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complex models for predicting future information. Being generally un-
reliable, such prediction models consume time and resources, since a
large amount of data must be gathered.
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Sparse Kernel Regression Modeling Using Combined
Locally Regularized Orthogonal Least Squares and

D-Optimality Experimental Design

S. Chen, X. Hong, and C. J. Harris

Abstract—The note proposes an efficient nonlinear identification
algorithm by combining a locally regularized orthogonal least squares
(LROLS) model selection with a D-optimality experimental design. The
proposed algorithm aims to achieve maximized model robustness and
sparsity via two effective and complementary approaches. The LROLS
method alone is capable of producing a very parsimonious model with
excellent generalization performance. The D-optimality design criterion
further enhances the model efficiency and robustness. An added advantage
is that the user only needs to specify a weighting for the D-optimality
cost in the combined model selecting criterion and the entire model
construction procedure becomes automatic. The value of this weighting
does not influence the model selection procedure critically and it can be
chosen with ease from a wide range of values.

Index Terms—Bayesian learning, D-optimality, optimal experimental de-
sign, orthogonal least squares, regularization, sparse modeling.

I. INTRODUCTION

A basic principle in practical nonlinear data modeling is the par-
simonious principle that ensures the smallest possible model that ex-
plains the data. A large class of nonlinear models and neural networks
can be classified as a kernel regression model [1]–[3]. For this class
of nonlinear models, the orthogonal least squares (OLS) algorithm [4],
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[5] is an efficient learning procedure for constructing sparse regression
models. If data are highly noisy, however, the parsimonious principle
alone may not be entirely immune to over fitting, and small models con-
structed may still fit into noise. A useful technique for overcoming over
fitting is regularization [6]–[8]. From the powerful Bayesian learning
viewpoint, a regularization parameter is equivalent to the ratio of the re-
lated hyperparameter to the noise parameter and an effective Bayesian
learning method is an evidence procedure which iteratively optimizes
model parameters and associated hyperparameters [9]. Adopting this
Bayesian learning method to regression models, the locally regular-
ized orthogonal least squares (LROLS) algorithm [10]–[12] has re-
cently been proposed, which introduces an individual regularizer for
each weight. This LROLS algorithm provides an efficient procedure
for constructing sparse models from noisy data that generalize well.

Optimal experimental designs [13] have been used to construct
smooth model response surfaces based on the setting of the experi-
mental variables under well controlled experimental conditions. In
optimal design, model adequacy is evaluated by design criteria that
are statistical measures of goodness of experimental designs by virtue
of design efficiency and experimental effort. For kernel regression
models, quantitatively, model adequacy is measured as function of the
eigenvalues of the design matrix, as it is known that the eigenvalues
of the design matrix are linked to the covariance matrix of the least
squares parameter estimate. There are a variety of optimal design
criteria based on different aspects of experimental design [13]. The
D-optimality criterion is most effective in optimizing the parameter
efficiency and model robustness via the maximization of the determi-
nant of the design matrix. The traditional nonlinear model structure
determination based on optimal experimental designs is however
inherent inefficient and computationally prohibitive, incurring the
curse of dimensionality. In [14] and [15], this computational difficulty
is overcome and an efficient model construction algorithm has been
proposed based on the OLS algorithm coupled with the D-optimality
experimental design.

This note shows that further advantages can be gained by combining
the LROLS algorithm with the D-optimality experimental design.
Computational efficiency of the resulting algorithm as usual is
ensured by the orthogonal forward selection procedure. The local
regularization enforces model sparsity and avoids over-fitting in
model parameters while the D-optimality design also optimizes
model efficiency and parameter robustness. The coupling effects of
these two approaches in the combined algorithm further enhance
each other. Moreover, the model construction process becomes fully
automatic, and there is only one user specified quantity which has no
critical influence on the model selection procedure. Some illustrative
examples are included to demonstrate the efficiency of this approach.

