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complex models for predicting future information. Being generally uri5] is an efficient learning procedure for constructing sparse regression
reliable, such prediction models consume time and resources, singaaels. If data are highly noisy, however, the parsimonious principle

large amount of data must be gathered. alone may not be entirely immune to over fitting, and small models con-
structed may still fit into noise. A useful technigque for overcoming over
REEERENCES fitting is regularization [6]-[8]. From the powerful Bayesian learning
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D-optimality criterion is most effective in optimizing the parameter

Sparse Kernel Regression Modeling Using Combined  efficiency and model robustness via the maximization of the determi-

Locally Regularized Orthogonal Least Squares and nant of the design matrix. The traditional nonlinear model structure
D-Optimality Experimental Design determination based on optimal experimental designs is however

inherent inefficient and computationally prohibitive, incurring the
S. Chen, X. Hong, and C. J. Harris curse of dimensionality. In [14] and [15], this computational difficulty
is overcome and an efficient model construction algorithm has been
proposed based on the OLS algorithm coupled with the D-optimality
Abstract—The note proposes an efficient nonlinear identification experimental design.
algorithm by combining a locally regularized orthogonal least squares  Thijs note shows that further advantages can be gained by combining
(LROLS) model selection with a D-optimality experimental design. The he | ROLS algorithm with the D-optimality experimental design.
proposed algorithm aims to achieve maximized model robustness and . - . . .
sparsity via two effective and complementary approaches. The LROLS Computational efficiency of the resultlng. algorithm as usual is
method alone is capable of producing a very parsimonious model with ensured by the orthogonal forward selection procedure. The local
excellent generalization performance. The D-optimality design criterion regularization enforces model sparsity and avoids over-fitting in
further enhances the model efficiency and robustness. An added advantage model parameters while the D-optimality design also optimizes

is that the user only needs to specify a weighting for the D-optimality - .
cost in the combined model selecting criterion and the entire model model efficiency and parameter robustness. The coupling effects of

construction procedure becomes automatic. The value of this weighting these two approaches in the combined algorithm further enhance
does not influence the model selection procedure critically and it can be each other. Moreover, the model construction process becomes fully

chosen with ease from a wide range of values. automatic, and there is only one user specified quantity which has no
Index Terms—Bayesian learning, D-optimality, optimal experimental de- ~ Cfitical influence on the model selection procedure. Some illustrative
sign, orthogonal least squares, regularization, sparse modeling. examples are included to demonstrate the efficiency of this approach.

I. INTRODUCTION Il. KERNEL REGRESSIONMODEL

A basic principle in practical nonlinear data modeling is the par: Consider the general discrete-time nonlinear system represented by

simonious principle that ensures the smallest possible model that i€ nonlinear model [1]
plains the data. A large class of nonlinear models and neural networks

can be classified as a kernel regression model [1]-[3]. For this class ~ ¥(F) = f(y(k = 1), ..., y(k —ny), (k= 1), ...,
of nonlinear models, the orthogonal least squares (OLS) algorithm [4], u(k —ny)) + e(k)
= f(x(k)) + e(k) 1)
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model (1) is to be identified from afV-sample observation data setwhereA = [A\4,..., AnM]T is the regularization parameter vector,
{x(k), y(k)}iZ, using some suitable functional which can approxiand A = diag{\i, ..., \..,, }. The criterion (9) has its root in the
matef (o) with arbitrary accuracy. One class of such functionals is th@ayesian learning framework. In fact, according to the Bayesian
kernel regression model of the form learning theory (e.g., [9] and [16]), the optimgl is obtained by
maximizing the posterior probability @f, which is given by
N
i=1 p(g|y he :) - ~ (10)
]7<Y|h7 3)
where g (k) denotes the model outpug; are the model weights, o ) . - .
o:(x(k)) are the regressors, and; is the total number of candidate Wherep(g[h, ) is the prior withh = [h.,..., hn,,]" denoting the
regressors or model terms. vector of hyperparameters andh noise parameter [the inverse of the
By letting ¢, = [@(x(l))”._7@i(X(N))]Tl for1 <i < ny, and variance of(%)], p(y|g. h. ) is the likelihood, ang(y|h, ¢) is the
defining ) ‘ : ‘ - evidence that does not depend gexplicitly. Under the assumption
thate(k) is white and has a Gaussian distribution, the likelihood is
ry(l) 7 6 expressed as
y=| 1| 2=[6-4,] 0= | (N (L
p(ylg, h, ¢) = (ﬁ) exp( 3¢ e)- (11)
Ly(N) | O ae ) o
- e(1) T If the Gaussian prior is chosen
_ : o Vhi hig?
e : (3 p(glh, ) = H \/2— exp<_ 1;/ > (12)
B R s Z
,E(N) | =1

