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Abstract: With game theory, we review the optimal digital controller realization problems that maxi-

mize a finite word length (FWL) closed-loop stability measure. For a large class of these optimal FWL

controller realization problems which have saddle points, a minimax-based search algorithm is derived

for finding a global optimal solution. The algorithm consists of two stages. In the first stage, the closed-

form of a transformation set is constructed which contains global optimal solutions. In the second stage, a

subgradient approach searches this transformation set to obtain a global optimal solution. This algorithm

does not suffer from the usual drawbacks associated with using direct numerical optimization methods

to tackle these FWL realization problems. Furthermore, for a small class of optimal FWL controller re-

alization problems which have no saddle point, the proposed algorithm also provides useful information

to help solving them.
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1 Introduction

There has been a growing awareness that finite-precision controller implementation can have a serious

influence on the actual performance of a digital closed-loop control system [1],[2],[3]. Due to the FWL

errors, a casual controller implementation may degrade the designed closed-loop performance or even
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destabilize the designed stable closed-loop system, if the controller implementation structure is not care-

fully chosen. The FWL effect has become more critical with the growing popularity of robust controller

design methods which focus only on dealing with large plant uncertainty and result in controllers of much

higher order and complexity than traditional classical control [2]. There are generally two types of FWL

errors in the digital controller implementation. The first one is the rounding errors that occur in arith-

metic operations [4],[5] and the second one is the controller parameter representation errors which have

critical influence on closed-loop stability [6]–[12]. Typically, these two types of errors are investigated

separately for the reason of mathematical tractability.

In general, there exist two different strategies, called the direct and indirect strategies, for construct-

ing digital controllers that can tolerate FWL implementation errors. For the indirect strategy, the transfer

function of the digital controller has been designed by some controller synthesis methods. It is well

known that a transfer function can be fulfilled with different realizations and different realizations possess

different degrees of robustness to FWL errors. This property can be utilized to select “optimal” realiza-

tions that optimize some FWL performance measures. Various FWL performance measures have been

investigated, and these include the averaged roundoff noise gain [5], the complex stability radius measure

[6], the transfer function sensitivity measure [7], the l1 based stability measure [8], the Frobenius-norm

pole sensitivity measure [9] and the 1-norm pole sensitivity measure [10],[11]. In the direct strategy,

controller design involves explicitly the considerations of FWL implementation. By extending the stan-

dard H∞ control design to include FWL controller parameter perturbations, the work of [12] developed

a Riccati inequality approach, which directly obtains optimal controller realizations satisfying both the

H∞ robustness and FWL closed-loop stability requirements. Similarly, by extending the standard LQG

control design to include the effects of FWL roundoff noise, the work of [4] developed a FWL-LQG

controller design method. The direct strategy appears to be better than the indirect strategy, since the

former does not make specific assumptions on the controller and in theory it should be a preferred ap-

proach. However, except for a few methods, such as H∞ and LQG, it is very difficult to extend various

controller design methods to this direct strategy. But this difficulty does not exist in the indirect strategy

where controller synthesis and controller realization are two separate steps. Various existing controller

design methods can be used to attain a transfer function or an initial realization of the controller, which

can then be optimized to satisfy FWL implementation requirements.

This paper adopts the indirect strategy with the Frobenius-norm pole sensitivity measure proposed in

[9]. Our motivation is as follows. The Frobenius-norm pole sensitivity measure was derived in [9] and

the optimal controller realization problem was defined as the maximization of this measure over all the
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possible controller realizations. An analytical solution to this class of optimal realization problems was

attempted in [9]. However, it was pointed out that the conditions presented in [9] are not sufficient to

provide an optimal realization [13]. Consequently, the solution expression presented in [9] is in general

a suboptimal solution, and numerical optimization methods have to be adopted [14] to find optimal

solutions. Since these optimal FWL realization problems are highly complicated nonlinear and non-

convex optimization problems, especially when the order of the controller is large, a direct numerical

optimization is computationally very expensive. Moreover, chances of search being trapped at some bad

local solutions increase for large-scale problems and it is impossible to tell whether a solution obtained is

a global optimum or not. In this paper, these optimal FWL controller realization problems are reviewed

with game theory [15],[16]. They are consequently divided into two types: optimization problems which

have saddle points and optimization problems which do not have a saddle point.

For the class of optimal FWL realization problems with saddle points, this paper derives a minimax-

based search algorithm for finding global optimal solutions. Our search algorithm is computationally

much more efficient than usual numerical optimization for tackling this class of complicated optimization

problems. Moreover, when this algorithm attains a solution, it is guaranteed to be a global optimal

realization. Comments are made regarding why in practice the class of these optimization problems with

saddle points is much larger than the class having no saddle point. It is shown that our proposed search

algorithm is also useful in helping to solve the small class of these optimal FWL realization problems

which have no saddle point. The remainder of the paper is organized as follows. Section 2 defines

the optimal FWL controller realization problem considered in this study and introduces some necessary

mathematical preliminaries. In Section 3, the proposed two-stage search algorithm is derived. Section 4

discusses the practical value of this algorithm. Section 5 presents several design examples, and the paper

concludes at Section 6.

2 Problem definition and preliminaries

For a complex-valued matrix M = [mij ], MT is the transposed matrix of M, MH is the Hermitian

adjoint matrix of M, M∗ is conjugate to M,

‖M‖max
4
= max

i,j
|mij | (1)

and the Frobenius-norm is defined as

‖M‖F
4
=





∑

i,j

|mij |
2





1/2

. (2)
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Let Vec(·) be the column stacking operator such that Vec(M) is a vector. For a real-valued positive

semi-definite matrix D ≥ 0, the matrix D1/2 satisfies D1/2(D1/2)T = D. For two real-valued matrices

M = [mij ] and N = [nij ] of the same dimension, denote

〈M,N〉 =
∑

i,j

mijnij . (3)

2.1 Problem definition

Consider the discrete-time closed-loop control system, consisting of a linear time-invariant plant P (z)

and a digital controller C(z). The plant model P (z) is assumed to be strictly proper with a state-space

description
{

xP (t+ 1) = APxP (t) + BPu(t)
z(t) = CPxP (t)

(4)

where AP ∈ Rm×m, BP ∈ Rm×l and CP ∈ Rq×m. The digital controller C(z) is described by
{

xC(t+ 1) = ACxC(t) + BCz(t)
u(t) = CCxC(t) + DCz(t)

(5)

with AC ∈ Rn×n, BC ∈ Rn×q, CC ∈ Rl×n and DC ∈ Rl×q. Denote the realization of C(z) as

X
4
=

[

DC CC

BC AC

]

. (6)

Assume that an initial realization of C(z)

X0
4
=

[

D0
C C0

C

B0
C A0

C

]

(7)

has been given by some controller synthesis method. Then all the realizations of C(z) form a set

SC
4
=

{

X : X = X(T) =

[

I 0

0 T−1

]

X0

[

I 0

0 T

]}

(8)

where the transformation T ∈ Rn×n is an arbitrary non-singular matrix, 0 and I denote the zero and

identity matrices of appropriate dimensions, respectively. SC is not a convex set, as

λ

[

I 0

0 T−1
1

]

X0

[

I 0

0 T1

]

+ (1 − λ)

[

I 0

0 T−1
2

]

X0

[

I 0

0 T2

]

(9)

may not belong to SC for any non-singular T1,T2 ∈ Rn×n and 0 < λ < 1. The stability of the

closed-loop control system depends on the eigenvalues of the closed-loop transition matrix

A(X) =

[

AP + BPDCCP BPCC

BCCP AC

]

=

[

AP 0

0 0

]

+

[

BP 0

0 I

]

X

[

CP 0

0 I

]

4
= M0 + M1XM2. (10)
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All the different realizations X in SC have exactly the same set of closed-loop poles if they are im-

plemented with infinite precision. Since the closed-loop system has been designed to be stable, all the

eigenvalues λk(A(X)), 1 ≤ k ≤ m+ n, of A(X) are within the unit disk.