II. K ERNEL REGRESSIONMODEL

Consider the general discrete-time nonlinear system represented by
the nonlinear model [1]

y(k) = f(y(k � 1); . . . ; y(k � ny); u(k � 1); . . . ;

u(k � nu)) + e(k)

= f(x(k)) + e(k) (1)

whereu(k) andy(k) are the system input and output variables, re-
spectively,nu andny are positive integers representing the lags in
u(k) andy(k), respectively,e(k) is the system white noise,x(k) =
[y(k�1); . . . ; y(k�ny)u(k�1); . . . ; u(k�nu)]

T denotes the system
“input” vector, andf(�) is the unknown system mapping. The system
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model (1) is to be identified from anN -sample observation data set
fx(k); y(k)gNk=1 using some suitable functional which can approxi-
matef(�) with arbitrary accuracy. One class of such functionals is the
kernel regression model of the form

y(k) = ŷ(k) + e(k) =

n

i=1

�i�i(x(k)) + e(k) (2)

where ŷ(k) denotes the model output,�i are the model weights,
�i(x(k)) are the regressors, andnM is the total number of candidate
regressors or model terms.

By letting���i = [�i(x(1)); . . . ; �i(x(N))]T , for 1 � i � nM , and
defining

y =

y(1)

...

y(N)

� = [���
1
� � ����n ] ��� =

�1

...

�n

e =

e(1)

...

e(N)

(3)

the regression model (2) can be written in the matrix form

y = ���� + e: (4)

Let an orthogonal decomposition of the matrix� be

� =WA (5)

where

A =

1 a1; 2 � � � a1; n

0 1
. . .

...
...

. . .
. . . an �1; n

0 � � � 0 1

(6)

and

W = [w1 � � �wn ] (7)

with columns satisfyingwT
i wj = 0, if i 6= j. The regression model

(4) can alternatively be expressed as

y =Wg + e (8)

where the orthogonal weight vectorg = [g1; . . . ; gn ]T satisfy the
triangular systemA��� = g.

III. L OCALLY REGULARIZED OLS ALGORITHM WITH

D-OPTIMALITY DESIGN

Before describing this combined model construction algorithm, we
briefly discuss its two components.

A. The Locally Regularized OLS Algorithm

The LROLS algorithm [10]–[12] adopts the following regularized
error criterion:

JR(g; ���) = e
T
e+

n

i=1

�ig
2

i = eT e+ gT�g (9)

where��� = [�1; . . . ; �n ]T is the regularization parameter vector,
and� = diagf�1; . . . ; �n g. The criterion (9) has its root in the
Bayesian learning framework. In fact, according to the Bayesian
learning theory (e.g., [9] and [16]), the optimalg is obtained by
maximizing the posterior probability ofg, which is given by

p(gjy; h; ") = p(yjg; h; ")p(gjh; ")
p(yjh; ") (10)

wherep(gjh; ") is the prior withh = [h1; . . . ; hn ]T denoting the
vector of hyperparameters and" a noise parameter [the inverse of the
variance ofe(k)], p(yjg; h; ") is the likelihood, andp(yjh; ") is the
evidence that does not depend ong explicitly. Under the assumption
that e(k) is white and has a Gaussian distribution, the likelihood is
expressed as

p(yjg; h; ") = "

2�

N=2

exp � "

2
e
T
e : (11)

If the Gaussian prior is chosen

p(gjh; ") =
n

i=1

p
hip
2�

exp �hig
2

i

2
(12)

maximizinglog(p(gjy; h; ")) with respect tog is equivalent to min-
imizing the following Bayesian cost function:

JB(g; h; ") = "eT e+ gTHg (13)

whereH = diagfh1; . . . ; hn g. It is easily seen that the criterion (9)
is equivalent to the criterion (13) with the relationship

�i =
hi
"
; 1 � i � nM : (14)

It can readily be shown [12] that withg set to its optimal values,
i.e.,dJR=dg = 0, the criterion (9) can be expressed as (also see Ap-
pendix A)

e
T
e+ gT�g = yTy �

n

i=1

w
T
i wi + �i g2i : (15)

Normalizing (15) byyT y yields

e
T
e+ gT�g =yTy = 1�

n

i=1

w
T
i wi + �i g2i =y

T
y: (16)

As in the case of the OLS algorithm [4], the regularized error reduction
ratio due towi is defined by

[rerr]i = w
T
i wi + �i g2i =y

T
y: (17)

Based on this ratio, significant regressors can be selected in a forward
regression procedure, and the selection process is terminated at thensth
stage when

1�
n

l=1

[rerr]l < � (18)

is satisfied, where0 < � < 1 is a chosen tolerance. This produces a
sparse model containingns(�nM ) significant regressors.

