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Abstract

The paper revisits adaptive beamforming assisted receiver for multiple antenna aided multiuser systems that employ

binary phase shift keying (BPSK) modulation. The standard minimum mean square error (MMSE) design is based on the

criterion of minimising the mean square error (MSE) between the beamformer’s desired output and complex-valued

beamformer’s output. Since the desired output for BPSK systems is real-valued, minimising the MSE between the

beamformer’s desired output and real-part of the beamformer’s output can significantly improve the bit error rate (BER)

performance, and we refer to this alternative MMSE design as the real-valued MMSE (RV-MMSE) to contrast to the

standard complex-valued MMSE (CV-MMSE) design. The minimum BER (MBER) design however still outperforms

the RV-MMSE solution, particularly for overloaded systems where degree of freedom of the antenna array is smaller than

the number of BPSK users. Adaptive implementation of this RV-MMSE beamforming design is realised using a least mean

square (LMS) type adaptive algorithm, which we refer to as the RV-LMS, in comparison to the standard CV-LMS

algorithm. The RV-LMS adaptive beamformer is shown to have a similar computational complexity as the adaptive

MBER beamforming implementation known as the least bit error rate (LBER), imposing only half of the computational

requirements of the CV-LMS algorithm.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The ever-increasing demand for mobile commu-
nication capacity has motivated the development of
adaptive antenna array-assisted spatial processing
techniques [1–12] in order to further improve the
e front matter r 2006 Elsevier B.V. All rights reserved
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achievable spectral efficiency. A technique that has
shown real promise in achieving substantial capa-
city enhancements is the use of adaptive beamform-
ing with antenna arrays. Through appropriately
combining the signals received by the different
elements of an antenna array, adaptive beamform-
ing is capable of separating signals transmitted on
the same carrier frequency, and thus provides a
practical means of supporting multiusers in a space
division multiple access scenario. Classically, the
beamforming process is carried out by minimising
.
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the mean square error (MSE) between the desired
output and the beamformer’s output. For a com-
munication system, however, it is the bit error rate
(BER) that really matters. Adaptive beamforming
based on directly minimising the system’s BER has
been proposed for binary phase shift keying (BPSK)
and quadrature phase shift keying modulation
schemes [13–15].

This paper re-visits adaptive beamforming for
BPSK systems. Such an adaptive beamforming-
assisted receiver is characterised by an adaptive
spatial filter with complex-valued (CV) input signal
and real-valued (RV) desired output. The standard
minimum MSE (MMSE) design [16–18] seeks the
CV beamformer’s weight vector that minimises the
MSE between the beamformer’s desired output and
the CV beamformer’s output. We will refer to this
MMSE solution as the CV-MMSE. Since the
beamformer’s desired output, namely the desired
user’s transmitted symbol, is RV, minimising the
MSE between the beamformer’s desired output and
the real part of the beamformer’s output can
significantly improve the achievable system’s BER
performance. We will refer to this alternative
MMSE design as the RV-MMSE, to contrast to
the standard CV-MMSE design. Since the RV-MSE
criterion is quadratic, the RV-MMSE design admits
a closed-form solution just as the case of the CV-
MMSE solution. In this aspect, the RV-MMSE
solution is better than the minimum BER (MBER)
design [13], which requires a numerical solution.
The MBER beamforming design however is the true
optimal solution and it generally outperforms the
RV-MMSE solution.

It is generally believed that the CV-MMSE
beamforming-assisted receiver has the capacity
of supporting up to the same number of users
as the number of antenna elements, and a
practical rule is that the number of antennas
should not be smaller than the number of users
supported. This is to ensure that the system
has a sufficient degree of freedom to cancel the
interfering signals. However, using the RV-MMSE
design, the system should be capable of supporting
users up to twice the number of antenna elements.
A heuristic explanation is as follows. The
design criterion of the RV-MMSE beamforming
is RV or one dimensional, while the signal
of each antenna array element is CV or two
dimensional. Thus, degree of freedom of the
antenna array is twice the number of antenna array
elements. Hence, for the CV-MMSE beamforming-
assisted receiver, the system is overloaded if the
number of users is more than the number of
antenna elements. But for the RV-MMSE beam-
forming-assisted receiver, the system is overloaded if
the number of users is more than twice the number
of antenna elements. The MBER design, on the
other hand, is capable of providing a system
capacity beyond the limit of the RV-MMSE
solution. These points will be illustrated by a
simulation example.