When X is implemented with an FWL digital processor of fixed-point format, it is perturbed to

X + ∆X. Each element of ∆X is bounded by ±ε, that is, ‖∆X‖max ≤ ε where ε is the maxi-

mum representation error of the digital processor. With the perturbation ∆X, λk(A(X)) is moved

to λk(A(X + ∆X)). If an eigenvalue of A(X + ∆X) is outside the open unit disk, the closed-loop

system, designed to be stable, becomes unstable with the finite-precision implemented X. It is therefore

critical to know when the FWL error will cause closed-loop instability. This means that we would like

to know the largest open “hypercube” in the perturbation space within which the closed-loop system

remains stable. The size of this perturbation hypercube quantifies the FWL characteristics of X and is

therefore a true FWL closed-loop stability measure for X [17].

Computing the size of this largest stable perturbation hypercube, however, is an unsolved open prob-

lem. An approximation to this true FWL closed-loop stability measure is the following Frobenius-norm

pole sensitivity measure defined in [9]:

f(X)
4
= min

k∈{1,···,m+n}

1 − |λk(A(X))|
√

(l + n)(q + n)

∥

∥

∥

∥

∂λk(A(X))
∂X

∥

∥

∥

∥

F

. (11)

Rigorous discussions regarding the rationality of f(X) as an FWL closed-loop stability measure can be

found in [9],[11]. Basically, under some mild assumptions and using a first-order approximation, it can

be shown that the closed-loop system remains stable if ‖∆X‖max < f(X). It has been argued in [18]

that estimates obtained from first-order perturbation theory are often more realistic than rigorous bounds

obtained by other means. Thus, the larger f(X) is, the larger an FWL error ∆X that the closed-loop

system can tolerate. Moreover, f(X) is computationally tractable as is summarized in the following

lemma given by [19].

Lemma 1 Let A(X) = M0 + M1XM2 given in (10) be diagonalizable. Denote pk a right eigenvector

of A(X) corresponding to the eigenvalue λk(A(X)). The reciprocal left eigenvector yk related to pk is

obtained from [y1 y2 · · ·ym+n] = [p1 p2 · · ·pm+n]−H . Then

∂λk(A(X))

∂X
= MT

1 y∗
kp

T
k MT

2 , ∀k ∈ {1, · · · ,m+ n}. (12)

As different controller realizations X result in different values of f(X). It is natural to search for

“optimal” controller realizations that maximize the measure defined in (11). This leads to the following
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optimal FWL realization problem [9]:

υ
4
= max

X∈SC

f(X). (13)

Numerical optimization methods have been used to attain solutions of this optimal realization problem

(e.g. [14]). In general, the optimization problem (13) is highly nonlinear and non-convex. Thus, numeri-

cal optimization methods do not guarantee to attain a global optimal solution and suffer from high costs,

particularly for large-scale systems.

Now, let us define

g(X, k)
4
=

1 − |λk(A(X))|
√

(l + n)(q + n)

∥

∥

∥

∥

∂λk(A(X))
∂X

∥

∥

∥

∥

F

. (14)

Obviously, the optimal FWL realization problem (13) can be viewed as

υ = max
X∈SC

min
k∈{1,···,m+n}

g(X, k). (15)

2.2 Saddle points and minimax theorem

This subsection introduces without proofs some properties of saddle points and the minimax theorem,

which are useful in solving the optimization problem (15). The detailed discussion of this topic can be

found in the standard game theory textbooks, such as [15],[16].

Definition 1 (X′, k′) ∈ SC × {1, · · · ,m+ n} is said to be a saddle point of g(X, k) if

g(X, k′) ≤ g(X′, k′) ≤ g(X′, k), ∀X ∈ SC , ∀k ∈ {1, · · · ,m+ n}. (16)

Theorem 1 If both (X′, k′) and (X′′, k′′) are saddle points of g(X, k), then

g(X′, k′) = g(X′′, k′′). (17)

The following theorem is the well-known Minimax Theorem in game theory.

Theorem 2 If and only if there exists at least a saddle point (X′, k′) of g(X, k), then

max
X∈SC

min
k∈{1,···,m+n}

g(X, k) = min
k∈{1,···,m+n}

max
X∈SC

g(X, k) = g(X′, k′). (18)

A direct corollary of Theorem 2 is stated as follows.
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Corollary 1 If g(X, k) has no saddle point, then

max
X∈SC

min
k∈{1,···,m+n}

g(X, k) < min
k∈{1,···,m+n}

max
X∈SC

g(X, k). (19)

Theorems 1 and 2 show that for the optimal FWL realization problem (15) which has saddle points,

any saddle point of g(X, k) is a global optimal solution of (15). Define

ρk
4
= max

X∈SC

g(X, k) (20)

for k ∈ {1, · · · ,m+ n} and the index

k′ = arg min
k∈{1,···,m+n}

ρk. (21)

There exist an infinite number of X ∈ SC such that g(X, k′) = ρk′ . Define

X
4
= {X : g(X, k′) = ρk′ ,X ∈ SC}. (22)

Fig. 1 depicts a simple illustration for a case of ρk with k ∈ {1, 2, 3}. It is easily seen that in this case X

is the segment between q1 and q4 on X axis. It can also be observed in Fig. 1 that the points between q2

and q3 (a subset of X ) are the realizations corresponding to saddle points. This observation accords with

the following theorem, which provides a method for finding a saddle point.

Theorem 3 If and only if X′ ∈ X satisfies

g(X′, k) ≥ ρk′ , ∀k ∈ {1, · · · ,m+ n} \ {k′}, (23)

then (X′, k′) is a saddle point of g(X, k).

3 Search algorithm

A main objective of this paper is how to find a global optimal solution to the optimal FWL realization

problem (15) which has saddle points. In other words, we assume that there exist saddle points for

g(X, k) in the problem (15). What happens if the problem has no saddle point and how to deal with it

will be discussed later in Section 4. Based on Theorem 3, a two-stage algorithm is developed to find a

saddle point of the optimal FWL controller realization problem (15). The first stage focuses the attention

on solving the optimization problem (20) for k ∈ {1, · · · ,m+ n}, and the index k ′ and the closed-form

expression of X are obtained in this stage. The second stage searches X for a controller realization Xopt

that meets the condition g(Xopt, k) ≥ ρk′ , ∀k ∈ {1, · · · ,m + n} \ {k′}. Such an Xopt is a global

optimal solution to the optimal FWL controller realization problem (13). We now discuss this two-stage

algorithm in detail.
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3.1 Stage 1 of the algorithm

It is known easily from (8) and (10) that

A(X) =

[

I 0

0 T−1

]

A(X0)

[

I 0

0 T

]

. (24)

This means that, ∀X ∈ SC , λk(A(X)) = λk(A(X0)). Thus, from (14), solving the maximization

problem (20) is equivalent to solving the following minimization problem:

ηk
4
= min

X∈SC

∥

∥

∥

∥

∥

∂λk(A(X))

∂X

∥

∥

∥

∥

∥

F

. (25)

Combining Lemma 1 with the definition of ‖·‖F , one has
∥

∥

∥

∥

∥

∂λk(A(X))

∂X

∥

∥

∥

∥

∥

F

= ‖MT
1 yk‖F ‖M2pk‖F . (26)

Let pk and yk be partitioned into

pk =

[

pk(1)
pk(2)