maximizinglog(p(gly. h, =)) with respect tq is equivalent to min-

the regression model (2) can be written in the matrix form o : / X
imizing the following Bayesian cost function:

y=®0+e. 4
@) Je(g. h, c) =ce’ e+ g Hg (23)
Let an orthogonal decomposition of the matsiixbe ) ) ) o
whereH = diag{h1, ..., h.,, }. Itis easily seen that the criterion (9)
P = WA (5) is equivalent to the criterion (13) with the relationship
where i = h{ 1<i< ny. (14)
1 a2 --- a1, nyy . . . .
It can readily be shown [12] that wity set to its optimal values,
0 1 : i.e.,dJr/dg = 0, the criterion (9) can be expressed as (also see Ap-
A= ' (6) pendix A)
: ’ Anpp—1,mpr n
0 - 0 1 eletg’Ag=y"y - (w;[wi—i—/\i) 9. (15)
and i=1
W=[wiwny ) Normalizing (15) byy” y yields
with columns satisfyingv! w; = 0, if i # j. The regression model "y
(4) can alternatively be expressed as (eTe + gTAg) fyy=1-% (wiTwi + Ai) g /yty. (16)
y=Wg+e (8)

As in the case of the OLS algorithm [4], the regularized error reduction

where the orthogonal weight vectgr= [gi.....g.,,]" satisfy the ratio due tow; is defined by
triangular systenAfd = g.
frerels = (whwi+ ) g2 /vy &)
Ill. LOCALLY REGULARIZED OLS ALGORITHM WITH
D-OPTIMALITY DESIGN Based on this ratio, significant regressors can be selected in a forward
regression procedure, and the selection process is terminatea.attthe

Before describing this combined model construction algorithm, we
stage when

briefly discuss its two components.

g

A. The Locally Regularized OLS Algorithm 1-— Z [rerr]; < € (18)
The LROLS algorithm [10]-[12] adopts the following regularized 1=
error criterion: is satisfied, wher® < ¢ < 1 is a chosen tolerance. This produces a
- sparse model containing, (< ns) significant regressors.
Ti(g, A) = elet Z N2 =ele+glAg 9) The hyperparameters specify the prior distributiong o8ince ini-

= tially we do not know the optimal value gf, A; should be initialized to
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the same small value, and this corresponds to choose a same flat digtiiances. Thus, the D-optimality design is aimed to optimize model
bution for each prior of; in (12). The beauty of Bayesian learning isefficiency and parameter robustness.

“let data speak”—it learns not only the model paramegetsut also the It is straightforward to verify that maximizingec(é,i@ns) is
related hyperparametdiss This can be done for example by iterativelyidentical to maximizingiet(Wﬁ,TlSWns) or, equivalently, minimizing
optimizingg andh using an evidence procedure [9], [16]. Applying— log det(WISWnS) [14], [15]. Note that

this evidence procedure leads to the updating formulas for the regular-

ization parameters (see Appendix B) LM

det(®" @) = ] i (23)
I i=1
A s 1<i< nuy 19
N — ol g2~ = (19) det(®" &) = det(A") det(W' W) det(A)
n M
where = det(W''W) = [ wi w (24)
WIW M =1
Vi = '7L v = Yi- 20 and
i + W,l W ; ( ) . s .
—log (det(W W)) =Y —log(w/ w). (25)

Usually, a few iterations (typically 10 to 20) are sufficient to find an
optimal A.