Adaptive implementations are compared for the
three beamforming designs. The CV-MMSE solu-
tion can adaptively be realised using the least mean
square (LMS) algorithm [16–18], and we will refer
to this standard LMS algorithm as the CV-LMS.
The adaptive implementation of the RV-MMSE
design based on a stochastic gradient adaptive
algorithm also lead to a LMS-type algorithm, which
we refer to as the RV-LMS algorithm. Since this
RV-LMS algorithm is a ‘‘special’’ case of the LMS
algorithm, standard convergence analysis (e.g. [18])
for the general LMS algorithm also applies to this
RV-LMS algorithm. An adaptive implementation
of the MBER solution is known as the least bit error
rate (LBER) algorithm [13]. Because the BER
criterion is highly complicated and certainly non-
quadratic, convergence analysis of the LBER
algorithm is a difficult task. Basically, initial
condition can significantly influence convergence
rate as well as the steady-state BER. Nevertheless,
convergence analysis for the general stochastic
gradient-based adaptive algorithm investigated in
[19] can be applied to the LBER algorithm, since the
LBER algorithm belongs to the class of general
stochastic gradient-based adaptive algorithms. In
terms of computational complexity, the RV-LMS
algorithm is similar to the LBER algorithm,
imposing only half of the computational require-
ments of the CV-LMS algorithm.
2. System model

The system consists of M users, and each user
transmits a BPSK signal on the same carrier
frequency o ¼ 2pf . The receiver is equipped with
a linear antenna array consisting of L uniformly
spaced elements. Assume that the channel is
narrow-band which does not induce intersymbol
interference. Then the symbol-rate received signal
samples at the antenna array’s output can be
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expressed as

xlðkÞ ¼
XM
i¼1

AibiðkÞe
jotl ðyiÞ þ nlðkÞ

¼ x̄lðkÞ þ nlðkÞ; 1plpL, ð1Þ

where tlðyiÞ is the relative time delay at antenna
element l for source i with yi being the direction of
arrival for source i, nlðkÞ is a CV Gaussian white
noise process with E½jnlðkÞj

2� ¼ 2s2n, Ai is the CV
channel coefficient for user i, and biðkÞ is the kth
symbol of user i which takes the value from the
BPSK symbol set f�1g. Without the loss of
generality, source 1 is the desired user and the rest
of the sources are interfering users. The desired-user
signal-to-noise ratio is defined by SNR ¼
jA1j

2s2b=2s
2
n and the desired signal to interferer i

ratio is given by SIRi ¼ A2
1=A2

i , for2pipM, where
s2b ¼ 1 is the symbol energy. The received signal
vector xðkÞ ¼ ½x1ðkÞ x2ðkÞ . . . xLðkÞ�

T can be ex-
pressed as

xðkÞ ¼ PbðkÞ þ nðkÞ ¼ x̄ðkÞ þ nðkÞ, (2)

where nðkÞ ¼ ½n1ðkÞ n2ðkÞ . . . nLðkÞ�
T, the system

matrix

P ¼ ½p1 p2 . . . pM � ¼ ½A1s1 A2s2 . . . AMsM � (3)

with the steering vector for source i

si ¼ ½e
jot1ðyiÞ ejot2ðyiÞ . . . ejotLðyiÞ�T, (4)

and the transmitted user symbol vector bðkÞ ¼

½b1ðkÞb2ðkÞ . . . bM ðkÞ�
T.