The hyperparameters specify the prior distributions ofg. Since ini-
tially we do not know the optimal value ofg,�i should be initialized to
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the same small value, and this corresponds to choose a same flat distri-
bution for each prior ofgi in (12). The beauty of Bayesian learning is
“let data speak”—it learns not only the model parametersg, but also the
related hyperparametersh. This can be done for example by iteratively
optimizingg andh using an evidence procedure [9], [16]. Applying
this evidence procedure leads to the updating formulas for the regular-
ization parameters (see Appendix B)

�newi =
oldi

N � old
eT e

g2
i

; 1 � i � nM (19)

where

i =
wT

i wi

�i +wT

i
wi

 =

n

i=1

i: (20)

Usually, a few iterations (typically 10 to 20) are sufficient to find an
optimal���.

It is worth emphasizing that, for the LROLS algorithm, the choice of
� is less critical than the original OLS algorithm. This is because mul-
tiple regularizers enforce sparsity. If, for example,� is chosen too small,
those unnecessarily added terms will have a very large�l associated
with each of them, effectively forcing their weights to zero [10]–[12].
Nevertheless, an appropriate value for� is desired. Alternatively, the
Akaike information criterion (AIC) [17], [18] can be adopted to termi-
nate the subset model selection process. The AIC can be viewed as a
model structure regularization by conditioning the model size using a
penalty term to penalize large sized models. However, the use of AIC
or other information based criteria in forward regression only affects
the stopping point of the model selection, but does not penalizes the
regressor that may cause poor model performance (e.g., too large vari-
ance of parameter estimate or ill posedness of the regression matrix),
if it is selected. Or simply the penalty term in AIC does not determine
which regressor should be selected. Optimal experimental design cri-
teria offer better solutions as they are directly linked to model efficiency
and parameter robustness.

B. D-Optimality Experimental Design

In experimental design, the matrix�T� is called the design matrix.
The least-square estimate of��� is given by�̂�� = �T�

�1

�Ty. As-
sume that (4) represents the true data generating process and�T� is
nonsingular. Then, the estimate�̂�� is unbiased and the covariance matrix
of the estimate is determined by the design matrix

E �̂�� = ���

Cov �̂�� =
1

"
�T�

�1

: (21)

It is well known that the model based on least squares estimate tend
to be unsatisfactory for an ill conditioned regression matrix (or design
matrix). The condition number of the design matrix is given by

C =
maxf�i; 1 � i � nMg

minf�i; 1 � i � nMg
(22)

with �i, 1 � i � nM , being the eigenvalues of�T�. Too large a con-
dition number will result in unstable least square parameter estimate
while a small condition number improves model robustness. The D-op-
timality design criterion maximizes the determinant of the design ma-
trix for the constructed model. Specifically, let�n be a column subset
of � representing a constructedns-term subset model. According to
the D-optimality criterion, the selected subset model is the one that
maximizesdet(�T

n �n ). This helps to prevent the selection of an
oversized ill-posed model and the problem of high parameter estimate

variances. Thus, the D-optimality design is aimed to optimize model
efficiency and parameter robustness.

It is straightforward to verify that maximizingdet(�T

n �n ) is
identical to maximizingdet(WT

n Wn ) or, equivalently, minimizing
� log det(WT

n Wn ) [14], [15]. Note that

det(�T
�) =

n

i=1

�i (23)

det(�T
�) = det(AT ) det(WT

W) det(A)

= det(WT
W) =

n

i=1

w
T

i wi (24)

and

� log det(WT
W) =

n

i=1

� log(wT

i wi): (25)

The combined algorithm of OLS and D-optimality design given in [14]
and [15] is based on the cost function

JC(g; �) = e
T
e+ �

n

i=1

� log(wT

i wi) (26)

where� is a fixed small positive weighting for the D-optimality cost.
The model selection is according to the combined error reduction ratio
defined as

[cerr]i = w
T

i wig
2

i + � log(wT

i wi) =yTy: (27)

Note that at some stage, say thensth stage, the remaining unselected
model terms will have[cerr]l � 0 for ns + 1 � l � nM , and this
terminates the model construction process. Obviously, for this model
construction algorithm to produce desired sparse models, the value of
� should be set appropriately. It has been suggested in [14] and [15]
that an appropriate value for� should be determined using cross vali-
dation with two data sets, an estimation set and a validation set. Cross
validation in forward model construction is however computationally
costly.