]

, yk =

[

yk(1)
yk(2)

]

, pk(1),yk(1) ∈ Cm, pk(2),yk(2) ∈ Cn. (27)

Then it follows from (24) that

[

pk(1)
pk(2)

]

=

[

I 0

0 T−1

] [

p0k(1)
p0k(2)

]

,

[

yk(1)
yk(2)

]

=

[

I 0

0 TT

] [

y0k(1)
y0k(2)

]

, (28)

where
[

pT
0k(1) pT

0k(2)
]T

and
[

yT
0k(1) yT

0k(2)
]T

are the right and reciprocal left eigenvectors of A(X0)

corresponding to λk(A(X0)), respectively. Combining (10) and (26)–(28), we have

∥

∥

∥

∥

∥

∂λk(A(X))

∂X

∥

∥

∥

∥

∥

2

F

= ‖T−1p0k(2)‖
2
F ‖T

Ty0k(2)‖
2
F +α2

k‖T
Ty0k(2)‖

2
F +β2

k‖T
−1p0k(2)‖

2
F +α2

kβ
2
k (29)

where the constants αk = ‖CPp0k(1)‖F and βk = ‖BT
Py0k(1)‖F . It is easy to see that, in order to

attain ρk, we need to minimize the function

ξ(T, α, β,p,y)
4
= ‖T−1p‖2

F ‖T
Ty‖2

F + α2‖TTy‖2
F + β2‖T−1p‖2

F + α2β2. (30)

There are three different cases on minimizing ξ(T, α, β,p,y), depending on whether p and y are real-

valued or complex-valued.

Case 1: p,y ∈ Rn and yTp 6= 0;

Case 2: p,y ∈ Cn and det((Υ(y))T Υ(p)) > 0, where

Υ(y)
4
= [Re(y) Im(y)] (31)
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with Re(y) and Im(y) denoting the real and imaginary parts of y, respectively;

Case 3: p,y ∈ Cn and det((Υ(y))T Υ(p)) < 0.

Let ei denote the ith coordinate vector, and define

r
4
=

{

y, for Case 2,
y∗, for Case 3.

(32)

The following theorem gives the results on minimizing ξ(T, α, β,p,y) for Cases 2 and 3. Case 1 is

much simpler than Cases 2 and 3, and the result for Case 1 can easily be obtained in a similar way.

Theorem 4 Given positive α, β ∈ R, p and y are of Case 2 or 3, we have

min
T∈Rn×n

detT6=0

ξ(T, α, β,p,y) = (|rHp| + αβ)2, (33)

and ξ(T, α, β,p,y) achieves the minimum if and only if

T = Q

[

H1/2 0

F(H1/2)−T Ω

]

V (34)

where V ∈ Rn×n is an arbitrary orthogonal matrix, Ω ∈ R(n−2)×(n−2) is an arbitrary nonsingular

matrix, the orthogonal matrix Q can be obtained from the QR factorization of Υ(r), that is,

Υ(r) = Q

[

γ11 0 0 · · · 0
γ12 γ22 0 · · · 0

]T

, (35)

the matrices

H =
β

α

[

γ11 γ12

0 γ22

]−T

(Υ(r))T Υ(p)

[

cos θ sin θ
− sin θ cos θ

] [

γ11 γ12

0 γ22

]−1

(36)

and

F =
β

α







eT
3
...

eT
n






QT Υ(p)

[

cos θ sin θ
− sin θ cos θ

] [

γ11 γ12

0 γ22

]−1

(37)

with θ ∈ [0, 2π) which is solved from

{

tan θ = a21−a12
a11+a22

a11 cos θ − a12 sin θ > 0
(38)

and
[

a11 a12

a21 a22

]

4
= (Υ(r))T Υ(p). (39)

Proof: See Appendix.
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Using Theorem 4, the single-pole peak ρk for k ∈ {1, · · · ,m + n} can be computed. For example,

when p0k(2),y0k(2) ∈ Cn and det((Υ(y0k(2)))
T Υ(p0k(2))) > 0, we have

ρk =
1 − |λk(A(X0))|

√

(l + n)(q + n)(|yH
0k(2)p0k(2)| + ‖CPp0k(1)‖F ‖BT

Py0k(1)‖F )
. (40)

Thus, the index k′ is readily given from ρk′ = min
k∈{1,···,m+n}

ρk. In addition, Theorem 4 with (34)–(39)

provides the closed-form transformation set:

T
4
=

{

T : g(X(T), k′) = ρk′ ,T ∈ Rn×n, detT 6= 0
}

. (41)

Since X depends on T as is defined in (8), the realization set X given in (22) is defined on the transfor-

mation set T as:

X =

{

X : X =

[

I 0

0 T−1

]

X0

[

I 0

0 T

]

,T ∈ T

}

. (42)

3.2 Stage 2 of the algorithm

This stage searches in T for an optimal transformation Topt that satisfies g(X(Topt), k) ≥ ρk′ , ∀k ∈

{1, · · · ,m + n} \ {k′}. According to Theorem 3 the corresponding realization Xopt = X(Topt) is a

global optimal solution for the optimal realization problem (13). Without any loss of generality, we will

assume that pk′ and yk′ is of Case 2. From Theorem 4, the transformation set (41) is specified by

T =

{

T : T = Q

[

H1/2 0

F(H1/2)−T Ω

]

V

}

(43)

where Q, H and F are determined in Theorem 4 by setting α = ‖CPp0k′(1)‖F , β = ‖BT
Py0k′(1)‖F ,

p = p0k′(2) and r = y = y0k′(2), Ω ∈ R(n−2)×(n−2) is an arbitrary nonsingular matrix and V ∈ Rn×n

is an arbitrary orthogonal matrix. From (14), (29) and the definition of ‖ · ‖F , it can be seen that

g(X(T), k) = g(X(TV), k) for any orthogonal V ∈ Rn×n and nonsingular T ∈ Rn×n. This means

that V plays no role in computing the value of g(X, k) and hence we simply set V = I. Thus we only

explore those

T = T(Ω) = Q

[

H1/2 0

F(H1/2)−T Ω

]

, (44)

and the objective becomes to search for a nonsingular Ωopt ∈ R(n−2)×(n−2) such that g(X(T(Ωopt)), k)

≥ ρk′ , ∀k ∈ {1, · · · ,m+ n} \ {k′}. The detailed search procedure is as follows.

Initialization: Arbitrarily select a nonsingular Ω ∈ R(n−2)×(n−2) to obtain an initial point X(T(Ω)),

let N be a large enough integer and τ a small positive number, and set Nt = 1.
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Step 1: Find out

e = arg min
k∈{1,···,m+n}

g(X, k).

If g(X, e) = ρk′ , which means that (23) holds, then Ωopt = Ω and terminate the routine. If

g(X, e) > ρk′ but Nt ≥ N , which means that no saddle point is found after a large number of

iterations, then the routine is also terminated for practical consideration.

Step 2: Ω = Ω + τ ∂g(X,e)
∂Ω

‖∂g(X,e)
∂Ω

‖−1
F , Nt = Nt + 1, and go to Step 1.