We consider the detection of the desired user’s
transmitted symbols using a linear beamformer,
whose soft output is given by

yðkÞ ¼ wHxðkÞ ¼ wH ðx̄ðkÞ þ nðkÞÞ ¼ ȳðkÞ þ eðkÞ,

(5)

where w ¼ ½w1 w2 . . . wL�
T is the CV beamformer

weight vector and eðkÞ is Gaussian distributed with
zero mean and E½jeðkÞj2� ¼ 2s2nw

Hw. The beamfor-
mer’s hard decision is given by

b̂1ðkÞ ¼ sgnðyRðkÞÞ, (6)

where b̂1ðkÞ denotes the estimate of b1ðkÞ and
yRðkÞ ¼ R½yðkÞ� denotes the real part of yðkÞ.

3. Beamformer designs

The task of designing the beamformer (5) is to
choose the beamformer’s weight vector w according
to some design criterion.
3.1. Complex-valued minimum mean square error

design

Classically, the beamformer’s weight vector w is
determined by minimising the MSE metric of

JMSEðwÞ ¼ E½jb1ðkÞ � yðkÞj2�. (7)

The gradient of JMSEðwÞ with respect to w is given
by

rJMSEðwÞ ¼ E½�ðb1ðkÞ � yðkÞÞ�xðkÞ�

¼ � p1 þ ðPP
H þ 2s2nILÞw. ð8Þ

Setting the gradient rJMSEðwÞ to zero leads to the
well-known closed-form CV-MMSE solution [18]

wCMMSE ¼ ðPP
H þ 2s2nILÞ

�1p1, (9)

where IL denotes the L� L identity matrix. An
adaptive implementation of the CV-MMSE
solution can readily be realised by substituting
the stochastic gradient �ðb1ðkÞ � yðkÞÞ�xðkÞ

for rJMSEðwÞ in the steepest-descent gradient
algorithm, leading to the following CV-LMS
algorithm [18]

wðk þ 1Þ ¼ wðkÞ þ mðb1ðkÞ � yðkÞÞ�xðkÞ, (10)

where m is the step size.
3.2. Real-valued minimum mean square error design

For BPSK systems, the beamformer’s desired
output b1ðkÞ is RV. The CV-MMSE solution
minimises the MSE (7), which can be decomposed
into the two parts

JMSEðwÞ ¼ E½ðb1ðkÞ � yRðkÞÞ
2
� þ E½y2

I ðkÞ�

¼ JrpMSEðwÞ þ J ipMSEðwÞ, ð11Þ

where yI ðkÞ ¼ I½yðkÞ� is the imaginary part of yðkÞ.
It is clearly that the CV-MMSE solution attempts to
simultaneously minimise the MSE between the
desired signal and the real part of the beamformer’s
output as well as the energy of the imaginary part of
the beamformer’s output. However, the beamfor-
mer’s decision depends only on yRðkÞ. Minimising
J ipMSEðwÞ does not contribute to improving the
beamformer’s performance. Rather it imposes an
unnecessary constraint on the solution and wastes
the antenna array resource.

It is also clear that a more intelligent way of
designing the beamformer is to minimise the MSE
between the desired output and the real part of the
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beamformer’s output

JrpMSEðwÞ ¼ E½ðb1ðkÞ � yRðkÞÞ
2
�. (12)

The RV-MMSE solution wRMMSE is defined as the
weight vector that minimises JrpMSEðwÞ.