C. Combined LROLS and D-Optimality Algorithm

The proposed combined LROLS and D-optimality algorithm can be
viewed as based on the combined criterion

JCR(g; ���; �) = JR(g; ���) + �

n

i=1

� log(wT

i wi): (28)

In this combined algorithm, the updating of the model weights and
regularization parameters is exactly as in the LROLS algorithm, but
the selection is according to the combined regularized error reduction
ratio defined as

[crerr]i = (wT

i wi + �i)g
2

i + � log(wT

i wi) =yTy (29)

and the selection is terminated with anns term model when

[crerr]l � 0 for ns + 1 � l � nM : (30)

The iterative model selection procedure can now be summarized.
Initialization: Set�i, 1 � i � nM , to the same small positive value

(e.g., 0.001), and choose a fixed�. Set iterationI = 1.

Step 1) Given the current���, use the procedure described in
Appendix C to select a subset model withnI terms.
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Step 2) Update��� using (19) withnM = nI . If ��� remains
sufficiently unchanged in two successive iterations or a preset
maximum iteration number is reached, stop; otherwise, set
I+ = 1 and go to Step 1).

The introduction of the D-optimality cost into the algorithm
further enhances the efficiency and robustness of the selected subset
model and, as a consequence, the combined algorithm can often
produce sparser models with equally good generalization properties,
compared with the LROLS algorithm. An additional advantage is
that it simplifies the selection procedure. Notice that it is no longer
necessary to specify the tolerance� and the algorithm automatically
terminates when condition (30) is reached. Unlike the combined
OLS and D-optimality algorithm [14], [15], the value of weighting
� does not critically influence the performance of this combined
LROLS and D-optimality algorithm. This is because the LROLS
algorithm alone is capable of producing a very sparse model and the
selected model terms are most likely to have large values ofw

T

i wi.
Using the OLS algorithm without local regularization, this is not
necessarily the case, as model terms with smallw

T

i wi can have
very largegi (overfitted) and consequently will be chosen. Note that
with regularization, such overfitting will not occur. The D-optimality
design also favors the model terms with largewT

i wi and, therefore,
the two component criteria in the combined criterion (28) are not in
conflict. Thus, the two methods enhance each other. Consequently,
the value of� is less critical in arriving a desired sparse model,
compared with the combined OLS and D-optimality algorithm, and
the suitable weighting� can be chosen with ease from a large range
of values. This will be demonstrated in the following modeling
examples. It should also be emphasized that the computational
complexity of this algorithm is not significantly more than that
of the OLS algorithm or the combined OLS and D-optimality
algorithm. This is simply because, after the first iteration, which
has a complexity of the OLS algorithm, the model set contains only
n1(�nM ) terms, and the complexity of the subsequent iteration
decreases dramatically. Typically, after a few iterations, the model
set will converge to a constant size of very smallns. A few more
iterations will ensure the convergence of���.

IV. M ODELING EXAMPLES

Example 1: This example used a radial basis function (RBF) net-
work to model the scalar function

f(x) = sin(2�x); 0 � x � 1: (31)

For a detailed description of the RBF network see, for example, [5]. The
RBF model employed Gaussian kernel function with a variance of 0.04.
One hundred training data were generated fromy = f(x) + e, where
the inputx was uniformly distributed in(0; 1) and the noisee was
Gaussian with zero mean and variance 0.16. The noisy training points
y and the underlying functionf(x) are plotted in Fig. 1(a). As each
training datax was considered as a candidate RBF center, there were
nM = 100 regressors in the regression model (2). The training data
were extremely noisy. One hundred noise-free dataf(x) with equally
spacedx were also generated as the testing data set for model valida-
tion. In the previous works [10]–[12], it was shown that without reg-
ularization the constructed models suffered from a serious over-fitting
problem, and the LROLS algorithm was able to overcome this problem
and produced a sparse six-term model, with the mean square error
(MSE) values over the noisy training set and the noise-free testing set
being 0.159 17 and 0.001 81, respectively.