It is worth emphasizing that, for the LROLS algorithm, the choice oFhe combined algorithm of OLS and D-optimality design given in [14]
¢ is less critical than the original OLS algorithm. This is because muknd [15] is based on the cost function
tiple regularizers enforce sparsity. If, for examglés chosen too small,
those unnecessarily added terms will have a very lafgassociated
with each of them, effectively forcing their weights to zero [10]-[12].
Nevertheless, an appropriate value fois desired. Alternatively, the
Akaike information criterion (AIC) [17], [18] can be adopted to termiwhereg is a fixed small positive weighting for the D-optimality cost.
nate the subset model selection process. The AIC can be viewed gha model selection is according to the combined error reduction ratio
model structure regularization by conditioning the model size usinggafined as
penalty term to penalize large sized models. However, the use of AIC
or other information based criteria in forward regression only affects [cerr]; = (wff'wig? + ﬁlog('wf'wi)) /vty @7
the stopping point of the model selection, but does not penalizes the

regressor that may cause poor model performance (€.9., too large \@fize that at some stage, say theh stage, the remaining unselected

ance of parameter estimate or ill posedness of the regression mattixyqa| terms will havécerr], < 0 forn, +1 < I < nas, and this

if it is selected. Or simply the penalty term in AIC does not determinginates the model construction process. Obviously, for this model
which regressor should be selected. Optimal experimental design gl sty ction algorithm to produce desired sparse models, the value of

teria offer better solutions as they are directly linked to model efficien(‘ﬁy should be set appropriately. It has been suggested in [14] and [15]

and parameter robustness. that an appropriate value forshould be determined using cross vali-
dation with two data sets, an estimation set and a validation set. Cross

validation in forward model construction is however computationally
In experimental design, the matidx” & is called the design matrix. costly.

The least-square estimatebfs given byf = (<I>1"1>)_1 2'y. As-
sume that (4) represents the true data generating procesB’aids C. Combined LROLS and D-Optimality Algorithm

nonsingular. Then, the estimdkés unbiased and the covariance matrix The proposed combined LROLS and D-optimality algorithm can be
of the estimate is determined by the design matrix viewed as based on the combined criterion

=1

n
Je(g, B)=e'e+ 3 —log(w/ wi) (26)

=1

B. D-Optimality Experimental Design

Elo| =0 num y
[ ] . 1) Jer(g, A B) = Jr(g M)+ 8> —log(wiwi).  (28)
Cov [9] = % (<I>T<I>)71 i=1

) ) In this combined algorithm, the updating of the model weights and
It is well known that the model based on least squares estimate t¢ggylarization parameters is exactly as in the LROLS algorithm, but

to be unsatisfactory for an ill conditioned regression matrix (or desigfe selection is according to the combined regularized error reduction
matrix). The condition number of the design matrix is given by ratio defined as

_ max{ki, 1 <i<ny}

T min{k;, 1 <i<np}

(22) ferert): = ((w! Wi+ X)g? + Flog(wiw))) vy (29)

with 1;,1 < i < na, being the eigenvalues &7 &. Too large a con- and the selection is terminated with apterm model when

dition number will result in unstable least square parameter estimate

while a small condition number improves model robustness. The D-op- [crerr]y <0 forn, +1 <1< nu. (30)
timality design criterion maximizes the determinant of the design ma-

trix for the constructed model. Specifically, iBt, . be a column subset The iterative model selection procedure can now be summarized.
of ® representing a constructed-term subset model. According to  Initialization: Set\;,1 < < nar, tothe same small positive value
the D-optimality criterion, the selected subset model is the one tH&t9-, 0.001), and choose a fixgd Set iteration/ = 1.
maximizesdet(éi's-i-ns). This helps to prevent the selection of an Step 1) Given the currerX, use the procedure described in
oversized ill-posed model and the problem of high parameter estimate Appendix C to select a subset model with terms.
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Step 2) Update\ using (19) withnys = nr. If XA remains . Training
sufficiently unchanged in two successive iterations or a preset e fla) —
maximum iteration number is reached, stop; otherwise, set &
I+ = 1 and go to Step 1).