For calculating ∂g(X(T(Ω)),e)
∂Ω

, let ei denote the ith coordinate vector. The following well-known fact

is useful: given any element yij in a nonsingular Y ∈ Rn×n with i ∈ {1, · · · , n} and j ∈ {1, · · · , n},

∂Y

∂yij
= eie

T
j and

∂Y−1

∂yij
= −Y−1eie

T
j Y−1. (45)

From (10), (14), (28) and Lemma 1, we know that

g(X(T(Ω)), e) =
(1 − |λe|)/

√

(l + n)(q + n)
∥

∥

∥

∥

[

I 0

0 TT (Ω)

]

MT
1 y∗

0ep
T
0eM

T
2

[

I 0

0 T−T (Ω)

]∥

∥

∥

∥

F

. (46)

From (44), we have

∥

∥

∥

∥

[

I 0

0 TT (Ω)

]

MT
1 y∗

0ep
T
0eM

T
2

[

I 0

0 T−T (Ω)

]∥

∥

∥

∥

F

=
∥

∥

∥UT
1 ΦeU

−T
2

∥

∥

∥

F
(47)

where U1, U2 and Φe are given respectively by (I in U1 and U2 have different dimensions.):

U1 =







I 0

0
H1/2 0

F(H1/2)−T Ω






, (48)

U2 =







I 0

0
H1/2 0

F(H1/2)−T Ω






, (49)

Φe =

[

I 0

0 QT

]

MT
1 y∗

0ep
T
0eM

T
2

[

I 0

0 Q−T

]

. (50)

For any element ψts in Ψe = UT
1 ΦeU

−T
2 , where t ∈ {1, · · · , l + n} and s ∈ {1, · · · , q + n}, and any

ωij in Ω, where i ∈ {1, · · · , n− 2} and j ∈ {1, · · · , n− 2},

∂ψts

∂ωij
= eT

t

∂UT
1

∂ωij
ΦeU

−T
2 es + eT

t UT
1 Φe

∂U−T
2

∂ωij
es

= eT
t el+2+je

T
l+2+iΦeU

−T
2 es − eT

t UT
1 ΦeU

−T
2 eq+2+je

T
q+2+iU

−T
2 es

= eT
t el+2+je

T
l+2+iΦeU

−T
2 es − eT

t Ψeeq+2+je
T
q+2+iU

−T
2 es. (51)
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That is,

∂ψts

∂Ω
=







eT
t

. . .
eT

t



















el+3e
T
l+3Φe · · · el+ne

T
l+3Φe

... · · ·
...

el+3e
T
l+nΦe · · · el+ne

T
l+nΦe







−







Ψeeq+3e
T
q+3 · · · Ψeeq+ne

T
q+3

... · · ·
...

Ψeeq+3e
T
q+n · · · Ψeeq+ne

T
q+n



















U−T
2 es

. . .
U−T

2 es






. (52)

Since

g(X(T(Ω)), e) =
(1 − |λe|)/

√

(l + n)(q + n)
√

∑l+n
t=1

∑q+n
s=1 ψ

∗
tsψts

, (53)

we can readily calculate

∂g(X(T(Ω)), e)

∂Ω
= −

1 − |λe|
√

(l + n)(q + n) ‖Ψe‖
3
F

Re

[

l+n
∑

t=1

q+n
∑

s=1

ψ∗
ts

∂ψts

∂Ω

]

. (54)

Comment 1: In a way, the above search procedure solves

min
Ω∈R(n−2)×(n−2)

max
k∈{1,···,m+n}

(−g(X(T(Ω)), k)) . (55)

The function h(Ω) = max
k∈{1,···,m+n}

(−g(X(T(Ω)), k)) to be minimized has corners where differentia-

bility fails, although g(X(T(Ω)), k) is differentiable for any k ∈ {1, · · · ,m + n}. In fact, the problem

(55) is a classical optimization problem which requires nondifferentiable optimization approaches, such

as subgradient methods [22]. Subdifferentiation of h at Ω is defined as

ℵh(Ω) = Conv

{

J ∈ R(n−2)×(n−2)

∣

∣

∣

∣

∣

J = lim ∂h(Ωi)
∂Ωi

,Ωi → Ω
∂h(Ωi)

∂Ωi
exists, ∂h(Ωi)

∂Ωi
converges

}

(56)

where Conv denotes the convex hull. The elements of ℵh(Ω) are called subgradients. Denote the

directional derivative

h◦(Ω,Γ) = lim
t→0
t>0

h(Ω + tΓ) − h(Ω)

t
(57)

in every direction Γ ∈ R(n−2)×(n−2). A relationship between subgradients and the directional derivative

is given in [22], which is re-stated in the following lemma.

Lemma 2 h◦(Ω,Γ) = max
J∈ℵh(Ω)

〈J,Γ〉 .

It is easily seen that −∂g(X,e)
∂Ω

is a subgradient of h(Ω) and hence our method is a subgradient

algorithm. Since h(Ω) is differentiable almost everywhere when Ω is not a local optimal point, there

must exist a neighborhood Br =
{

Θ ∈ R(n−2)×(n−2) | ‖Θ − Ω‖F < r
}

such that

h◦(Ω,Ξ − Ω) < 0 (58)
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and

Ξ = min
Θ∈Br

h(Ω). (59)

Then we have the following theorem.

Theorem 5 There exists τm > 0 such that for Step 2 of the above search algorithm
∥

∥

∥

∥

∥

Ω + τ
∂g(X, e)

∂Ω

∥

∥

∥

∥

∂g(X, e)

∂Ω

∥

∥

∥

∥

−1

F
− Ξ

∥

∥

∥

∥

∥

F

< ‖Ω − Ξ‖F (60)

for all τ ∈ (0, τm).

Proof: By the definition of Frobenius-norm,
∥

∥

∥

∥

∥

Ξ − Ω − τ
∂g(X, e)

∂Ω

∥

∥

∥

∥

∂g(X, e)

∂Ω

∥

∥

∥

∥

−1

F

∥

∥

∥

∥

∥

2

F

= ‖Ξ − Ω‖2
F + 2τ

〈

−
∂g(X, e)

∂Ω

∥

∥

∥

∥

∂g(X, e)

∂Ω

∥

∥

∥

∥

−1

F
,Ξ − Ω

〉

+ τ2. (61)

Since −∂g(X,e)
∂Ω

is a subgradient, from Lemma 2 and (58), one has
〈

−
∂g(X, e)

∂Ω

∥

∥

∥

∥

∂g(X, e)

∂Ω

∥

∥

∥

∥

−1

F
,Ξ − Ω

〉

≤ h◦(Ω,Ξ − Ω)

∥

∥

∥

∥

∂g(X, e)

∂Ω

∥

∥

∥

∥

−1

F
< 0. (62)

Thus, for 0 < τ < τm = 2

〈

∂g(X,e)
∂Ω

∥

∥

∥

∂g(X,e)
∂Ω

∥

∥

∥

−1

F
,Ξ − Ω

〉

,

2τ

〈

−
∂g(X, e)

∂Ω

∥

∥

∥

∥

∂g(X, e)

∂Ω

∥

∥

∥

∥

−1

F
,Ξ − Ω

〉

+ τ2 < 0. (63)

This together with (61) proves the assertion.

The above result shows that, for sufficiently small τ > 0, ∂g(X,e)
∂Ω

is a good direction along which

to update Ω so that it becomes closer to Ξ, although occasionally the updated h(Ω) may be worse.

Therefore, h(Ω) will be improved significantly after some iterations. Our numerical examples listed in

Section 5 show that this simplest subgradient optimization algorithm behaves satisfactorily in practice,

provided that τ is chosen appropriately. Of course, if this simplest subgradient algorithm fails in some

cases, various enhanced subgradient algorithms [22]-[24] can be adopted to tackle the problem.

Comment 2: The termination at Nt ≥ N does not mean that the problem (55) has no saddle point.