(a)

(b)

Fig. 1. Simple scalar function modeling problem. (a) Noisy training data
y (dots) and underlying functionf(x) (curve). (b) Model mapping (curve)
produced by the LROLS+ D-optimality algorithm with� = 10 ; circles
indicate the RBF centers.

Table I compares the MSE values over the training and testing sets
for the models constructed by the combined LROLS and D-optimality
algorithm with those of the combined OLS and D-optimality algorithm
[14], [15], given a wide range of� values. It can be seen clearly that
using the D-optimality alone without regularization the constructed
models can still fit into the noise unless the weighting� is set to some
appropriate value. Combining regularization with D-optimality design,
the results obtained are consistent over a wide range of� values and,
effectively, the value of� has no serious influence on the model con-
struction process. It can also be seen that the combined LROLS and
D-optimality algorithm was able to produce a sparser five-term model
with equally good generalization properties, compared with the result
using the LROLS algorithm alone [10]–[12]. The model map of the
five-term model produced by the combined LROLS and D-optimality
algorithm with� = 10�5 is shown in Fig. 1(b).

Example 2: This was a two-dimensional simulated nonlinear time
series given by

y(k) = 0:8� 0:5 exp(�y2(k � 1)) y(k � 1)

� 0:3 + 0:9 exp(�y2(k � 1)) y(k � 2)

+ 0:1 sin(�y(k� 1)) + e(k) (32)

where the noisee(k) was Gaussian with zero mean and variance 0.09.
One thousand noisy samples were generated giveny(0) = y(�1) =

0:0. The first 500 data points were used for training, and the other
500 samples were used for model validation. The underlying noise-free
system

yd(k) = 0:8� 0:5 exp(�y2d(k � 1)) yd(k � 1)

� 0:3 + 0:9 exp(�y2d(k � 1)) yd(k � 2)

+ 0:1 sin(�yd(k � 1)) (33)
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TABLE I
COMPARISON OFMODELING ACCURACY FORSIMPLE SCALAR FUNCTION MODELING

(a)

(b)

Fig. 2. Two-dimensional time series modeling problem. (a) Phase plot of the
noise-free time series (y (0) = y (�1) = 0:1). (b) Phase plot of the iterative
RBF model output (̂y (0) = ŷ (�1) = 0:1), the model was constructed by
the LROLS+ D-optimality algorithm with� = 10 .

with yd(0) = yd(�1) = 0:1 was specified by a limit circle, as shown
in Fig. 2(a). A Gaussian RBF model of the form

ŷ(k) = f̂RBF(x(k)) with x(k) = [y(k � 1)y(k� 2)]T (34)

was constructed using the noisy training data. The Gaussian kernel
function had a variance of 0.81. As each data pointx(k)was considered
as a candidate RBF center, there werenM = 500 candidate regres-
sors. The previous study [10]–[12] constructed a sparse 18-term model
using the LROLS algorithm, with the MSE values over the training and
testing sets being 0.092 64 and 0.096 78, respectively.

The modeling accuracies over both the training and testing sets are
compared in Table II for the two algorithms, the combined LROLS and
D-optimality and the combined OLS and D-optimality, with a range of
� values. Again, it is seen that, when combining with the D-optimality
design, the LROLS was able to produce sparser models with equally
good generalization performance, compared with the result obtained
using the LROLS algorithm alone. It is also clear that for the combined
LROLS and D-optimality algorithm the model construction process is
insensitive to the value of�. The RBF model produced by the com-

bined LROLS and D-optimality algorithm with� = 10�4 was used to
iteratively generate the time series according to

ŷd(k) = f̂RBF(xd(k)) with xd(k) = [ŷd(k� 1)ŷd(k� 2)]T (35)

given xd(0) = [0:10:1]T . The resulting phase plot is shown in
Fig. 2(b).