The introduction of the D-optimality cost into the algorithm
further enhances the efficiency and robustness of the selected subset
model and, as a consequence, the combined algorithm can often
produce sparser models with equally good generalization properties,
compared with the LROLS algorithm. An additional advantage is 0 02 0.4 0.6 0.8 1
that it simplifies the selection procedure. Notice that it is no longer

necessary to specify the toleranc@nd the algorithm automatically @)

terminates when condition (30) is reached. Unlike the combined 2 o T Traihing
OLS and D-optimality algorithm [14], [15], the value of weighting .. -, network ——
3 does not critically influence the performance of this combined N e N RBF center ©

LROLS and D-optimality algorithm. This is because the LROLS

algorithm alone is capable of producing a very sparse model and the fl@)
selected model terms are most likely to have large values;o#;.

Using the OLS algorithm without local regularization, this is not
necessarily the case, as model terms with smagilw, can have .
very largeg; (overfitted) and consequently will be chosen. Note that 0 0.2 0.4 0.6 0.8 1

with regularization, such overfitting will not occur. The D-optimality T
design also favors the model terms with lasge w; and, therefore, (b)

the two component criteria in the combined criterion (28) are not #Fig. 1. Simple scalar function modeling problem. (a) Noisy training data
conflict. Thus, the two methods enhance each other. Consequentlydots) and underlying functioff(z:) (curve). (b) Model mapping (curve)
the value of3 is less critical in arriving a desired sparse modeprg_ducedhby the LROLS- D-optimality algorithm withg = 107; circles
compared with the combined OLS and D-optimality algorithm, an'g lcate the RBF centers.

the suitable weightingg can be chosen with ease from a large range

of values. This will be demonstrated in the following modeling Table | compares the MSE values over the training and testing sets
examples. It should also be emphasized that the computatioftsthe models constructed by the combined LROLS and D-optimality
complexity of this algorithm is not significantly more than thagigorithm with those of the combined OLS and D-optimality algorithm
of the OLS algorithm or the combined OLS and D-optimality14], [15], given a wide range of values. It can be seen clearly that
algorithm. This is simply because, after the first iteration, whicjsing the D-optimality alone without regularization the constructed
has a complexity of the OLS algorithm, the model set contains onfiyodels can still fit into the noise unless the weightihg set to some
ni(Knar) terms, and the complexity of the subsequent iteratiogypropriate value. Combining regularization with D-optimality design,
decreases dramatically. Typically, after a few iterations, the modgk results obtained are consistent over a wide rangevalues and,
set will converge to a constant size of very small A few more  gfrectively, the value off has no serious influence on the model con-

iterations will ensure the convergence Xf struction process. It can also be seen that the combined LROLS and
D-optimality algorithm was able to produce a sparser five-term model
IV. M ODELING EXAMPLES with equally good generalization properties, compared with the result

R . . . using the LROLS algorithm alone [10]-[12]. The model map of the
Example 1: This example “?ed a radial basis function (RBF) ne}i've-term model produced by the combined LROLS and D-optimality
work to model the scalar function . S 5. -
algorithm with3 = 107" is shown in Fig. 1(b).
Example 2: This was a two-dimensional simulated nonlinear time

f(z) = sin(27x), 0<z<1. (31) series given by

For adetailed description ofthe RBF networl§ see,_for example, [5]. The y(k) = (0.8 — 0.5 exp(—y>(k — 1)) y(k — 1)

RBF model employed Gaussian kernel function with a variance of 0.04. o,

One hundred training data were generated fgom f(z) + e, where = (0.3 +0.9exp(—y (k= 1)) y(k = 2)

the inputz was uniformly distributed if0, 1) and the noise was +0.1sin(my(k — 1)) + e(k) (32)

Gaussian with zero mean and variance 0.16. The noisy training points

y and the underlying functiorf(x) are plotted in Fig. 1(a). As each ] ] ] )

training datar was considered as a candidate RBF center, there wéYgere the noise(k) was Gaussian with zero mean and variance 0.09.

nar = 100 regressors in the regression model (2). The training dagi'® thousand noisy samples were generated given= y(—1) =

were extremely noisy. One hundred noise-free gidta) with equally 0.0. The first 500 data points were .use.d for training, a.nd thg other

spaced: were also generated as the testing data set for model validQ0 samples were used for model validation. The underlying noise-free

tion. In the previous works [10]-[12], it was shown that without regSYStem

ularization the constructed models suffered from a serious over-fitting
roblem, and the LROLS algorithm was able to overcome this problem ~ - o ]

gnd produced a sparse sig-term model, with the mean squrf)are error ¥R = (0.8 -0.5 eXp(_y"U?‘ ~ 1)) yalk = 1)