1 Express
the received signal vector xðkÞ ¼ xRðkÞ þ jxI ðkÞ in
the RV form

xeðkÞ ¼
xRðkÞ

xI ðkÞ

" #
¼

PR

PI

" #
bðkÞ þ

nRðkÞ

nI ðkÞ

" #

¼ PebðkÞ þ neðkÞ, ð13Þ

where P ¼ PR þ jPI and nðkÞ ¼ nRðkÞ þ jnI ðkÞ.
Note that

yRðkÞ ¼ wT
RxRðkÞ þ wT

I xI ðkÞ

¼
wR

wI

" #T
xeðkÞ ¼ wT

e xeðkÞ. ð14Þ

The gradient of JrpMSEðweÞ is given by

rJrpMSEðweÞ ¼ E½�ðb1ðkÞ � yRðkÞÞxeðkÞ�

¼ � pe1 þ ðPeP
T
e þ s2nI2LÞwe, ð15Þ

where pe1 is the first column of Pe. Setting the
gradient rJrpMSEðweÞ to zero leads to the closed-
form solution

weMMSE
¼ ðPeP

T
e þ s2nI2LÞ

�1pe1 . (16)

The first L elements of weMMSE
are simply the real

part of the RV-MMSE solution wRMMSE and the
last L elements of weMMSE

form the imaginary part of
wRMMSE.

To derive a sample-by-sample adaptive imple-
mentation of the RV-MMSE solution, first note
that the gradient of JrpMSEðwÞ is

rJrpMSEðwÞ ¼ E½�ðb1ðkÞ � yRðkÞÞxðkÞ�. (17)

Substituting rJrpMSEðwÞ with the stochastic gradi-
ent, namely �ðb1ðkÞ � yRðkÞÞxðkÞ, leads to the
following RV-LMS algorithm:

wðk þ 1Þ ¼ wðkÞ þ mðb1ðkÞ � yRðkÞÞxðkÞ. (18)

3.3. Minimum bit error rate design

As recognised by Chen et al. [13], the best strategy
is to choose w by directly minimising the system’s
BER. Following the notations used in [13,20], let us
denote the Nb ¼ 2M number of possible transmitted
1The closed-form of the RV-MMSE solution was pointed out

to us by Reviewer 2.
symbol sequences of bðkÞ as bðqÞ, 1pqpNb. Denote
furthermore the first element of bðqÞ, corresponding
to the desired symbol b1ðkÞ, as b

ðqÞ
1 . The noise-free

part of the beamformer’s output ȳðkÞ assumes
values from the signal state set

Y ¼ fȳðqÞ ¼ wH x̄ðqÞ ¼ wHPbðqÞ; 1pqpNbg, (19)

and Y can be partitioned into the two subsets
conditioned on the value of b1ðkÞ

Yð�Þ ¼ fȳðq;�Þ 2 Y : b1ðkÞ ¼ �1g. (20)

Thus ȳRðkÞ can only take the values from the set

YR ¼ fȳ
ðqÞ
R ¼ R½ȳðqÞ�; 1pqpNbg, (21)

and YR can be divided into the two subsets
conditioned on b1ðkÞ

Y
ð�Þ

R ¼ fȳ
ðq;�Þ
R 2 YR : b1ðkÞ ¼ �1g. (22)

The conditional probability density function
(PDF) of yðkÞ given b1ðkÞ ¼ þ1 is a Gaussian
mixture defined by

pðyj þ 1Þ ¼
1

Nsb

XNsb

q¼1

1

2ps2nwHw
e�ðjy�ȳðq;þÞj2Þ=2s2nw

Hw,

(23)

where ȳðq;þÞ 2 YðþÞ and Nsb ¼ Nb=2 is the size of
YðþÞ. Thus, the marginal conditional PDF of yRðkÞ

is

pðyRj þ 1Þ ¼
1

Nsb

XNsb

q¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2nwHw

p e�ðyR�ȳ
ðq;þÞ
R
Þ
2=2s2nw

Hw,

(24)

where ȳ
ðq;þÞ
R 2 Y

ðþÞ

R . The BER of the beamformer for
the desired user 1 with the weight vector w can be
shown to be [13,20]