Example 3: This example constructed a model representing the re-
lationship between the fuel rack position (input) and the engine speed
(output) for a Leyland TL11 turbocharged, direct injection diesel en-
gine operated at low engine speed. It is known that at low engine speed,
the relationship between the input and output is nonlinear [19]. Detailed
system description and experimental setup can be found in [19]. The
data set contained 410 samples. The first 210 data points were used in
modeling and the last 200 points in model validation. An RBF model
of the form

ŷ(k) = f̂RBF(x(k))

with

x(k) = [y(k � 1)u(k� 1)u(k� 2)]T (36)

was used to model the data. The variance of the RBF kernel function
was chosen to be 1.69. As each input vectorx(k) was considered as a
candidate RBF center, there werenM = 210 candidate regressors. Pre-
viously, a 34-term model was constructed using the LROLS algorithm
[10]–[12], and the resulting MSE values over the training and testing
sets were 0.000 435 and 0.000 487, respectively.

The MSE values of the models produced by the combined LROLS
and D-optimality algorithm and the combined OLS and D-optimality
one are compared in Table III, given a range of� values. It can be seen
again that the former is insensitive to the weighting value for the D-op-
timality cost. This real-data identification example really demonstrates
the power of combining regularization with the D-optimality design:
the ability to produce a much sparser model with similar good gener-
alization performance, compared with relying on regularization alone.
The constructed RBF model by the combined LROLS and D-optimality
algorithm with� = 10�5 was used to generate the one-step prediction
ŷ(k) of the system output according to (36). The iterative model output
ŷd(k) was also produced using

ŷd(k) = f̂RBF(xd(k))

with

xd(k) = [ŷd(k � 1)u(k� 1)u(k� 2)]T : (37)

The one-step model prediction and iterative model output for this
22-term model selected by the combined LROLS and D-optimality
algorithm are shown in Fig. 3, in comparison with the system output.
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TABLE II
COMPARISON OFMODELING ACCURACY FORTWO-DIMENSIONAL SIMULATED TIME SERIESMODELING

TABLE III
COMPARISON OFMODELING ACCURACY FORENGINE DATA SET

(a)

(b)

Fig. 3. System outputy(k) (solid) superimposed on (a) model one-step
predictionŷ(k) (dashed) and (b) model iterative outputŷ (k) (dashed). The
model was selected by the LROLS+ D-optimality algorithm with� = 10 .

V. CONCLUSION

A locally regularized OLS algorithm with the D-optimality design
has been proposed for nonlinear system identification using the kernel
regression model. It has been demonstrated that combining regulariza-
tion with the D-optimality experimental design provides a state-of-art
procedure for constructing very sparse models with excellent general-
ization performance. It has been shown that the performance of the
algorithm is insensitive to the D-optimality cost weighting, and the
model construction process is fully automated. The computational re-
quirements of this iterative model selection procedure are very simple
and its implementation straightforward.

APPENDIX A

The regularized least squares solution forg is obtained by setting
@JR=@g = 0, that is

W
T
y = W

T
W+� g: (38)

Now

y
T
y � 2gT�g =(Wg+ e)T (Wg+ e)� 2gT�g

=gTWT
Wg+ eT e+ gTWT

e

+ eTWg� 2gT�g: (39)

Noting (38)

g
T
W

T
e� g

T
�g =gTWT (y �Wg)� gT�g

=gT (WT
y �W

T
Wg��g) = 0:

(40)

Similarly, eTWg � gT�g = 0. Thus, yTy � 2gT�g =
gTWTWg + eT e, or

e
T
e+ gT�g = y

T
y � g

T
W

T
Wg� g

T
�g: (41)

APPENDIX B

Following [9], it can be shown that the log model evidence forh and
" is approximated as

log (p(yjh; ")) �

n

i=1

1

2
log(hi)�

nM
2

log(�)

�
N

2
log(2�) +

N

2
log(")

�

n

i=1

1

2
hig

2

i �
1

2
"eTe� 1

2
log (det(B))