(MSE) values over the noisy training set and the noise-free testing set —(0.340.9 oxp(—ya(k — 1)) ya(k - 2)

being 0.159 17 and 0.001 81, respectively. + 0.1sin(wya(k — 1)) (33)
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TABLE |
COMPARISON OFMODELING ACCURACY FORSIMPLE SCALAR FUNCTION MODELING
D-optimality MSE over noise training data | MSE over noise-free testing data number of terms
weighting 5 | LROLS + D-opt OLS + D-opt | LROLS + D-opt OLS + D-opt | LROLS + D-opt OLS + D-opt

le-8 0.15766 0.14743 0.00168 0.02138 6 15
le-7 0.15766 0.14743 0.00168 0.02138 6 15
le-6 0.15823 0.14743 0.00202 0.02138 6 15
le-5 0.15705 0.14743 0.00194 0.02138 5 15
le-4 0.15826 0.14761 0.00246 0.02068 5 15
le-3 0.15705 0.14933 0.00194 0.01585 5 12
le-2 0.15705 0.15560 0.00194 0.00423 5 6
Te-1 0.15911 0.15544 0.00223 0.00427 5 6

= bined LROLS and D-optimality algorithm with = 10~* was used to

1 - iteratively generate the time series according to
s p raik
/.l Ga(k) = frmr(xa(k)) with xa(k) = [Ga(k = 1)ga(k = 2)]" (35)
yt—2) 0 _.:'. art e

05 A / given x,(0) = [0.10.1]". The resulting phase plot is shown in

-0. o . .
)/ Fig. 2(b).
-1 Example 3: This example constructed a model representing the re-
lationship between the fuel rack position (input) and the engine speed

155 -o.s(o 05 1 15

y(t—1)

(@)

(output) for a Leyland TL11 turbocharged, direct injection diesel en-
gine operated at low engine speed. It is known that at low engine speed,
the relationship between the input and outputis nonlinear [19]. Detailed

L3 system description and experimental setup can be found in [19]. The

1 /,4“\ data set contained 410 samples. The first 210 data points were used in
05 T 1 \ modeling and the last 200 points in model validation. An RBF model

' /' Lol of the form

y(t—2) 0 B
-0.5 \ . 1 // (k) = frer(x(k))
\ L~ with
-1 — .
x(k) =[y(k = Dulk — Du(k - 2)] (36)

1350 05 0 05 1 1s
y(t—1

was used to model the data. The variance of the RBF kernel function
(b) was chosen to be 1.69. As each input vestpt) was considered as a
Fig. 2. Two-dimensional time series modeling problem. (a) Phase plot of ti@ndidate RBF center, there wergr = 210 candidate regressors. Pre-
gtl)gif:er—;rgz;etlirgjtsl?trije%(gO) = y(z(;l) 2001-;).t r(]ke))nljgngveg ggrt]f;?r it;r:\ct]i\ge viously, a 34-term model was constructed using the LROLS algorithm
the LROLS+ DPoptir(fnality alg%(mh n)q with = 10-1. u Y [10]-[12], and the resulting MSE values over the training and testing
sets were 0.000435 and 0.000 487, respectively.

The MSE values of the models produced by the combined LROLS
and D-optimality algorithm and the combined OLS and D-optimality
one are compared in Table Ill, given a rangeiofalues. It can be seen
. - . ; T again that the former is insensitive to the weighting value for the D-op-
g(k) = frpr (x(k)) with x(k) = [y(k = 1)y(k - 2)]"  (34) timality cost. This real-data identification example really demonstrates

. . . . the power of combining regularization with the D-optimality design:
was constructed using the noisy training data. The Gaussian kerp Ip greg P y 9

el .. e

. . . he ability to produce a much sparser model with similar good gener-

function h?d avariance of 0.81. As each dataPm(lkt) wa; considered alization performance, compared with relying on regularization alone.
as a candidate RBF center, there werg = 500 candidate regres-

The constructed RBF model by the combined LROLS and D-optimalit
sors. The previous study [10]-[12] constructed a sparse 18-term mog ? . - y P naity