PEðwÞ ¼
1

Nsb

XNsb

q¼1

Qðgðq;þÞðwÞÞ, (25)

where

QðuÞ ¼
1ffiffiffiffiffiffi
2p
p

Z 1
u

e�v2=2 dv (26)

and

gðq;þÞðwÞ ¼
sgnðb

ðqÞ
1 Þȳ

ðq;þÞ
R

sn

ffiffiffiffiffiffiffiffiffiffi
wHw
p . (27)

The BER can alternatively be computed based on
the other subset Y

ð�Þ

R . Note that the BER is
invariant to a positive scaling of w.
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Fig. 1. Geometric structure of the four-element linear array

having l=2 spacing used in the simulation, where l is the

wavelength.
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Table 2

Locations of users in terms of angle of arrival for the simulation

User i 1 2 3 4 5 6 7 8 9 10

AOA y 0� 10� �15� 30� �45� 50� 60� �55� �35� �60�
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The MBER solution for the beamformer is then
defined as the weight vector that minimises the error
probability (25)

wMBER ¼ arg min
w

PEðwÞ. (28)

The gradient of PEðwÞ with respect to w is given by

rPEðwÞ ¼
1

2Nsb

ffiffiffiffiffiffi
2p
p

sn

ffiffiffiffiffiffiffiffiffiffi
wHw
p

XNsb

q¼1

e�ðȳ
ðq;þÞ
R
Þ
2=2s2nw

Hw

�sgnðb
ðqÞ
1 Þ

ȳ
ðq;þÞ
R w

wHw
� x̄ðq;þÞ

 !
, ð29Þ

where ȳ
ðq;þÞ
R ¼ R½wH x̄ðq;þÞ� 2 Y

ðþÞ

R . Given the gradi-
ent (29), the optimisation problem (28) can be
solved using a gradient-based algorithm [13,20,21].
Following the derivations presented in [13,20], an
adaptive implementation of the MBER solution can
be realised using the LBER algorithm which takes
the form of

wðk þ 1Þ ¼ wðkÞ þ m
sgnðb1ðkÞÞ

2
ffiffiffiffiffiffi
2p
p

rn

e�y2
R
ðkÞ=2r2nxðkÞ,

(30)

where rn is the kernel width.

3.4. Comparison of three designs

We now compare the three beamformer designs
for the BPSK system. The CV-MMSE solution
minimises the MSE between b1ðkÞ and yðkÞ. There-
fore, the associated conditional signal subset YðþÞ

must have a symmetric distribution with respect to
the R½y� and I½y� axes. This imposes an unnecessary
constraint and limits the achievable BER perfor-
mance, since only the distribution of Y

ðþÞ

R influences
the BER performance. By removing the unnecessary
constraint on yI ðkÞ, the RV-MMSE solution has
more freedom in designing a more favourable
distribution of Y

ðþÞ

R , leading to an improved BER.
The minimum distance between the decision thresh-
old yR ¼ 0 and the subset Y

ðþÞ

R ultimately deter-
Table 1

Comparison of computational complexity per weight update for

the three adaptive BPSK beamformers, where L is the dimension

of the weight vector

Multiplications Additions eð�Þ Evaluation

CV-LMS 8� Lþ 2 8� L� 1 –

RV-LMS 4� Lþ 1 4� L –

LBER 4� Lþ 4 4� L� 1 1
mines the BER. Minimising JrpMSEðwÞ does not
guarantees maximising this minimum distance.
The MBER solution ensures that this minimum
distance is maximised and, therefore, the MBER
design generally provides a smaller BER than the
-6

-5

0 5 10 15 20 25 30

SNR (dB)

Fig. 2. User-1 BER comparison of three beamforming designs

for the four-element array system supporting three users. BERs

of the RV-MMSE and MBER beamformers are indistinguish-

able.
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RV-MMSE design, particularly in the so-called
overloaded situation.

In order for the CV-MMSE solution to perform
adequately, sufficient antenna array resource is
Fig. 3. Conditional probability density functions pðyj þ 1Þ

(surfaces), marginal conditional probability density functions

pðyRj þ 1Þ (curves), signal subsets YðþÞ and Y
ðþÞ

R (points) for the

four-element array system supporting three users with

SNR ¼ 6 dB: (a) CV-MMSE, (b) RV-MMSE and (c) MBER.