+
nM
2

log(2�) (42)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 6, JUNE 2003 1035

whereg is set to the maximuma posteriorprobability solution, and the
“Hessian” matrixB is diagonal and is given by

B =H+ "WT
W

= diag h1 + "wT

1 w1; . . . ; hn + "wT
n wn : (43)

Setting@ log(p(yjh; "))=@" = 0 yields the recalculation formula for"

"eT e = N �

n

i=1

"wT
i wi

hi + "wT
i wi

: (44)

Setting@ log(p(yjh; "))=@hi = 0 yields the recalculation formula
for hi

hi =
"wT

i wi

g2i (hi + "wT
i wi)

: (45)

Note�i = hi=" and define

 =

n

i=1

i with i =
"wT

i wi

hi + "wT
i wi

=
wT

i wi

�i +wT
i wi

: (46)

Then, the recalculation formula for�i is

�i =
i

N � 

eT e

g2i
; 1 � i � nM : (47)

APPENDIX C

The modified Gram–Schmidt orthogonalization procedure calcu-
lates theA matrix row by row and orthogonalizes� as follows: at the
lth stage make the columns���j , l+1 � j � nM , orthogonal to thelth
column and repeat the operation for1 � l � nM � 1. Specifically,
denoting���j

(0) = �j , 1 � j � nM , then

wl = ���
(l�1)
l

al; j = wT
l ���

(l�1)
j wT

l wl ; l+ 1 � j � nM

���
(l)
j = ���

(l�1)
j � al; jwl; l+ 1 � j � nM

l = 1; 2; . . . ; nM � 1: (48)

The last stage of the procedure is simplywn = ���(n �1)
n . The ele-

ments ofg are computed by transformingy(0) = y in a similar way

gl = wT
l y

(l�1) wT
l wl + �l

y(l) = y(l�1) � glwl

; 1 � l � nM : (49)

This orthogonalization scheme can be used to derive a simple and
efficient algorithm for selecting subset models in a forward-regression
manner. First, define

�
(l�1) = w1 � � �wl�1���

(l�1)
l � � ����(l�1)n : (50)

If some of the columns���(l�1)l ; . . . ; ���(l�1)n in�(l�1) have been inter-
changed, this will still be referred to as�(l�1) for notational conve-
nience. Thelth stage of the selection procedure is given as follows.

Step 1) Forl � j � nM , compute

g
(j)
l = ���

(l�1)
j

T

y(l�1) ���
(l�1)
j

T

���
(l�1)
j + �j ;

[crerr]
(j)
l = g

(j)
l

2

���
(l�1)
j

T

���
(l�1)
j + �j

+� log ���
(l�1)
j

T

���
(l�1)
j yTy

:

Step 2) Find

[crerr]l = [crerr]
(j )
l = max [crerr]

(j)
l ; l � j � nM :

Then, thejlth column of�(l�1) is interchanged with thelth
column of�(l�1), thejlth column ofA is interchanged with
the lth column ofA up to the(l � 1)th row, and thejlth
element of��� is interchanged with thelth element of���. This
effectively selects thejlth candidate as thelth regressor in the
subset model.
Step 3) Perform the orthogonalization as indicated in (48) to
derive thelth row ofA and to transform�(l�1) into �(l).
Calculategl and updatey(l�1) into y(l) in the way shown in
(49).

The selection is terminated at thens stage when the criterion (30)
is satisfied and this produces a subset model containingns significant
regressors. The algorithm described here is in its standard form. A fast
implementation can be adopted, as shown in [20], to reduce complexity.
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Stabilization of Nonlinear Systems With Moving Equilibria

A. I. Zecevic and D. D. Siljak

Abstract—This note provides a new method for the stabilization of non-
linear systems with parametric uncertainty. Unlike traditional techniques,
our approach does not assume that the equilibrium remains fixed for all
parameter values. The proposed method combines different optimization
techniques to produce a robust control that accounts for uncertain para-
metric variations, and the corresponding equilibrium shifts. Comparisons
with analytical gain scheduling are provided.

Index Terms—Linear matrix inequalities, moving equilibria, nonlinear
optimization, parametric stability, robustness.