As h(Ω) may be nonconvex, our subgradient search sequence may possibly oscillate around a local

optimum which is worst than ρk′ . Regardless whether the problem (55) has saddle points or not, when

the routine does not find a saddle point, we can further increase the value of min
k∈{1,···,m+n}

g(X, k) by a

direct numerical optimization. This is further discussed in the next section.
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4 Discussions

The function g(X, k) having saddle points is the main assumption in this paper. Here we explain heuris-

tically that for many practical control systems this assumption is valid. Firstly, from Section 3.1, it is

known that k′, ρk′ and X exist regardless whether g(X, k) has saddle points or not. Secondly, Theorem 3

shows that if and only if there exist T ∈ T satisfying

g(X(T), k) ≥ ρk′ ∀k ∈ {1, · · · ,m+ n} \ {k′}, (64)

the saddle points of g(X, k) exist. From the definition of g(X, k) in (14), g(X, k) is proportional to

the single-pole stability margin 1 − |λk(A(X))|, which is a fixed value, and inverse proportional to its

eigenvalue sensitivity, which depends on X. For practical digital closed-loop control systems, there exist

usually only a few dominant poles which are near the unit circle and/or have relatively high eigenvalue

sensitivities, compared with all the other non-dominant poles. For this reason, the index k ′ defined in

(21) is usually the index of a dominant pole, and the values of g(X, k) for those non-dominant poles

at X(T) are larger than ρk′ for most T ∈ T . Therefore, to satisfy condition (64), one needs only to

consider the few dominant poles whose indices are not k′. It should be observed that T in T has a fairly

large degree of freedom. Specifically, the free parameter Ω in (44) can be any nonsingular matrix in

R(n−2)×(n−2). This large degree of freedom together with the fact that there are typically just a few

dominant poles to consider means that most likely there exist T ∈ T satisfying (64). Thus g(X, k)

has saddle points for many practical problems. We conjecture without a rigorous proof that the class of

optimal FWL controller realization problems (15) which have saddle points is much larger than the class

having no saddle point. Empirically, we have tested a total of six FWL controller design examples that

we can found in the FWL controller design literature. Only one example, which is given in [14], was

shown to possibly have no saddle point.

The routine presented in Section 3.2 is computationally much more attractive than a direct numerical

optimization of (13). Actually, all the needed is to find a T ∈ T such that g(X(T), k) ≥ ρk′ for

k ∈ {1, · · · ,m + n} \ {k′}, rather than to directly maximize f(X(T)) over Rn×n (and of course

detT 6= 0). The former objective can be attained often easily even for large-scale problems. In addition,

the number of saddle points is infinite when g(X, k) has saddle points. Hence our algorithm can find

global optimal solutions for most practical problems which have saddle points even though we do not

strictly prove the convergence of the subgradient routine. An additional advantage of the algorithm

presented, which is particularly important in practical applications, is that when the algorithm attains a

solution the user knows for sure that it is a global optimal solution to the optimal realization problem
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(13). This should be compared with direct numerical optimization of (13) where even when it converges

to a solution, there is no way to tell whether the solution is a global optimal one or not.

It should be pointed out that our algorithm, presented for the problems having saddle points, is also

useful in helping to solve those optimal FWL realization problems which do not have saddle point.

Actually, the algorithm given in Section 3 can be executed even for the problems which do not have

saddle point. Using the results of Section 3.1, k′ and ρk′ can be computed, and X is obtained in closed-

form. Corollary 1 tells us that ρk′ is an upper bound of the optimal value of the realization problem

having no saddle point. After executing N iterations of the routine given in Section 3.2, the resulting

realization Xt obviously does not satisfy (64). But through these N iterations, min
k∈{1,···,m+n}

g(X, k) has

been increased to as close to ρk′ as possible under X ∈ X . Therefore the value of f(Xt) is not much less

than ρk′ . This provides a small region [f(Xt), ρk′ ] within which the optimal value of the FWL controller

realization problem lies. Of course, this also provide an excellent guess from which a direct numerical

optimization approach can be used to find a (local) optimal solution for those optimization problems

having no saddle point.

Obviously, the same idea is equally applicable to the problems whose saddle points are not found

after N iterations of the search routine. In fact, when the subgradient routine is terminated after N

iterations but the condition (64) is not met, one cannot answer the question of whether the problem (55)

has any saddle point or not. However, one knows the small region within which the global optimal value

lies and the solution obtained after N iterations provides an excellent initial guess for a direct numerical

optimization.

5 Design examples

Six examples are used to illustrate the effectiveness of the proposed design algorithm.

Example 1. The example in [25] is discretized with a sampling frequency of 5 Hz to obtain the discrete-

time plant model

AP =















3.2439e− 1 −4.5451e+ 0 −4.0535e+ 0 −2.7003e− 3 0
1.4518e− 1 4.9477e− 1 −4.6945e− 1 −3.1274e− 4 0
1.6814e− 2 1.6491e− 1 9.6681e− 1 −2.2114e− 5 0
1.1889e− 3 1.8209e− 2 1.9829e− 1 1.0000e+ 0 0
6.1301e− 5 1.2609e− 3 1.9930e− 2 2.0000e− 1 1.0000e+ 0















,

BP = [ 1.4518e− 1 1.6814e− 2 1.1889e− 3 6.1301e− 5 2.4979e− 6 ]T ,

CP = [ 0 0 1.6188e+ 0 −1.5750e− 1 −4.3943e+ 1 ] ;
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and the initially designed digital controller

A0
C =



















0 0 0 0 0 −4.7086e− 1
1 0 0 0 0 2.6885e+ 0
0 1 0 0 0 −6.6649e+ 0
0 0 1 0 0 9.4410e+ 0
0 0 0 1 0 −8.2537e+ 0
0 0 0 0 1 4.2600e+ 0



















, B0
C =



















1
0
0
0
0
0



















, D0
C = [4.6000e− 2],

C0
C = [ 2.1187e− 1 9.4498e− 2 1.0887e− 2 −4.4171e− 2 −7.6000e− 2 −8.8562e− 2 ] .

The corresponding closed-loop transition matrix A(X0) is then formed using (10), from which the eigen-

values and the eigenvectors of the ideal closed-loop system are computed. These 11 eigenvalues and their

absolute values are


















λ1,2

λ3,4

λ5,6

λ7,8

λ9,10

λ11



















=



















4.8368e− 1 ± j8.5569e− 1
4.8135e− 1 ± j8.5363e− 1
9.9993e− 1 ± j3.7887e− 4
8.3967e− 1 ± j1.6514e− 1
8.0884e− 1 ± j1.2026e− 1

8.1905e− 1



















,



















|λ1,2|
|λ3,4|
|λ5,6|
|λ7,8|
|λ9,10|
|λ11|





































9.8293e− 1
9.7999e− 1
9.9993e− 1
8.5575e− 1
8.1774e− 1
8.1905e− 1



















.

This closed-loop system has five pairs of conjugate complex-valued eigenvalues and one real-valued

eigenvalue. Using the method developed in section 3.1, the single-pole peak for each eigenvalue is

computed, and they are


















ρ1,2

ρ3,4

ρ5,6

ρ7,8

ρ9,10

ρ11



















=



















2.5072e− 3
2.1295e− 3
6.7344e− 6
2.8586e− 3
3.0832e− 3
4.3181e− 3



















.