The beamformer weight vector is normalised to a unit length.
required so that the interfering signals can be
cancelled. Thus, in order to ensure a correct
separation of Y

ðþÞ

R and Y
ð�Þ

R by the decision thresh-
old yR ¼ 0, it is generally required that the number
of users is no more than the number of array
elements. For the CV-MMSE beamformer, there-
fore, a system is overloaded if M4L. By intelli-
gently concentrating on the real part of the
beamformer’s output, the RV-MMSE design effec-
tively doubles the degree of freedom in beamform-
ing, since each input xlðkÞ is CV or two dimensional.
Thus, the RV-MMSE design is capable of support-
ing users up to twice the number of array elements.
Therefore, for the RV-MMSE design, a system is
overloaded only if M42L. The MBER design is not
restricted by this limit and is capable of supporting
more users. These heuristic discussions will be
supported by the simulation results presented in
the following section.

Both the CV-MMSE and RV-MMSE designs
admit simple closed-form solutions and therefore
are computationally attractive. By contrast, the
MBER design does not admit a closed-form
solution and numerical optimisation must be
adopted for obtaining numerical solutions. The
RV-LMS algorithm (18) and LBER algorithm (30)
are computationally simpler than the CV-LMS
algorithm (10). Table 1 compares the computational
requirements per weight updating for the three
-6

-5

-4

-3

-2

-1

0

0 5 10 15 20 25 30

lo
g1

0(
B

it 
E

rr
or

 R
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e)

SNR (dB)

CV-MMSE(8)
RV-MMSE(8)

MBER(8)

Fig. 4. User-1 BER comparison of three beamforming designs

for the four-element array system supporting eight users.
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Fig. 5. Conditional probability density functions pðyj þ 1Þ

(surfaces), marginal conditional probability density functions

pðyRj þ 1Þ (curves), signal subsets YðþÞ and YðþÞR (points) for the

four-element array system supporting eight users with

SNR ¼ 8 dB: (a) CV-MMSE, (b) RV-MMSE and (c) MBER.

The beamformer weight vector is normalised to a unit length.

S. Chen et al. / Signal Processing 87 (2007) 68–7874
adaptive algorithms, where it can be seen that the
RV-LMS and LBER algorithms have a similar
complexity, which is about half of the complexity
required by the CV-LMS algorithm. Convergence
analysis for the standard CV-LMS algorithm is
well-known [18], which is equally applicable to the
RV-LMS algorithm. Convergence analysis of the
LBER algorithm is a more difficult task. We point
out that the results for the general stochastic
gradient-based adaptive algorithm presented in
[19] can be applied to the LBER algorithm.
4. Simulation study

The simulated system consisted of a four-element
linear antenna array and supported up to M ¼ 10
users. Fig. 1 shows the array geometric structure
and Table 2 lists the locations of users with respect
to the antenna array. The simulated channel
conditions were Ai ¼ 1:0þ j0:0 for all users and,
therefore, SIRi ¼ 0 dB for all i. The exact BER of
the desired user, user 1, was calculated using
formula (25). This includes in the computation of
the learning curve for an adaptive algorithm, where
at sample k given weight vector wðkÞ, a point of the
learning curve PEðwðkÞÞ was generated.

