrix S can be written as

p(Y|H,S) =
1

(2πσ2
n)nR×L

e
− 1

2σ2
n

PL
k=1‖y(k)−Hs(k)‖2

. (2)

The ML estimation of S and H can be obtained by jointly
maximising p(Y|H,S) over S and H. Equivalently, the joint
ML estimation is obtained by minimsing the cost function

JML(Š, Ȟ) =
1

nR × L

L∑

k=1

∥∥y(k)− Ȟ š(k)
∥∥2

. (3)

Thus the joint ML channel and data estimation is obtained as

(Ŝ, Ĥ) = arg
{

min
Š,Ȟ

JML(Š, Ȟ)
}

. (4)

The joint ML optimisation defined in (4) is computation-
ally prohibitive. The complexity of this optimisation process
may be reduced to a tractable level, if it is decomposed into an
iterative search carried out over all the possible data symbols
first and then over the channel matrices as

(Ŝ, Ĥ) = arg
{

min
Ȟ

[
min
Š

JML(Š, Ȟ)
]}

. (5)

At the inner-level optimisation we use the OHRSA ML de-
tector [11] to find the ML data estimate for the given channel.
At the outer-level optimisation we employ a PSO algorithm
to search for a global optimal channel estimate. A joint ML
solution is achieved with the following iterative loop.
Outer-level Optimisation: The PSO algorithm searches the
MIMO channel parameter space via evolving a swarm of chan-
nel matrices known as particles to find a global optimal esti-
mate Ĥ by minimising the mean square error (MSE)

JMSE(Ȟ) = JML(Ŝ(Ȟ), Ȟ), (6)

where Ŝ(Ȟ) denotes the ML estimate of the transmitted data
for the given channel Ȟ.
Inner-level Optimisation: Given Ȟ the OHRSA detector finds
the ML estimate of the transmitted data and feeds back the
ML metric JMSE(Ȟ) to the upper level.

A few training symbols are employed to provide an initial
LSCE for aiding the PSO algorithm. Let the number of train-
ing symbols be K, and denote the available training data as
YK = [y(1) y(2) · · ·y(K)] and SK = [s(1) s(2) · · · s(K)].
The LSCE based on {YK ,SK} is readily given by

ȞLSCE = YKSH
K

(
SKSH

K

)−1
. (7)

To maintain the system throughput, we only use the minimum
number of training symbols, namely, K = nT . The training
symbol matrix SK is designed to have nT orthogonal rows.
This yields the most efficient estimate and removes the need
for matrix inversion. With S denoting the swarm size and
index l the iteration step, we can now summarise the PSO
aided semi-blind joint ML estimation scheme.

A swarm of particles, {Ȟ(l)
i }S

i=1, that represent potential
solutions are initialised as Ȟ(0)

1 = ȞLSCE and

Ȟ(0)
i = ȞLSCE + η(1nR×nT + j1nR×nT ), 2 ≤ i ≤ S, (8)

where η is the uniformly distributed random variable defined
in the range [−α, α]. Each particle Ȟ(l)

i has a cost F (Ȟ(l)
i )

associated with it, which is evaluated at each iteration by the
OHRSA detector as F (Ȟ(l)

i ) = JMSE(Ȟ(l)
i ). Each particle

Ȟ(l)
i remembers its best position visited so far, denoted as

Pb(l)
i , which provides the cognitive information. Every par-

ticle also knows the best position visited so far among the
entire swarm, denoted as Gb(l), which provides the social in-
formation. The cognitive information {Pb(l)

i }S
i=1 and social

information Gb(l) are updated at each iteration

For (i = 1; i ≤ S; i++)
If (F (Ȟ(l)

i ) < F (Pb(l)
i )) Pb(l)

i = Ȟ(l)
i ;

End for;
i∗ = arg min1≤i≤S F (Pb(l)

i );
If (F (Pb(l)

i∗ ) < F (Gb(l))) Gb(l) = Pb(l)
i∗ ;

Each particle Ȟ(l)
i also has its velocity, denoted as V(l)

i , to
direct its flying. In each iteration, the velocity and the position
of the ith particle are updated according to

V(l+1)
i = w ∗V(l)

i + rand() ∗ c1 ∗ (Pb(l)
i − Ȟ(l)

i )

+rand() ∗ c2 ∗ (Gb(l) − Ȟ(l)
i ), (9)

Ȟ(l+1)
i = Ȟ(l)

i + V(l+1)
i , (10)

where w is the inertia weight, rand() denotes the uniform
random number between 0 and 1, and c1 and c2 are the two
acceleration coefficients. In order to avoid excessive roaming
of particles beyond the search space [16], a velocity range
[−Vmax, Vmax] is imposed on each element of V(l+1)

i

If (<[V(l+1)
i |p,q] > Vmax) <[V(l+1)

i |p,q] = Vmax;
If (<[V(l+1)

i |p,q] < −Vmax) <[V(l+1)
i |p,q] = −Vmax;

If (=[V(l+1)
i |p,q] > Vmax) =[V(l+1)

i |p,q] = Vmax;
If (=[V(l+1)

i |p,q] < −Vmax) =[V(l+1)
i |p,q] = −Vmax;



where V|p,q denotes the (p, q)th element of V. Moreover, if
the velocity (9) approaches zero, it is reinitialised to propor-
tional to Vmax with a small factor γ