Obviously, the minimum value of all the ρks is ρ5 (or ρ6). Therefore, k′ = 5 and the corresponding

matrices Q, H and F in the set (44) are given by

Q =



















−6.6011e− 2 −8.4915e− 2 −4.3670e− 1 −5.1206e− 1 −5.2972e− 1 −5.0490e− 1
−3.7006e− 1 −4.3518e− 1 −4.9156e− 1 −2.2314e− 1 1.7033e− 1 5.9434e− 1
−5.0566e− 1 −3.8025e− 1 7.1063e− 1 −2.5387e− 1 −1.6560e− 1 −5.3367e− 2
−5.2127e− 1 −8.6900e− 2 −2.2452e− 1 7.4814e− 1 −2.4759e− 1 −2.2204e− 1
−4.5786e− 1 3.1775e− 1 −1.0190e− 1 −2.0850e− 1 6.8322e− 1 −4.1079e− 1
−3.4878e− 1 7.4183e− 1 4.3249e− 2 −1.4270e− 1 −3.6725e− 1 4.1345e− 1



















,

H =

[

2.6322e+ 0 −3.9258e+ 2
−3.9258e+ 2 6.9856e+ 6

]

, F =











4.8432e+ 4 −8.8104e+ 8
−5.2079e+ 4 9.4682e+ 8

2.4998e+ 4 −4.5374e+ 8
−2.4644e+ 4 4.4816e+ 8











.

Set τ = 0.1 and the initial Ω = I. Fig. 2 illustrates the changes of g(X, k) in each iteration. From Fig. 2,

it can be seen that at the 37th iteration, the optimal controller realization is found, since at this iteration
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the conditions of Theorem 3 are met and the algorithm terminates. The resulting matrix Ωopt is

Ωopt =











2.3184e+ 0 −1.6411e+ 0 5.5681e− 1 −7.6953e− 1
−1.6411e+ 0 2.4047e+ 0 −8.2094e− 1 7.0079e− 1

5.5680e− 1 −8.2095e− 1 1.2097e+ 0 −3.7643e− 1
−7.6954e− 1 7.0078e− 1 −3.7643e− 1 1.3454e+ 0











and the corresponding global optimal transformation matrix is

Topt =



















−6.9470e+ 1 −3.2765e+ 4 −7.8507e− 2 −4.3363e− 1 −2.7354e− 1 −5.0267e− 1
3.0977e+ 2 1.5431e+ 5 −1.1360e+ 0 5.4680e− 1 −1.0820e− 1 9.5739e− 1

−6.0267e+ 2 −3.0945e+ 5 2.0130e+ 0 −1.6781e+ 0 4.2386e− 1 −7.3423e− 1
6.5537e+ 2 3.4747e+ 5 −1.7153e+ 0 2.2151e+ 0 −9.5513e− 1 4.9153e− 1

−4.1530e+ 2 −2.2683e+ 5 8.0247e− 1 −1.1829e+ 0 1.0956e+ 0 −8.7755e− 1
1.1931e+ 2 6.9580e+ 4 −1.8821e− 1 1.7712e− 1 −4.5868e− 1 5.6121e− 1



















.

Example 2. The second example is taken from [14]. In this example, m = 4, n = 10, l = 2, q = 2

and hence it is a closed-loop system of order 14. The initial controller realization X0 of C(z) has been

given [20]. The corresponding closed-loop transition matrix A(X0) is formed using (10), from which

the eigenvalues and the eigenvectors of the ideal closed-loop system are computed. This closed-loop

system has six pairs of conjugate complex-valued eigenvalues and two real-valued eigenvalues given by



























λ1,2

λ3,4

λ5

λ6,7

λ8,9

λ10,11

λ12

λ13,14



























=



























−8.4482e− 1 ± j7.8204e− 2
−3.7557e− 1 ± j3.3602e− 1

2.1624e− 1
7.1567e− 1 ± j9.6631e− 3
9.2895e− 1 ± j1.2923e− 1
9.8506e− 1 ± j7.5831e− 2

8.3133e− 1
8.8267e− 1 ± j3.7235e− 2



























.

Using the method developed in Section 3.1, the single-pole peaks for every eigenvalues are computed,

and they are


























ρ1,2

ρ3,4

ρ5

ρ6,7

ρ8,9

ρ10,11

ρ12

ρ13,14



























=



























8.3118e− 3
4.0562e− 2
6.2954e− 2
8.0984e− 3
3.7768e− 3
5.4246e− 3
5.8442e− 3
8.0773e− 3



























.

Obviously, the minimum value of all the ρks is ρ8 (or ρ9). Therefore, k′ = 8 and the corresponding

matrices Q, H and F in (44) are computed according to Theorem 4. With T in (44), the second stage of

our algorithm can be executed. Fig. 3 illustrates the changes of g(X, k) in each iteration of the second

stage. From Fig. 3, it can be seen that after N = 50000 iteration, we still cannot find a realization

satisfying (64). This suggests that this example most likely has no saddle point (although one cannot be
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sure). So we terminate the algorithm at 50000 iteration and obtain a realization Xt. Although this Xt

is not an optimal realization, it is much better than X0, since f(Xt) = 2.1539e − 3 while f(X0) =

1.1734e − 4. In particular, we notice that Xt is also better than the “optimal” realization given in [14],

which was found by a direct numerical optimization search using the simulated annealing algorithm and

has a FWL measure value of 1.5844e− 3 [14]. At this stage, we are sure that the optimal solution given

in [14] is not a global optimal one at all. Using the realization Xt obtained by our search algorithm as the

initial point, we then use a direct numerical optimization method to solve for the optimization problem

(13) and obtain a new optimal realization whose FWL measure value is 3.1929e− 3. This optimal value

is more than double of that given in [14]. Obviously, we cannot tell whether this new optimal realization

is a global optimal one or not. However, we know that the optimal value of the FWL realization problem

for this example lies in the range of [3.1929e − 3, 3.7768e − 3]. For this example, no other design has

found a controller realization whose FWL closed-loop stability measure f(X) is larger than 3e− 3. Our

algorithm is the first one to achieve a f(X) > 3e− 3.

The saddle points (or the global optimal solutions) of the following four examples are found success-

fully by our proposed method.

Example 3. This example is a fluid power speed controller given in [8], where m = 4, n = 4, l = 1 and

q = 1.

Example 4. This example is a discretized version of an H∞ robust controller given in [26] with a

sampling frequency of 250 Hz, where m = 2, n = 3, l = 1 and q = 1.

Example 5. This example is taken from [6], where m = 3, n = 2, l = 1 and q = 1.

Example 6. This example is a steel rolling mill PID controller given in [8], where m = 3, n = 2, l = 1

and q = 1. ”

As is mentioned previously, the realizations of C(z) are not unique. For instance, in Example 1, the

initially designed controller (A0
C ,B

0
C ,C

0
C ,D

0
C) is the controllable companion-form realization for

C(z) =
0.046z6 + 0.0159z5 − 0.4284z4 + 0.9227z3 − 1.0043z2 + 0.5983z − 0.1503

z6 − 4.26z5 + 8.2537z4 − 9.441z3 + 6.6649z2 − 2.6885z + 0.4709
.