Fig. 2 compares the BER performance of the
three beamformer designs for the desired user 1
when only the first three users were active. The
-6

-5

-4

-3

-2

-1

0

0 5 10 15 20 25 30

lo
g1

0(
B

it 
E

rr
or

 R
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e)

SNR (dB)

CV-MMSE(9)
RV-MMSE(9)

MBER(9)

Fig. 6. User-1 BER comparison of three beamforming designs

for the four-element array system supporting nine users.
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CV-MMSE and RV-MMSE solutions were calcu-
lated using formulae (9) and (16), respectively. The
MBER solution was obtained numerically using the
simplified conjugate gradient optimisation algo-
Fig. 7. Conditional probability density functions pðyj þ 1Þ

(surfaces), marginal conditional probability density functions

pðyRj þ 1Þ (curves), signal subsets YðþÞ and Y
ðþÞ

R (points) for the

four-element array system supporting nine users with

SNR ¼ 15 dB: (a) CV-MMSE, (b) RV-MMSE and (c) MBER.

The beamformer weight vector is normalised to a unit length.
rithm [13,20,21]. Given SNR ¼ 6 dB, Fig. 3 depicts
the conditional PDFs pðyj þ 1Þ, marginal condi-
tional PDFs pðyRj þ 1Þ, signal subsets YðþÞ and Y

ðþÞ

R

for the three designs, where the beamformer weight
vector w was normalised to a unit length. It can be
seen from Fig. 3(a) that the distribution pðyj þ 1Þ
was symmetric with respect to theR½y� and I½y� axes
for the CV-MMSE solution. By contrast, the RV-
MMSE and MBER designs were not restricted by
this symmetric constraint and spread pðyj þ 1Þ more
widely along the I½y� axis, resulting in more
favourable marginal distributions of pðyRj þ 1Þ
and hence better BER performance than the CV-
MMSE design. It can also be seen from Fig. 3(a)
that the CV-MMSE solution was able to correctly
separate Y

ð�Þ

R and Y
ðþÞ

R and thus provided an
adequate BER performance as seen in Fig. 2.
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Fig. 8. Marginal conditional probability density functions

pðyRj þ 1Þ (curves) and signal subsets Y
ðþÞ

R (points) for the four-

element array system supporting nine users with SNR ¼ 15dB:

(a) RV-MMSE and (b) MBER. The beamformer weight vector is

normalised to a unit length.
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When the number of users was increased to
M44, the CV-MMSE solution was no longer able
to provide this desired separation, resulting in a
high BER floor. Fig. 4 compares the BER perfor-
mance of the three beamformer designs when the
first eight users were active, while Fig. 5 shows the
conditional PDFs pðyj þ 1Þ, marginal conditional
PDFs pðyRj þ 1Þ, signal subsets YðþÞ and Y

ðþÞ

R for
the three designs, given SNR ¼ 8 dB. It can be seen
from Fig. 5(a) that several points of Y

ðþÞ

R were in the
wrong side of yR ¼ 0 for the CV-MMSE solution,
resulting in the high BER floor as shown in Fig. 4.
This system of four receive antennas supporting
eight users was heavily overloaded for the CV-
MMSE beamformer. By contrast, the system was
not overloaded for the RV-MMSE beamformer and
the RV-MMSE design was capable of obtaininga
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Fig. 9. Learning curves of the adaptive RV-LMS and LBER

algorithms averaged over 100 runs for the four-element array

system supporting nine users with SNR ¼ 15 dB: (a) training and

(b) decision-directed adaptation after 40-symbol training. The

step size m ¼ 0:005 for the RV-LMS, the step size m ¼ 0:01 and

kernel variance r2n ¼ 2s2n for the LBER.
distribution that was similar to the MBER design,
as can be seen from Fig. 5(b).

Fig. 6 compares the BER performance of the three
beamformer designs when the first nine users were
active, while Fig. 7 shows the conditional PDFs
pðyj þ 1Þ, marginal conditional PDFs pðyRj þ 1Þ,
signal subsets YðþÞ and Y

ðþÞ

R for the three designs,
given SNR ¼ 15 dB. It can be seen from Fig. 7 that
the MBER design attained a more favourable
distribution and had a larger minimum distance
from the decision threshold yR ¼ 0 to the signal
subset Y