V(l+1)
i |p,q = ±rand() ∗ γ ∗ (Vmax + jVmax). (11)

Our empirical results suggest that γ = 0.1 is appropriate.
Similarly, each element of Ȟ(l+1)

i is checked to ensure that
it stays inside the search space [−Hmax, Hmax]

If (<[Ȟ(l+1)
i |p,q] > Hmax) <[Ȟ(l+1)

i |p,q] = Hmax;
If (<[Ȟ(l+1)

i |p,q] < −Hmax) <[Ȟ(l+1)
i |p,q] = −Hmax;

If (=[Ȟ(l+1)
i |p,q] > Hmax) =[Ȟ(l+1)

i |p,q] = Hmax;
If (=[Ȟ(l+1)

i |p,q] < −Hmax) =[Ȟ(l+1)
i |p,q] = −Hmax;

Let COHRSA(L) be the complexity of the OHRSA algorithm
to decode the L-symbol data matrix S and let NOHRSA be
the number of calls for the OHRSA algorithm required by
the PSO algorithm to converge. Then the complexity of the
proposed semi-blind method is expressed as

C = NOHRSA × COHRSA(L), (12)

where COHRSA(L) is given in [11], and NOHRSA = S×Imax

with Imax denoting the maximum number of iterations
We adopt a time varying acceleration coefficient (TVAC)

mechanism in which c1 varies from 0.5 to 2.5 and c2 changes
from 2.5 to 0.5 during the iterative procedure according to

c1 = (2.5− 0.5) l
Imax

+ 0.5,

c2 = (0.5− 2.5) l
Imax

+ 2.5.
(13)

This TVAC is different from the one suggested in [15] and
it works well for our application. We also remove the influ-
ence of the previous velocity by setting w = 0, as suggested

Fig. 1. Bit error rate of the PSO aided semi-blind scheme with two
different values of frame length L after 1000 OHRSA evaluations,
in comparison with the training-based cases using 4, 8 and 16 pilot
symbols as well as the case of perfect channel knowledge.

in [15]. We set the population size to S = 20 and the max-
imum number of evolutionary steps to Imax = 50, which
appear adequate for our application. The control parameter
α in the channel population initialisation is found empirically
to be α = 0.15. Since <[hp,q] and =[hp,q] of each MIMO
channel tap hp,q are Gaussian distributed with a variance 0.5,
we choose the search space limit to Hmax = 1.8 which lies
between 2 to 3 standard deviations of the true tap distribution.
We also set the velocity limit to Vmax = 1.0 which is con-
firmed in simulation to be a suitable value for our application.

4. SIMULATION STUDY

A simulation study was carried out to investigate the PSO
aided semi-blind joint ML channel estimation and data de-
tection scheme. We considered a MIMO system with nT = 4
and nR = 4. The achievable performance was assessed in
the simulation using three metrics, and these were the MSE
defined in (6), the mean channel error (MCE) defined as

JMCE(Ȟ) = ‖H− Ȟ‖2, (14)

where H denotes the true MIMO channel matrix and Ȟ the
channel estimate, and the bit error ratio (BER). As we set
S = 20 and Imax = 50, the complexity of the PSO based
semi-blind scheme was determined by NOHRSA = 1000.

Fig. 1 depicted the BER performance of the PSO based
semi-blind scheme having two frame lengths L = 50 and 100
after 1000 OHRSA evaluations, in comparison with the per-
formance of the training-based OHRSA detector having K =
4, 8 and 16 training symbols, respectively, as well as with
the case of perfect channel knowledge. The results shown in
Fig. 1 were averaged over 50 different channel realisations.
It can be observed from Fig. 1 that, for the training-based

Fig. 2. Convergence of mean square error averaged over 50 differ-
ent channel realisations for different values of Eb/No and L.



Fig. 3. Convergence of mean channel error averaged over 50 differ-
ent channel realisations for different values of Eb/No and N .

scheme to achieve the same BER performance of the semi-
blind one having a frame length L = 100 and with only 4
pilot symbols, the number of training symbols had to be more
than 16. This example was identical to the MIMO system in-
vestigated in [9]. The BER performance of the PSO-based
semi-blind scheme depicted in Fig. 1 was slightly better than
the BER of the RWBS-based semi-blind scheme shown in [9].
Moreover, the performance of the PSO-based scheme was
achieved after 1000 OHRSA evaluations, while the perfor-
mance of the RWBS-based scheme was obtained after 1200
OHRSA evaluations. Thus, the proposed PSO-based semi-
blind method achieved 20% saving in computation.

Figs. 2 and 3 depict the convergence performance of the
proposed PSO-aided semi-blind scheme averaged over 50 dif-
ferent channel realisations in terms of the MSE and MCE, re-
spectively, for different SNR values as well as for two frame
lengths L = 50 and 100. It can be seen from Fig. 2 that the
MSE converged to the noise floor. The MCE performance
shown in Fig. 3 was seen to be slightly better and converging
faster than the result shown in [9].
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