I. INTRODUCTION

In the analysis of nonlinear dynamic systems, it is common practice
to separately treat the existence of equilibria and their stability. The
traditional approach has been to compute the equilibrium of interest,
and then introduce a change of variables that translates the equilibrium
to the origin. This methodology has been widely applied to systems
that contain parametric uncertainties, and virtually all control schemes
developed along these lines implicitly assume that the equilibrium re-
mains fixed for the entire range of parameter values [1]–[5].

It is important to note, however, that there are many practical appli-
cations where the fixed equilibrium assumption is not realistic. In fact,
it is often the case that variations in the system parameters result in a
moving equilibrium, whose stability properties can vary substantially.
In some situations, the equilibrium could even disappear altogether, as
in the case of heavily stressed electric power systems [6]–[8]. Much of
the recent work involving moving equilibria has focused on analytical
gain scheduling [9]–[12]. This approach assumes the existence of an
exogenous scheduling variable, whose instantaneous value determines
the appropriate control law (which may be nonlinear in general). Ana-
lytical gain scheduling will be discussed in some detail in Section IV,
where it is compared with the method proposed in this note.

For our purposes, it is suitable to use the concept of parametric sta-
bility, which simultaneously captures theexistenceand thestability of
a moving equilibrium [13]–[17]. This concept has been formulated in
[14], where a general nonlinear dynamic system

_x = f(x; p) (1)

was considered, with the assumption that a stable equilibrium state
xe(p�) 2 Rn corresponds to the nominal parameter valuep = p� 2
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The authors are with the Department of Electrical Engineering, Santa Clara
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Rl. System (1) is said to beparametrically stableat p� if there is a
neighborhood
(p�) � Rl such that

i) an equilibriumxe(p) 2 Rn exists for anyp 2 
(p�);
ii) equilibrium xe(p) is stable for anyp 2 
(p�).
With this definition in mind, the main objective of this note will be to

develop a strategy for the parametric stabilization of nonlinear systems.
Our approach combines two different optimization techniques to pro-
duce a robust control that allows for unpredictable equilibrium shifts
due to parametric variations. The resulting controller is linear, and the
corresponding gain matrix is obtained using linear matrix inequalities
(LMIs) [18]–[23]. The reference input values, on the other hand, are
computed by a nonlinear constrained optimization procedure that takes
into account the sensitivity of the equilibrium to parameter changes.

The note is organized as follows. In Section II, we provide a brief
overview of the control design using linear matrix inequalities, and
extend these concepts to systems with parametrically dependent equi-
libria. Section III is devoted to the problem of selecting an appropriate
reference input, and the effects that this selection may have on the size
of the stability region in the parameter space. The proposed control
strategy is then compared with analytical gain scheduling in Section IV.

II. PARAMETRIC STABILIZATION USING LINEAR

MATRIX INEQUALITIES

Let us consider a general nonlinear system described by the differ-
ential equations

_x = Ax + h(x) +Bu (2)

wherex 2 Rn is the state of the system,u 2 Rm is the input vector,
A andB are constantn� n andn�m matrices, andh: Rn

! Rn is
a piecewise-continuous nonlinear function inx, satisfyingh(0) = 0.
The termh(x) is assumed to be uncertain, but bounded by a quadratic
inequality

hTh � �2xTHTHx (3)

where� > 0 is a scalar parameter andH is a constant matrix. In the
following, it will be convenient to rewrite this inequality as:

x

h

T
��2HTH 0

0 I

x

h
� 0: (4)

If we assume a linear feedback control lawu = Kx, the closed-loop
system takes the form

_x = Âx + h(x) (5)

whereÂ = A + BK. The global asymptotic stability of (5) can then
be established using a Lyapunov function

V (x) = xTPx (6)

whereP is a symmetric positive–definite matrix (denotedP > 0). As
is well known, a sufficient condition for stability is for the derivative of
V (x) to be negative along the solutions of (5). Formally, this condition
can be expressed as a pair of inequalities

P > 0;
x

h

T
ÂTP + PÂ P

P 0

x

h
< 0: (7)

DefiningY = �P�1 (where� is a positive scalar),L = KY , and =
1=�2, the control design can now be formulated as an LMI problem in
Y , L and [22]:
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