Apart from the controllable companion-form, denoted as Xc, a controller is also often implemented in

the parallel or series form in practice. Denote these two realizations of C(z) as

Xp =

[

D
p
C C

p
C

B
p
C A

p
C

]

(65)
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and

Xs =

[

Ds
C Cs

C

Bs
C As

C

]

, (66)

respectively. The parallel-form realization of C(z) for Example 1 is given by

C(z) = 0.046 +
1.8921e− 7

z − 1
+

−0.0024z + 0.0013

z2 − 0.9670z + 0.9589
+

0.1056z − 0.1487

z2 − 1.6016z + 0.7103
+

0.1087

z − 0.6913

with

A
p
C =



















1 0 0 0 0 0
0 0 1 0 0 0
0 −9.5886e− 1 9.6700e− 1 0 0 0
0 0 0 0 1 0
0 0 0 −7.1030e− 1 1.6016e0 0
0 0 0 0 0 6.9134e− 1



















,

B
p
C =

[

1 0 1 0 1 1
]T
, D

p
C = 4.6000e− 2,

C
p
C =

[

1.8921e− 7 1.2816e− 3 −2.3654e− 3 −1.4868e− 1 1.0555e− 1 1.0869e− 1
]

;

while the series-form realization is C(z) =

0.046

(

0.1812

z − 1
+ 1

) (

0.6344z + 0.2556

z2 − 1.6016z + 0.7103
+ 1

) (

4.8231

z − 0.6913
+ 1

) (

−1.0329z + 0.0410

z2 − 0.9670z + 0.9589
+ 1

)

with

As
C =



















1 0 1.8120e− 1 1.8120e− 1 0 1.8120e− 1
0 0 −7.1030e− 1 2.5562e− 1 0 2.5562e− 1
0 1 1.6016e0 6.3442e− 1 0 6.3442e− 1
0 0 0 6.9134e− 1 0 4.8231e0
0 0 0 0 0 −9.5886e− 1
0 0 0 0 1 9.6700e− 1



















, Bs
C =



















1.8120e− 1
2.5562e− 1
6.3442e− 1
4.8231e0

4.1007e− 2
−1.0329e0



















,

Cs
C =

[

4.6000e− 2 0 4.6000e− 2 4.6000e− 2 0 4.6000e− 2
]

, Ds
C = 4.6000e− 2.

The above three realizations, Xc, Xp and Xs, are sparse because they contain many trivial parameters

(0,1 or −1). For Example 1, X0 has 13 nontrivial parameters, while Xp and Xs only have 12 nontrivial

parameters (the repeated values, such as 1.8120e − 1 in Xs, are counted as one nontrivial parameter).

Clearly, a trivial parameter requires no arithmetic operation in a fixed-point implementation and does not

cause any computational error. A sparse controller realization has computational advantages in practical

implementations. An FWL closed-loop stability measure, which is similar to the one defined in (11) but

takes into account the sparsity of controller realization, is defined in [9] as

fsp(X)
4
= min

k∈{1,···,m+n}

1 − |λk(A(X))|
√

Ns
∑

i,j
δ(xij)

∣

∣

∣

∣

∂λk(A(X))
∂xij

∣

∣

∣

∣

2
(67)

19



where

δ(xij) =

{

1, xij is nontrivial,

0, xij is trivial,
(68)

and Ns is the number of nontrivial parameters in X. Comparing the definitions of fsp(X) and f(X), it

follows that

fsp(X) ≥ f(X). (69)

Table 1 lists the values of f(X), fsp(X) and Ns for Xopt, Xp, Xs and Xc of every examples

except for Example 2. Example 2 is a multiple-input multiple-output system for which no parallel-

form or series-form realization is defined. It can be seen that the optimal realization Xopt found by

the proposed method has the best FWL closed-loop stability robustness as measured either by f(X)

or fsp(X), compared with the other three realizations. It can also be seen that the optimal realization

obtained by the proposed search algorithm is a fully parameterized non-sparse one. The other three sparse

realizations have similar numbers of nontrivial parameters, and thus have the same lighter computational

load than the optimal one given here. However, it is worth pointing out that Xopt is not unique since V

in (43) is an arbitrary orthogonal matrix. By choosing V in an appropriate way, one can obtain a sparse

optimal realization Xopt. The topic of how to make Xopt sparse is beyond the scope of this paper, and

the interested readers are referred to the work [1] for details.

6 Conclusions

We have developed an efficient search algorithm for solving the class of optimal FWL controller real-

ization problems based on the Frobenius-norm pole sensitivity measure, which have saddle points. Our

approach first constructs the closed-form of a transformation matrix set which contains global optimal

solutions, and then searches this set with a subgradient routine to find a global optimal solution. The pro-

posed algorithm has considerable advantages over using direct numerical optimization methods to tackle

this class of optimal FWL realization problems. In particular, when the subgradient routine converges

to a solution, it is guaranteed to be a global optimal solution. It has been conjectured with some empir-

ical supports that for many practical control systems the assumption of having saddle points is a valid

one and the cases of optimal FWL controller realization problems which do not have saddle points are

less common. It has been demonstrated that for this smaller class of optimal FWL realization problems

without saddle points our algorithm also provides useful information to help solving them.
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Appendix Proof of Theorem 4

We present the proof for Case 2. The proof for Case 3 is similar and hence is omitted.

Lemma 3 (See [21]) Let real-valued matrices M22, M21 and M11 > 0 be given with appropriate

dimensions. Then
[

M11 MT
21

M21 M22

]

> 0 (70)

if and only if M22 − M21M
−1
11 MT

21 > 0.

Lemma 4 Given positive α, β ∈ R, p,y ∈ Cn, and for any nonsingular T ∈ Rn×n, we have

ξ(T, α, β,p,y) ≥ (|yHp| + αβ)2. (71)

The equality occurs if and only if there exist W ∈ Rn×n, W > 0 and θ ∈ [0, 2π) satisfying:

WΥ(y) =
β

α
Υ(p)

[

cos θ sin θ
− sin θ cos θ

]

. (72)

When the above equation (72) has solutions, the equality in (71) occurs only at the transformation matrix

T = W1/2V, where V ∈ Rn×n is an arbitrary orthogonal matrix.

Proof: First of all,

‖T−1p‖2
F ‖T

Ty‖2
F + α2‖TTy‖2

F + β2‖T−1p‖2
F + α2β2 ≥ (‖T−1p‖F ‖T

Ty‖F + αβ)2. (73)

The equality holds if and only if

α‖TTy‖F = β‖T−1p‖F . (74)

Using the Cauchy-Schwartz inequality, we have

(‖T−1p‖F ‖T
Ty‖F + αβ)2 ≥ (‖(TTy)HT−1p‖F + αβ)2 ≥ (|yHp| + αβ)2. (75)

The equality holds if and only if

TTy = cT−1p (76)

for some complex number c.

To achieve (73) and (75) with equality, one needs to satisfy both the conditions (74) and (76). This

implies that c = (cos θ + j sin θ) β
α and θ ∈ [0, 2π). Thus,

TTy = (cos θ + j sin θ)
β

α
T−1p. (77)
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As T is nonsingular, equality (77) is equivalent to

Wy = (cos θ + j sin θ)
β

α
p (78)

with W > 0 and T = W1/2V. Noticing the map Υ defined in (31), condition (78) can be viewed as

WΥ(y) =
β

α
Υ(p)

[

cos θ sin θ
− sin θ cos θ

]

. (79)

Lemma 5 Given positive α, β ∈ R, p,y ∈ Cn and rank(Υ(y)) = 2, equation (79) has solutions if and

only if det((Υ(y))T Υ(p)) > 0. Moreover, any solution to equation (79) can be expressed as

tan θ = a21−a12
a11+a22

a11 cos θ − a12 sin θ > 0

W = Q

[

H FT

F G

]

QT























(80)

where
[

a11 a12

a21 a22

]

= (Υ(y))T Υ(p); (81)

the orthogonal matrix Q can be obtained from the QR factorization of Υ(y), that is,

Υ(y) = Q

[

γ11 0 0 · · · 0
γ12 γ22 0 · · · 0

]T

; (82)

H and F are determined by

H =
β

α

[

γ11 γ12

0 γ22

]−T

(Υ(y))T Υ(p)

[

cos θ sin θ
− sin θ cos θ

] [

γ11 γ12

0 γ22

]−1

, (83)

F =
β

α







eT
3
...

eT
n






QT Υ(p)

[

cos θ sin θ
− sin θ cos θ

] [

γ11 γ12

0 γ22

]−1

; (84)

and G is given as

G = FH−1FT + U (85)

with U ∈ R(n−2)×(n−2) being an arbitrary positive definite matrix.