ðþÞ

R , compared with the RV-MMSE design.
In fact the minimum distance for the RV-MMSE
solution was 0.16 while this minimum distance was
0.37 for the MBER solution. To see this more
clearly, we plot the marginal conditional PDFs
pðyRj þ 1Þ and signal subsets Y

ðþÞ

R only in Fig. 8for
the RV-MMSE and MBER solutions. The RV-LMS
and LBER algorithms were next investigated, and
Fig. 9 shows the learning curves PEðwðkÞÞ of the two
adaptive algorithms averaged over 100 runs, given
SNR ¼ 15dB. In Fig. 9(a), training was carried out
over the whole length, while in Fig. 9(b), after 40-
symbol training, the decision directed (DD) adapta-
tion was invoked by substituting b̂1ðkÞ for b1ðkÞ.

Fig. 10 compares the BER performance of the
three beamformers when all the 10 users were active,
while Fig. 11 shows the conditional PDFs pðyj þ 1Þ,
marginal conditional PDFs pðyRj þ 1Þ, signal
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Fig. 10. User-1 BER comparison of three beamforming designs

for the four-element array system supporting 10 users.
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Fig. 11. Conditional probability density functions pðyj þ 1Þ

(surfaces), marginal conditional probability density functions

pðyRj þ 1Þ (curves), signal subsets YðþÞ and Y
ðþÞ

R (points) for the

four-element array system supporting 10 users with

SNR ¼ 18 dB: (a) CV-MMSE, (b) RV-MMSE and (c) MBER.

The beamformer weight vector is normalised to a unit length.
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Fig. 12. Marginal conditional probability density functions

pðyRj þ 1Þ (curves) and signal subsets Y
ðþÞ

R (points) for the four-

element array system supporting 10 users with SNR ¼ 18 dB: (a)

RV-MMSE and (b) MBER. The beamformer weight vector is

normalised to a unit length.
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subsets YðþÞ and Y
ðþÞ

R for the three designs, given
SNR ¼ 18 dB. Note that in Fig. 11(b) a point of
Y
ðþÞ

R is in the wrong side of the decision threshold
yR ¼ 0. It is seen that the RV-MMSE solution was
no longer capable of separating Y

ð�Þ

R and Y
ðþÞ

R

correctly and exhibited a BER floor, since the
system was overloaded for the RV-MMSE beam-
former. By contrast, the MBER design was still able
to separate Y

ð�Þ

R and Y
ðþÞ

R correctlyand provided a
much better BER performance than the RV-MMSE
design. To see this more clearly, we plot the
marginal conditional PDFs pðyRj þ 1Þ and signal
subsets Y

ðþÞ

R in Fig. 12 for the RV-MMSE and
MBER designs. Finally, the BER performance of
the three adaptive beamformers after 100-symbols
training are depicted in Fig. 13.

5. Conclusions

An alternative MMSE design has been considered
for beamforming-assisted BPSK receiver, which
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Fig. 13. User-1 BER comparison of three adaptive beamformers

for the four-element array system supporting 10 users. Training

length is 1000 symbols, the CV-LMS and RV-LMS algorithms

have a step size m ¼ 0:002, while the LBER algorithm has a step

size m ¼ 0:01 and kernel variance r2n ¼ s2n.
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minimises the MSE between the real-valued desired
output and the real part of the complex-valued
beamformer output. This RV-MMSE design offers
significant performance enhancement over the
standard CV-MMSE design. Moreover, like the
CV-MMSE design, the RV-MMSE design admits a
simple closed-form solution. It has been demon-
strated that the RV-MMSE beamforming solution
is capable of obtaining a BER performance that is
close to the optimal MBER solution for supporting
BPSK users up to twice of the number of antenna
array elements. The MBER design is capable of
supporting more users than the RV-MMSE design.
Adaptive algorithms for implementing these three
beamforming designs have also been compared.
Both the RV-LMS and LBER-based adaptive
beamformers have a similar computational com-
plexity, imposing only half of the computational
requirements of the CV-LMS algorithm.
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