
Engineering Applications of Artificial Intelligence 16 (2003) 465–472

ARTICLE IN PRESS
*Correspondi

E-mail addre

0952-1976/$ - see

doi:10.1016/j.eng
Predicting terrain contours using a feed-forward neural network

Stephen Erwin-Wrighta, David Sandersb,*, Sheng Chenc

aMotiontouch Ltd., Weybridge, Surrey KT13 8LD, UK
bDepartment of Mechanical and Management Engineering, University of Portsmouth, Anglesea Building, Anglessa Road, Portsmouth,

Hampshire PO1 3DI, UK
c Department of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK
Abstract

Wheeled or tracked vehicles cannot move easily over much of the land surface of the earth. This paper describes research work to

create walking machines that are able to travel when the terrain makes wheeled or tracked vehicles ineffective. These legged walking

vehicles must be able to negotiate unknown environments with little or no knowledge of the terrain. A predictive terrain contour

mapping strategy is proposed that uses a feed-forward neural network trained using a back-propagation algorithm to predict

contours based on leg positions and orientations. The strategy is tested using the abilities of a tele-operated eight-legged robot

named ‘‘Robug IV’’. Predicted performance is an improvement on previous implementations and a summarised comparison of the

results for the four terrains is provided.

r 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Legged robots can be better than traditional wheeled
or tracked vehicles in rough and unstructured terrain
(Chen et al., 1999). They can provide greater mobility
and better isolation from the irregularities of the terrain,
they can be faster and use less fuel and do less
environmental damage. Conventional wheeled or
tracked vehicles cannot access much of the land surface
of the earth (approximately 50%).

Robug IV (White et al., 1999) is an example of a
legged robot. It is a compact, powerful, general-purpose
teleoperated eight-legged robot that can walk (Shim-
Min Song and Waldron, 1988), transition between
surfaces, traverse of a 0.305 m-deep pit, and perform
autonomous omni-directional climbing. Robug IV is
made of aluminium to minimise weight and can carry
50 m of umbilical with a 5 kg payload. Humans can
easily carry Robug IV as it only weighs 40 kg.

The electromagnetic design concept of the vehicle
followed the same design rules and principles that were
applied to previous legged robots created during the
research, for example Robug III. The vehicles are ‘spider
like’ with a central body and eight peripheral two-link
legs. Each leg on Robug IV is 0.7 m long and consists of
ng author. Tel.: +44-2392-842565.

ss: david.sanders@port.ac.uk (D. Sanders).

front matter r 2003 Elsevier Ltd. All rights reserved.

appai.2003.08.002
two links with four actuated points at the abductor, hip,
knee and ankle. The body is 0.3, long by 0.45 m wide
and 0.4 m high, and is shown in Fig. 1.

Orientation of joints in the robot leg are controlled
using double-acting pneumatic cylinders. Pneumatic
actuators were used because they are lighter and
environmentally more rugged than geared electric
motors. Force control could be provided by the use of
pneumatic actuation. Several design structures were
considered, and a kinematic chain like that of the
PUMA 560 robot was selected, comprising a vertical
first axis of rotation and two mutually parallel
horizontal axes for the second and third joints.

Pneumatic cylinders are non-linear devices. Their
behaviour varied with the operating temperature. Leaks
are common in pneumatic systems and they are difficult
to prevent completely. This caused problems during the
testing of the abilities of the robot.

Loading on different joints in the robot legs varied
widely, for example due to the load being carried by the
robot during a walking gait sequence or simply due to
the position of a leg.
2. Prediction of unknown terrain

The legs of the robot needed to be lifted at the end of
an effective stroke, returned, and placed to begin a



ARTICLE IN PRESS

Fig. 2. Moving a foot from A to C.

Fig. 1. Robug IV.

able 1

verage prediction error for different types of terrain

ype of terrain Average error (in mm)

lat surface 14.2

inear ramp 8.8

teps 31.2

andom (rough) terrain 24.1

S. Erwin-Wright et al. / Engineering Applications of Artificial Intelligence 16 (2003) 465–472466
support stroke. This created a phasing problem defined
by the term ‘gait’. A Fuzzy-Logic Adaptive Gait
(FLAG) algorithm (Galt and Luk, 1997; Lehtokangas,
1999; Kendall et al., 1993) determined when to lift and
when to place a leg. The FLAG algorithm was capable
of navigating Robug IV across terrains but problems
arose because the FLAG algorithm faithfully followed
the contours of obstacles. For example, when Robug IV

detected a collision during a placement phase, a blind
foothold search strategy was executed.