. . . - gorithm with3 = 107" was used to generate the one-step prediction
using the LROLS algorithm, with the MSE values over the training an

. - . y(k) of the system output according to (36). The iterative model output
testing sets being 0.092 64 and 0.096 78, respectively. ok .
. ; s ) gq4(k) was also produced using

The modeling accuracies over both the training and testing sets %ré
compared in Table Il for the two algorithms, the combined LROLS and
D-optimality and the combined OLS and D-optimality, with a range of _
(3 values. Again, it is seen that, when combining with the D-optimalitY)"th
design, the LROLS was able to produce sparser models with equally xa(k) =[ga(k — Du(k — Du(k — 2)]". (37)
good generalization performance, compared with the result obtained
using the LROLS algorithm alone. Itis also clear that for the combinéithe one-step model prediction and iterative model output for this
LROLS and D-optimality algorithm the model construction process B2-term model selected by the combined LROLS and D-optimality
insensitive to the value of. The RBF model produced by the com-algorithm are shown in Fig. 3, in comparison with the system output.

with y4(0) = y4(—1) = 0.1 was specified by a limit circle, as shown
in Fig. 2(a). A Gaussian RBF model of the form

§a(k) = frer(xa(k))
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TABLE I

COMPARISON OFMODELING ACCURACY FORTWO-DIMENSIONAL SIMULATED TIME SERIESMODELING

D-optimality MSE over training data MSE over testing data number of terms
weighting § | LROLS + D-opt OLS + D-opt | LROLS + D-opt OLS + D-opt | LROLS + D-opt OLS + D-opt
le-6 0.09275 0.07764 0.09635 2.53132 19 94
le-4 0.09311 0.07762 0.09607 0.41540 13 93
le-2 0.09338 0.08966 0.09750 0.09379 13 25
le+0 0.09395 0.09360 0.09667 0.09627 13 14
TABLE 1lI
COMPARISON OFMODELING ACCURACY FORENGINE DATA SET
D-optimality MSE over training data MSE over testing data number of terms
weighting | LROLS + D-opt OLS + D-opt | LROLS + D-opt OLS + D-opt | LROLS + D-opt OLS + D-opt
le-8 0.000459 0.000336 0.000488 0.000872 22 60
le-7 0.000442 0.000345 0.000484 0.000831 27 58
le-6 0.000441 0.000345 0.000479 0.000838 25 57
le-5 0.000452 0.000429 0.000499 0.000517 22 24
le-4 0.000586 0.000445 0.000606 0.000497 20 22
le-3 0.000478 0.000503 0.000501 0.000536 20 19
le-2 0.000884 0.000883 0.000982 0.000987 16 16
le-1 0.004951 0.004951 0.005050 0.005052 12 12
5 APPENDIX A

The regularized least squares solution gois obtained by setting
8Jr/0g = 0, thatis

system/model prediction
w
[$)]

wly = (WTW + A) g. (38)
Now
25 . : I -0 30 -0 20 T T T T
0 50 100 150 2oo|250 300 350 400 vy —2g"Ag=(Wg+e) (Wg+e)—2g" Ag
(sa)mpe = gTWTWg +ele+ gTWTe
a
s +e’Wg —2g" Ag. (39)
2 Noting (38)
B
2 g We-g'Ag=g' W' (y-Wg)-g'Ag
2 =g’ (W'y-W' Wg—Ag)=0.
5 (40)
[
“>f Ho. T T T T
) Similarly, e Wg — g Ag = 0. Thus,y'y — 2g" Ag =
0 50 100 150 200 250 300 350 400 g"TWTWg +e'e, or
sample
(b) eletg’Ag=y y-g' W Wg-g'Ag. (41)

Fig. 3. System outpuy(k) (solid) superimposed on (a) model one-step
predictiong(k) (dashed) and (b) model iterative outplt(k) (dashed). The
model was selected by the LROSD-optimality algorithm with3 = 10-5. APPENDIX B