Proof: If det((Υ(y))T Υ(p)) > 0, it is easy to verify that W and θ given by (80)–(85) are a solution to

equation (79). If on the other hand equation (79) has a solution W and θ, it can be seen that

(Υ(y))TWΥ(y) =
β

α
(Υ(y))T Υ(p)

[

cos θ sin θ
− sin θ cos θ

]

. (86)

On account of (Υ(y))TWΥ(y) > 0, we have

(Υ(y))T Υ(p)

[

cos θ sin θ
− sin θ cos θ

]

> 0. (87)
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A necessary condition to satisfy (87) is that

det

(

(Υ(y))T Υ(p)

[

cos θ sin θ
− sin θ cos θ

])

> 0. (88)

Since the left side of the above inequality is equal to det((Υ(y))T Υ(p)), The condition (88) becomes

det((Υ(y))T Υ(p)) > 0. This completes the proof of the first part of Lemma 5.

Now, when (81) is given, (87) holds if and only if all of the following three conditions are satisfied

a21 cos θ − a22 sin θ = a11 sin θ + a12 cos θ
a11 cos θ − a12 sin θ > 0
det((Υ(y))T Υ(p)) > 0











(89)

From the first line of (89), we directly obtain tan θ = a21−a12
a11+a22

. Denote

S = QTWQ. (90)

Then, from (79), (82) and (90), one has

S [ e1 e2 ]

[

γ11 γ12

0 γ22

]

= S

[

γ11 0 0 · · · 0
γ12 γ22 0 · · · 0

]T

=
β

α
QT Υ(p)

[

cos θ sin θ
− sin θ cos θ

]

. (91)

Partition S into

S =

[

H FT

F G

]

(92)

where H ∈ R2×2, F ∈ R(n−2)×2 and G ∈ R(n−2)×(n−2). Then from (91) and noticing

(Υ(y))T =

[

γ11 γ12

0 γ22

]T

[ e1 e2 ]T QT , (93)

we have

H =

[

eT
1

eT
2

]

S [ e1 e2 ] =
β

α

[

γ11 γ12

0 γ22

]−T

(Υ(y))T Υ(p)

[

cos θ sin θ
− sin θ cos θ

] [

γ11 γ12

0 γ22

]−1

, (94)

F =







eT
3
...

eT
n






S [ e1 e2 ] =

β

α







eT
3
...

eT
n






QT Υ(p)

[

cos θ sin θ
− sin θ cos θ

] [

γ11 γ12

0 γ22

]−1

. (95)

From Lemma 3 and S > 0, it is known that G = FH−1FT + U, where U ∈ R(n−2)×(n−2) is an

arbitrary positive definite matrix.

Combining Lemmas 4 and 5 leads to Theorem 4 for Case 2.

Acknowledgements

J. Wu and J. Chu wish to thank the support of the National Natural Science Foundation of China (Grants

No.60174026 and No.60374002) and 973 program of China (Grant No.2002CB312200). S. Chen wish

to thank the support of the United Kingdom Royal Academy of Engineering.

23



References

[1] M. Gevers and G. Li, Parameterizations in Control, Estimation and Filtering Problems: Accuracy

Aspects. London: Springer Verlag, 1993.

[2] R.S.H. Istepanian and J.F. Whidborne, eds., Digital Controller Implementation and Fragility: A

Modern Perspective. London: Springer Verlag, 2001.

[3] G.F. Franklin, J.D. Powell and M.L. Workman, Digital Control of Dynamic Systems. 3rd Edition.

Reading, MA: Addison-Wesley, 1998.

[4] K. Liu, R.E. Skelton and K. Grigoriadis, “Optimal controllers for finite wordlength implementa-

tion,” IEEE Trans. Automatic Control, Vol.37, No.9, pp.1294–1304, 1992.

[5] G. Li, J. Wu, S. Chen and K.Y. Zhao, “Optimum structures of digital controllers in sampled-data

systems: a roundoff noise analysis,” IEE Proc. Control Theory and Applications, Vol.149, No.3,

pp.247–255, 2002.

[6] I.J. Fialho and T.T. Georgiou, “Computational algorithms for sparse optimal digital controller re-

alizations,” in: R.S.H. Istepanian and J.F. Whidborne, eds., Digital Controller Implementation and

Fragility: A Modern Perspective. London: Springer Verlag, 2001, pp.105–121.

[7] A.G. Madievski, B.D.O. Anderson and M. Gevers, “Optimum realizations of sampled-data con-

trollers for FWL sensitivity minimization,” Automatica, Vol.31, No.3, pp.367–379, 1995.

[8] J.F. Whidborne, J. Wu and R.S.H. Istepanian, “Finite word length stability issues in an l1 frame-

work,” Int. J. Control, Vol.73, No.2, pp.166–176, 2000.

[9] G. Li, “On the structure of digital controllers with finite word length consideration,” IEEE Trans.

Automatic Control, Vol.43, No.5, pp.689–693, 1998.

[10] P.E. Mantey, “Eigenvalue sensitivity and state-variable selection,” IEEE Trans. Automatic Control,

Vol.13, No.3, pp.263–269, 1968.

[11] J. Wu, S. Chen, G. Li and J. Chu, “Optimal finite-precision state-estimate feedback controller re-

alizations of discrete-time systems,” IEEE Trans. Automatic Control, Vol.45, No.8, pp.1550–1554,

2000.

[12] G.-H. Yang, J.L. Wang and C. Lin, “H∞ control for linear systems with additive controller gain

variations,” Int. J. Control, Vol.73, No.16, pp.1500–1506, 2000.

24



[13] J.F. Whidborne, J. Wu, R.S.H. Istepanian and J. Chu, “Comments on ‘On the structure of digital

controllers with finite word length consideration’,” IEEE Trans. Automatic Control, Vol.45, No.2,

pp.344–344, 2000.

[14] R.S.H. Istepanian, J. Wu and J.F. Whidborne, “Controller realizations of a teleoperated dual-wrist

assembly system with finite word length considerations,” IEEE Trans. Control Systems Technology,

Vol.9, No.4, pp.624–628, 2001.

[15] G. Owen, Game Theory. 3rd Edition. San Diego, CA: Academic Press, 1995.
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Xc Xp Xs Xopt

f(X) 3.1797e− 11 8.0156e− 9 2.8727e− 9 6.7344e− 6
Example 1 fsp(X) 7.4944e− 11 1.8464e− 8 7.1095e− 9 6.7344e− 6

Ns 13 12 12 49

f(X) 5.0963e− 10 1.5234e− 5 3.0949e− 6 2.7321e− 4
Example 3 fsp(X) 8.5965e− 10 2.7908e− 5 5.4711e− 6 2.7321e− 4

Ns 9 8 8 25

f(X) 1.6555e− 10 8.3351e− 10 1.4611e− 7 5.0786e− 5
Example 4 fsp(X) 6.1068e− 10 1.5627e− 7 3.0905e− 7 5.0786e− 5

Ns 7 7 7 16

f(X) 1.6699e− 4 5.4326e− 4 4.8802e− 4 3.2716e− 3
Example 5 fsp(X) 2.5956e− 4 2.4426e− 3 7.3417e− 4 3.2716e− 3

Ns 5 4 4 9

f(X) 6.7163e− 4 1.0775e− 3 1.0774e− 3 4.8968e− 3
Example 6 fsp(X) 9.5044e− 4 3.5239e− 3 1.6347e− 3 4.8968e− 3

Ns 5 4 4 9

Table 1: Comparison of performance measures for different realizations.
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Figure 1: A simple illustration on ρk, X and saddle points.
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Figure 2: The values of g(X, k) in each iteration of the algorithm for Example 1.
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Figure 3: The values of g(X, k) in each iteration of the algorithm for Example 2.
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