In the situation shown in Fig. 2, the FLAG algorithm
deduced that the leg was in the vicinity of the lower
kinematic workspace. The course of action to take was
to lift the leg higher in the z-axis. To execute this
process, a small force was exerted in the direction of the
detected obstacle during lifting the foot in order to feel

for the top surface of the obstacle.
As can be seen in Fig. 2, after rejecting placement B,

Robug IV moved the leg and foot a number of times
before it placed its foot at C. A terrain mapping system
T

A

T

F

L

S

R

that could predict unknown terrain could improve such
a move by preventing a ‘juddery’ action during the move
from A to C. The system could assist the smooth and
efficient walking motions of legged robots in unstructed
environments. This is could be important when accuracy
of vision-based systems may be reduced in poorly lit or
smoke filled environments. In the local area, a predica-
tion system may provide more accurate information
than a vision system. The better the predictive strategy,
the smoother Robug IV’s path, free of turnings and
vibrations.

Robug IV already had a terrain mapping system
capable of predicting the z-axis of the terrain (Warwick
et al., 1995). The network used for this was trained for
5000 epochs to predict the next step, based on data from
5 previous steps. The average prediction errors for four
real terrain surfaces are shown in Table 1.

The sensors used in the robot had an error after
calibration of 76mm so the artificial neural network
(ANN) needed to perform within this error. The
prediction errors shown in Table 1 were large compared
to the sensor error.

The y-axis was not predicted.
3. Improving the strategy using ANNs

Neural networks are useful for control and prediction
problems (Firschein and Fischler, 1987; Sanders et al.,
1994, 1996). Their ability to capture and model
information from non-linear systems and generalise
information from learned data makes them suitable for
terrain prediction.

Under certain conditions it may be possible to extend
the suitability theories that exist in traditional control
theory to systems that include neural networks. This is
important if an intelligent control structure for a
walking machine is going to be adopted. The proposed
new solution used a feed-forward neural network
(FFNN), trained using a back-propagation (Jones,
1995) supervised training algorithm. Variables predicted
for each leg are shown in Fig. 4 of Urwin-Wright et al.
(2002). The layout of Robug IV is shown here in Fig. 3.

If Robug IV were traversing forward in a straight line
from right to left as shown in Fig. 2, then it could be
assumed that the odd legs (1,3,5 and 7) would encounter



ARTICLE IN PRESS
S. Erwin-Wright et al. / Engineering Applications of Artificial Intelligence 16 (2003) 465–472 467
the same terrains as their opposite legs (0, 2, 4 and 6)
within 0.45–1.85 m (noting that the leg length is 0.7
(� 2) and width is 0.45).

The new neural network would benefit from having
some of these inputs fed into it. Therefore, prediction
might only be required for the leading legs.

The FLAG algorithm for Robug IV stated that at
least three legs must support the robot before a leg
could be lifted and placed. When there were fewer than
two legs on either side, Robug IV went into a lockdown
state to prevent damage. Assuming the robot was
moving then the number of legs on each side of the
body could vary from two to four. If the network was
designed such that all four legs provided inputs to it
but two of these legs might be redundant then what
should these inputs be? An example solution is shown in
Fig. 4.

Each leg on Robug IV had four Siemens C167 micro-
controllers. These micro-processors limited the memory
available, so the design had to be compact compared to
the power of the desktop PC used for simulation. This
constraint needed to be considered when designing the
network.
Fig. 4. ANN arrangement to pro

Fig. 3. Plan view of Robug IV.
4. Testing the new strategy

A simulation called RobSim existed that consisted of
an environment with a robot walking in it. The
simulation had been used to test the FLAG algorithm
that was already incorporated into Robug IV. This code
had been proved to emulate Robug (Urwin-Wright et al.,
2002) so it was decided to use the virtual environment
and the models to simulate the operation of Robug IV.
Past experience had shown that simulation could some-
times suggest that robots and systems can work when
they later prove to be unable to cope in practice
(Brooks, 1991). Although simulation can sometimes
confuse the issue during engineering design, simulation
was selected for the initial trials and tests because Robug

IV was an expensive piece of equipment, capable of
damaging itself. Simulation provided a cost effective,
safe and east way to test different gait strategies and
especially to reject ideas and algorithms that did not
work.