Following [9], it can be shown that the log model evidencdf@nd

V. CONCLUSION ¢ is approximated as

A locally regularized OLS algorithm with the D-optimality design num _—
has been proposed for nonlinear system identification using the kernellog (p(y|h, €)) = Z 5 log(h:) — 9 log(m)
regression model. It has been demonstrated that combining regulariza- i=1 " -
tion with the D-optimality experimental design provides a state-of-art N N
procedure for constructing very sparse models with excellent general- ) log(2m) + 35 log(e)
ization performance. It has been shown that the performance of the -
algorithm is insensitive to the D-optimality cost weighting, and the _ Z %h,-gf _ %EeTe — Llog (det(B))

model construction process is fully automated. The computational re- =
quirements of this iterative model selection procedure are very simple
and its implementation straightforward.

nar

+ - log(27) (42)
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whereg is set to the maximura posteriorprobability solution, and the
“Hessian” matrixB is diagonal and is given by

B=H+:-WI'W

= diag{h1 + ewiTwl, B EWZMW,LM } . (43)

Settingd log(p(y|h, ¢))/d= = 0yields the recalculation formula fer

AL — T W
< 3 3
— (44)

T 7
ce e=N — .
— hi +ew; w;
i= g

Settingd log(p(y|h, =))/dh; = 0 yields the recalculation formula
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Step 2) Find
[crerr]; = [crerr]gjl) = max {[crerr]gj)v 1<j< 'n,M}.

Then, thej;th column of®“~" is interchanged with th&th
column of&~ Y thej;th column ofA is interchanged with
the Ith column of A up to the(l — 1)th row, and thej,;th
element ofX is interchanged with th&h element of\. This
effectively selects thg th candidate as thigh regressor in the
subset model.
Step 3) Perform the orthogonalization as indicated in (48) to
derive thelth row of A and to transform® Y into &,
Calculatey; and updates“/—" into y'© in the way shown in
(49).
The selection is terminated at the stage when the criterion (30)
is satisfied and this produces a subset model containjrgjgnificant
regressors. The algorithm described here is in its standard form. A fast

for h;
T
EW, W,
hi=—— 2+ " 45
' g2 (hi + =w! wy) (45)
Note \; = h;/= and define
A cw! w; w!w;
= i with v = : = T 46
K Zz_; K K hi+ewlw, XN +w!w, (46)
Then, the recalculation formula for; is 0
Vi eTe R
Ai = ﬁ 7 1<i<nu. (47) [2]
3
APPENDIX C 3]
The modified Gram—Schmidt orthogonalization procedure calcu- 4
lates theA matrix row by row and orthogonalize® as follows: at the 4l
Ith stage make the columgs, 7+ 1 < j < nas, orthogonal to théth
column and repeat the operation for< [ < nj; — 1. Specifically, [5]
denotings,” = ¢;,1 < j < nar, then
W, = ¢§l_1) [6]
ay = wiel ™" [ (wlwi), 1+1<j < 7
¢§.’) = ¢§.1_1) —ap ;w1 +1 <7< ny
8
1=1,2,....nm — 1. (48) (6]
The last stage of the procedure is simply,, = quqj’j\*}f‘”. The ele- [9]
ments ofg are computed by transforming® = y in a similar way
’ ’ [10]
g = ery(z—u/ (w! wi+ )
, 1<l < ny. (49)
yO = y(=1 _ gw,
[11]

This orthogonalization scheme can be used to derive a simple and
efficient algorithm for selecting subset models in a forward-regression
manner. First, define

[12]
(1—1) _ (1—1) (1—1)
70 = [wi - wiag{TV g0 (50) g
If some of the columng{' ", ... ¢/~ in =" have been inter-  [14]

changed, this will still be referred to as'~1) for notational conve-
nience. Thédth stage of the selection procedure is given as follows.

Step 1) Fori < j < na, cOmpute

gl(j) _ (¢gl—1))Ty(171)/<(¢‘(]_lf1))T¢‘(].171)+ )\j>,
[(‘,I‘(‘,I‘I‘]gj) _ <(gl(j))2 <(¢51_1))T 4)51—1)_1_ /\j)
43 1og <(¢5171))1- ¢‘(]_zf1)>)/ (ylvy)

[15]

[16]
[17]

(18]

implementation can be adopted, as shown in[20], to reduce complexity.
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develop a strategy for the parametric stabilization of nonlinear systems.

Our approach combines two different optimization techniques to pro-

duce a robust control that allows for unpredictable equilibrium shifts

due to parametric variations. The resulting controller is linear, and the

corresponding gain matrix is obtained using linear matrix inequalities

Stabilization of Nonlinear Systems With Moving Equilibria  (LMIs) [18]-[23]. The reference input values, on the other hand, are
computed by a nonlinear constrained optimization procedure that takes

A. . Zecevic and D. D. Siljak into account the sensitivity of the equilibrium to parameter changes.
The note is organized as follows. In Section Il, we provide a brief

Abstract—This not id thod for the stabilization of overview of the control design using linear matrix inequalities, and
stract—T his note provides a new method for the stabilization of non- - . .
linear systems with parametric uncertainty. Unlike traditional techniques, extend these concepts to systems with parametrically dependent equi

our approach does not assume that the equilibrium remains fixed for all libria. Section 1l is devoted to the problem of selecting an appropriate
parameter values. The proposed method combines different optimization reference input, and the effects that this selection may have on the size

techniques to produce a robust control that accounts for uncertain para- of the stability region in the parameter space. The proposed control

metric variations, and the corresponding equilibrium shifts. Comparisons strategy is then compared with analytical gain scheduling in Section IV.
with analytical gain scheduling are provided.

Index Terms—Linear matrix inequalities, moving equilibria, nonlinear

A ) - Il. PARAMETRIC STABILIZATION USING LINEAR
optimization, parametric stability, robustness.

MATRIX INEQUALITIES

Let us consider a general nonlinear system described by the differ-
ential equations
In the analysis of nonlinear dynamic systems, it is common practice
to separately treat the existence of equilibria and their stability. The
tradltlona_l approach has been to c_ompute the equilibrium of 'n.terefvthere;p € R" is the state of the system, & R™ is the input vector,
and then introduce a change of variables that translates the equmbruim - n -
- . ; . A andB are constant x n andn x m matrices, and: R" — R" is
to the origin. This methodology has been widely applied to systems . - . . . e
‘ : o . a piecewise-continuous nonlinear functionripsatisfyingz(0) = 0.
that contain parametric uncertainties, and virtually all control schem?é) : - .
. L L e termh(x) is assumed to be uncertain, but bounded by a quadratic
developed along these lines implicitly assume that the equilibrium re- .
o : inequality
mains fixed for the entire range of parameter values [1]-[5].
It is important to note, however, that there are many practical appli- Wh< el H Hae A3)
cations where the fixed equilibrium assumption is not realistic. In fact, -
it is often the case that variations in the system parameters result iWiferea > 0 is a scalar parameter atil is a constant matrix. In the
moving equilibrium, whose stability properties can vary substantiallfollowing, it will be convenient to rewrite this inequality as:
In some situations, the equilibrium could even disappear altogether, as , [
in the case of heavily stressed electric power systems [6]-[8]. Much of x —-*H'H 0] [« <0 @)
the recent work involving moving equilibria has focused on analytical h 0 I||n| ="
gain scheduling [9]-[12]. This approach assumes the existence of an . N
exogenous scheduling variable, whose instantaneous value determinddVe assume a linear feedback control law= Kz, the closed-loop
the appropriate control law (which may be nonlinear in general). AngYStém takes the form
lytical gain scheduling will be discussed in some detail in Section IV,
where it is compared with the method proposed in this note.
For our purposes, it is suitable to use the concept of parametric Sfgiared = 4 + BEK. The global asymptotic stability of (5) can then
bility, which simultaneously captures tegistenceand thestabilityof 1, astaplished using a Lyapunov function
a moving equilibrium [13]-[17]. This concept has been formulated in
[14], where a general nonlinear dynamic system V() =2’ Px (6)

|. INTRODUCTION

& = Ax + h(x) + Bu )]

&= Az + h(x) (5)

== f(x, p) (1) whereP is a symmetric positive—definite matrix (denot2d> 0). As
is well known, a sufficient condition for stability is for the derivative of
was considered, with the assumption that a stable equilibrium sttér) to be negative along the solutions of (5). Formally, this condition
x°(p*) € R™ corresponds to the nominal parameter value p* € can be expressed as a pair of inequalities

21" TATP+PA P|[x
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