There was also a lack of random workspace to test all
the adaptive gait strategies as Robug IV needed to walk
for considerable distances over a variety of terrains. The
only real way to test Robug IV’s step-climbing ability
was take a set of steps and let it traverse them. Problems
arose with permission to conduct tests and with moving
equipment, air supplies and Robug IV to test sites. The
initial work was completed with simulations and a
virtual Robug IV and then selected terrains were tested
with Robug IV to confirm results.

Initial simulations were conducted without accelera-
tion, which simplified things. The environment consisted
of a surface that the robot walked over. The robot
needed to be able to find out if a given point in space
was above or below the surface, for example whether it
(y,z) Prediction

vide a prediction in y and z:



ARTICLE IN PRESS

Fig. 5. y-Axis RMS error over all terrains.

S. Erwin-Wright et al. / Engineering Applications of Artificial Intelligence 16 (2003) 465–472468
had made contact. The simplest way to model the
various surfaces was as a series of planar tiles.

Training and testing were similar as the training
sequence was close to the testing sequence and both
came from the same source. Using RobSim, data was
acquired for a range of terrains. As RobSim had been
proved, the mathematical calculations remained the
same. The x-step that was originally used was 0.26 m
(Galt and Luk, 1997); therefore one step was roughly
0.26 m. This data was then formulated into previous
step, next step, training and testing data.

Testing routes were 4000 m long to provide sets of
samples, that was roughly 15,000 steps. From this, the
training and testing were derived. These sets were then
applied to a genetic FFNN (Goldberg, 1988; Luk et al.,
2000). The number of inputs was then varied along with
the numbers of hidden neurons in order to find the
optimum configuration; within the constraints men-
tioned earlier in Section 3. Rules developed for one leg
in Fig. 3 were applied to the other legs. As an example,
the results for leg 0 are shown in the next section but the
rules for leg zero were applied to the other seven; leg 0
was used for initial testing and then results were
implemented on the other legs.

It was not possible for Robug IV to manoeuvre with
fewer than two legs per side. Robug IV went into a
lockdown state when this occurred. To overcome the
problem of which legs to feed into the networks, the
network was designed with only two legs for the inputs.
So the previous steps from leg 2 constituted the other
input to the network.
Fig. 6. z-Axis RMS error over all terrains.
5. Results

Testing took place over the routes to provide the sets
of samples. These sets were then applied to the genetic
FFNN. The number of inputs was varied along with the
numbers of hidden neurons in order to find the optimum
configuration. The optimum number of input and
hidden layers neurons was defined as the point when
no more advantage was identified in increasing their
number during the testing phase. The first value to be set
was the number of input neurons. Galt and Luk (1997)
and Urwin-Wright et al. (2002) stated that the number
of hidden layers should be four, trained for 5000 epochs.
The number of previous steps that were being fed back
into the network ranged from one to three. Above three,
the size of the FFNN became unworkable within the
constraints of the robot systems; below one, the FFNN
became inane. The RMS prediction of the y- and x-axis
plotted against the number of hidden neurons is shown
in Figs. 5 and 6.

From the RMS prediction error of the y-axis shown in
Fig. 5, all the previous steps fed into the network appear
in ascending order. Using more than two hidden
neurons significantly reduced the error of the prediction,
and using more than eight reduced the RMS of the
prediction to less than 1.0 cm.

The RMS prediction of the z-axis shown in Fig. 6 is
interesting. Feeding three previous steps into the
network and having less than four hidden neurons
resulted in the network performing worse than when
two previous steps are fed into the network. As with
only using two previous steps, having more than eight
hidden neurons reduced the RMS error to below 1.0 cm
and even close to 0.25 cm.

Considering the error of the pneumatic cylinder once
it had been calibrated, which was 76mm; to reduce the
RMS error to within this amount would require at least
eight hidden neurons and three previous steps to be fed
into the network. Problems arose here, as achieving this
result increased the demand on the micro-controllers. It
was decided than an RMS error of 1.6 cm was tolerable;
taking advantage of the fact that when using two
previous steps the network performance was better. So
two previous steps were fed were into the FFNN, with
four hidden neurons. The following results show now



ARTICLE IN PRESS

Fig. 9. Rough terrain.

S. Erwin-Wright et al. / Engineering Applications of Artificial Intelligence 16 (2003) 465–472 469
the network performed over the four terrains listed in
Table 1.

The figures illustrating these results use error in cm
rather than error squared. Because the error is small,
squaring made the graphics appear as straight lines in
the paper.

5.1. Predicting the y-axis

Fig. 7 shows the position of the leg in the y-axis when
Robug IV was walking up a ramp. The error in the
prediction of this ramp is shown in cm in Fig. 8; the
RMS error of this is 0.450374 cm.

Fig. 9 shows the position of the leg in the y-axis when
Robug IV was walking across rough terrain. The error in
the prediction of this terrain is shown in cm in Fig. 10;
the RMS error of this is 2.418234 cm.

Fig. 11 shows the position of the leg in the y-axis
when Robug IV was walking across smooth terrain. The
error in the prediction of this terrain is shown in cm in
Fig. 12; the RMS error of this is 0.422875 cm.
Fig. 7. Ramp terrain.

Fig. 10. Position error for y-axis over the rough terrain.

Fig. 11. Smooth terrain.

Fig. 8. Position error for y-axis over the ramp terrain.
Fig. 13 shows the position of the leg in the y-axis
when Robug IV was walking up a set of stairs is
shown in cm in Fig. 14; the RMS error of this is
8.256384 cm.



ARTICLE IN PRESS

Fig. 12. Position error for y-axis over the smooth terrain.

Fig. 13. Stair terrain.

Fig. 14. Position error for y-axis over the stair terrain.

Fig. 15. Ramp terrain.

Fig. 16. Position error for z-axis over the ramp terrain.

Fig. 17. Rough terrain.

S. Erwin-Wright et al. / Engineering Applications of Artificial Intelligence 16 (2003) 465–472470
5.2. Predicting the z-axis

Fig. 15 shows the position of the leg in the z-axis when
Robug IV was walking up a ramp. The error in the
prediction of this ramp is shown in cm in Fig. 16; the
RMS error of this is 2.541913 cm.

Fig. 17 shows the position of the leg in the z-axis when
Robug IV was walking across rough terrain. The error in



ARTICLE IN PRESS

Fig. 18. Position error for z-axis over the rough terrain.

Fig. 19. Smooth terrain.

Fig. 20. Position error for z-axis over the ramp terrain.

Fig. 21. Stair terrain.

Fig. 22. Position error for z-axis over the stair terrain.

S. Erwin-Wright et al. / Engineering Applications of Artificial Intelligence 16 (2003) 465–472 471
the prediction of this terrain is shown in cm in Fig. 18.
The RMS error of this is 2.541913 cm.

Fig. 19 shows the position of the leg in the z-axis when
Robug IV was walking across smooth terrain. The error
in the prediction of this terrain is shown in cm in Fig. 20;
the RMS error of this is 0.352966 cm.

Fig. 21 shows the position of the leg in the z-axis when
Robug IV was walking up a flight of stairs. The error in
the prediction of these stairs is shown in cm in Fig. 22;
the RMS error of this is 2.541913 cm.

5.2.1. Learning rate (epochs)

The two best predictions were obtained with four and
eight hidden neurons. The learning rate of the three
different inputs is shown in Figs. 23 and 24.

Fig. 23 suggests that there is no significant
advantage in network learning with more than 2000
epochs, as the RMS prediction error does not improve
much.

With eight hidden neurons the network learning levels
off at around 2600 epochs as shown in Fig. 24. As only
four hidden neurons were used, the optimum epoch
training sequence had only 2000 epochs.



ARTICLE IN PRESS

Fig. 24. Network learning with eight hidden neurons.

Table 2

y-Axis error for different types of terrain

Type of terrain RMS prediction error in cm

Stair 8.2564

Smooth 0.4229

Rough 2.4182

Ramp 0.4504

Collective 2.887

Table 3

Comparisons of z-axis error for different types of terrain

Type of

terrain

RMS error of new

prediction in cm

Average error of

old prediction in cm

Stair 2.1348 3.12

Smooth 0.353 1.42

Rough 1.4984 2.41

Ramp 2.5418 0.88

Collective 1.6321 1.96

Fig. 23. Network learning with four hidden neurons.

S. Erwin-Wright et al. / Engineering Applications of Artificial Intelligence 16 (2003) 465–472472
6. Conclusion

The terrain prediction did not predict the y-axis
location of the robot legs, so there is no comparison for
the y-axis prediction; a summary of results is given in
Table 2.

A summary of the results for the z-axis prediction
comparisons for four terrains is shown in Table 3.

Assuming that the terrains tested in the old imple-
mentation are similar to those tested with new FFNN,
then the new network performed better than the old
network on rough, smooth and stair surfaces. The
results for the ramp terrain shown in Fig. 15 are not
completely linear, and this may account for the poorer
result in the z-axis. It was also assumed that ‘average
error’ quoted in the previous result was actually the
RMS error. The number of epochs is significantly
smaller. The old implementation used 5000 epochs; the
new implementation uses less than half that, at 2000
epochs. This reduced implementation time.
References

Brooks, R., 1991. Intelligence without reason. MIT AI Lab memo

1(1293) http://www.leglab.ai.nit.edu.

Chen, S., Istepanian, R., Gait, S., Luk, B., 1999. Intelligent Walking

Gait Generation for Legged Robots. Professional Engineering

Publishing, Bury St. Edmunds, UK.

Firschein, O., Fischler, M., 1987. The Eye, The Brain and The

Computer. Addison-Wesley, UK and USA.

Galt, S., Luk, B., 1997. Predictive terrain contour mapping for a

legged robot. Fifth International Conference on Artificial Neural

Networks, University of Reading, UK, pp. 129–133.

Goldberg, D.E., 1988. Genetic Algorithms in Search, Optimisation

and Machine Learning. Addison-Wesley, Reading, MA.

Jones, A., 1995. Neural networks and genetic algorithms for prediction

and control of dynamic systems. Technical Report, Imperial

College, London.

Kendall, W.S., Barndorff-Nielsonm, O.E., Jensen, J.L., 1993.

Networks and Chaos—Statistical and Probabilistic Aspects. Chap-

man & Hall, London.

Lehtokangas, T.M., 1999. Additive neural networks and periodic

patterns. Neural Networks 12 (4–5), 617–626.

Luk, B.L., Gait, S., Chen, S., 2001. Using genetic algorithms to

establish efficient walking gaits for an eight-legged robot. Interna-

tional Journal of Systems Science 32 (6), 703–713.

Sanders, D.A., Haynes, B.P., Vogt, M., Stott, I.J., 1994. Control of a

robot using neural networks as feed forward estimators and as

feedback controllers. Proceedings of European Robotics and

Intelligent Systems Conference, Vol. (B), Spain, pp. 1065–1074.

Sanders, D.A., Haynes, B.P., Tewkesbury, G.E., Stott, I.J., 1996. The

addition of neural networks to the inner feedback path in order to

improve on the use of pre-trained feed forward estimators. Journal

of Mathematics and Computers in Simulation 41, 461–472.

Song, S.-M., Waldron, K., 1988. Machines that Walk: the adaptive

suspension vehicle. MIT Press, Cambridge, MA.

Urwin-Wright, S., Chen, A., Sanders, D.A., 2002. Terrain prediction

for an eight-legged robot. Journal of Robotic Systems 19 (2),

91–98.

Warwick, K., Irwin, G., Hunt, K., 1995. Neural Network Applications

in Control, IEEE Control Engineering Series, Vol. 53. Academic

Press, Exeter, England.

White, T., Luk, B., Cooke, D.S., Hewer, N., 1999. Implementation of

Modularity in Robug IV—Preliminary Results. Professional

Engineering Publishing, Bury St. Edmunds, UK.

http://www.leglab.ai.nit.edu

	Predicting terrain contours using a feed-forward neural network
	Introduction
	Prediction of unknown terrain
	Improving the strategy using ANNs
	Testing the new strategy
	Results
	Predicting the y-axis
	Predicting the z-axis
	Learning rate (epochs)


	Conclusion
	References


