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Sparse Kernel Density Construction Using
Orthogonal Forward Regression with

Leave-One-Out Test Score and Local Regularization
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Abstract— The paper presents an efficient construction algo-
rithm for obtaining sparse kernel density estimates based on a
regression approach that directly optimizes model generalization
capability. Computational efficiency of the density construction
is ensured using an orthogonal forward regression, and the
algorithm incrementally minimizes the leave-one-out test score.
A local regularization method is incorporated naturally into
the density construction process to further enforce sparsity. An
additional advantage of the proposed algorithm is that it is fully
automatic and the user is not required to specify any criterion to
terminate the density construction procedure. This is in contrast
to an existing state-of-art kernel density estimation method using
the support vector machine (SVM), where the user is required to
specify some critical algorithm parameter. Several examples are
included to demonstrate the ability of the proposed algorithm
to effectively construct a very sparse kernel density estimate
with comparable accuracy to that of the full sample optimized
Parzen window density estimate. Our experimental results also
demonstrate that the proposed algorithm compares favourably
with the SVM method, in terms of both test accuracy and
sparsity, for constructing kernel density estimates.

Index Terms— Cross validation, leave-one-out test score, or-
thogonal least squares, Parzen window estimate, probability
density function, sparse kernel modeling, regularization

I. INTRODUCTION

Estimation of probability density functions is a recurrent
theme in machine learning and many fields of engineering,
see for example [1]–[4]. A well-known non-parametric density
estimation technique is the classical Parzen window estimate
[5], which is remarkably simple and accurate. The particular
problem associated with the Parzen window estimate however
is the computational cost for testing which scales directly
with the sample size, as the Parzen window estimate employs
the full data sample set in defining a density estimate for
subsequent observations. In today’s data rich environment, this
can be a serious problem in practical applications. Recently,
the support vector machine (SVM) has been proposed as a
promising tool for sparse kernel density estimation [6],[7].
The motivation of the SVM density estimation comes from
the claim that the SVM can effectively perform function
approximations in high dimensional spaces from finite data
with sparse representations. Although this effectiveness has
been demonstrated in regression and classification problems,
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it is known that there are alternative methods for regression
and classification [8],[9], which can provide sparser represen-
tations than the SVM method. Currently, the machine learning
community is actively engaged in the investigation of the SVM
density estimation method.

A recent PhD thesis [10] has proposed an interesting greedy
technique for kernel density estimation. This technique con-
structs sparse kernel density estimates using an orthogonal
forward regression (OFR) that incrementally minimizes the
training mean square error (MSE) [11]. This sparse density
construction algorithm is computationally simple and efficient,
and the results given in [10] have demonstrated the potential of
this method. One critical aspect of this method, which is less
satisfactory, is in when to terminate the density construction
procedure. The minimum descriptive length [12] and Akaike’s
information criterion [13] were first suggested to help termi-
nate the density construction process, but the empirical results
showed that models obtained were still often oversized. At the
end, a maximum model size was imposed in order to avoid
an over-fit model. Motivated by the promising result in [10]
and our previous work on sparse data modeling [14]–[16], we
propose an efficient construction algorithm for sparse kernel
density estimation using the OFR based on the leave-one-
out (LOO) test score and local regularization. Specifically, we
extend the regression model construction algorithm [16] to the
construction of sparse kernel density estimates. We will refer
to our proposed algorithm as the sparse density construction
(SDC) algorithm.

Our motivation is twofold. Firstly, we aim to derive sparse
kernel density estimates based on optimizing model general-
ization capability or test performance. We also want the kernel
density construction process to be automatic without the need
for the user to specify some additional termination criterion.
The usual training MSE cannot achieve these objectives,
but the delete-one cross validation with its associated LOO
test score [17]–[20] provides the capability to achieve this
aim, without resorting to use a separate validation data set.
Secondly, the level of sparsity and computational efficiency
are also critical to the kernel density construction process.
The computational efficiency of using the delete-one cross
validation is ensured by using the orthogonal least squares
algorithm [21],[22], as is first shown in [20], and multiple-
regularizers or local regularization is known to be capable of
providing very sparse solutions [8],[14]–[16]. Our previous
work on sparse regression modeling [16] has shown that the
OFR based on the LOO test score and local regularization
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offers considerable advantages in realizing these two critical
objectives of sparse modeling over several other state-of-art
methods. The current investigation shows that the proposed
SDC method inherits these crucial advantages. Compared with
the SVM method, our SDC algorithm is simpler to implement
and has no critical algorithm parameter that needs to be
specified by the user. Several examples are used to illustrate
the ability of this new SDC algorithm to construct efficiently
a sparse density estimate with comparable accuracy to that of
the Parzen window estimate. Some examples that have been
used in the existing literature to investigate the SVM method
are specifically chosen in order to compare the performance of
our SDC algorithm with the SVM density estimation method.
Our experimental results demonstrate that the SDC algorithm
offers a viable alternative to the SVM method for constructing
sparse and accurate kernel density estimates.

II. KERNEL DENSITY ESTIMATION AS REGRESSION

Consider the finite sample set
� � �������
	����

drawn
from a density ��� ��� , where the data samples

��� �� � �� � ��� � ������� ��� � ���! #"%$ �
are assumed to be independently

identically distributed. The task is to estimate the unknown
density ��� ��� using the kernel density estimate of the form&��� ���'� 	(�)��+* �-, � �/.0� � � (1)

with the constraints* �21435.768�79:.�;<.�������.>= (2)

and 	(�)�� * � �79 (3)

In this study, the kernel function is assumed to be the Gaussian
function of the form, � �/.?���:�@� 9� ;BADC � � �FE>�FG)H<IKJDLNM � L � � M �;BC � O (4)

where
C

is a common kernel width. The well-known Parzen
window estimate [5] is obtained by setting * � � 	 for all6

. Our aim is to seek a spare representation for
&��� ��� , i.e.

with most of * � being zero and yet maintaining a comparable
test performance or generalization capability to that of the full
sample Parzen window estimate having an optimized value forC

.
A density ��� ��� is defined as the solution of the equationP#QRDS ���UT �<V T �XW�Y � ��� (5)

subject to the constraintsP SRZS ���[T �<V T �\9 (6)

and ��� ����143 (7)

where
W Y �^] � is the unknown cumulative distribution function

corresponding to the density ���^] � . Given the data set
�

, the
empirical distribution function

W � �/_?=N� defined byW � �/_?=N�@� 9= 	(���� �`a ��<b � � a L � a � �:� (8)

with b � � �'�dc 9:. �%e 33f. �%g 3 (9)

is known to be a good approximation to the true distribution
function

W�Y � ��� [6],[7]. Thus the kernel density estimation
problem can be posed as the following regression modeling
problem [6],[7],[10]:W � �/_>=N�@� 	(�)��<* �
h � �/.?���:��ikj � ��� (10)

subject to the constraints (2) and (3), where the “regressor”h � �/.?���:� is given byh � �/.0� � �l� P QRDS , �UT .0� � �fV T� �`a �� J 9 Lnm J � a L � a � �C OoO (11)

with m � � �'� 9p ;-A P Sq G�H+I J Lsr �; O V r (12)

and
j � ��� denotes the modeling error at

�
.

Define t � � *  * � ����� * 	 �! ,
W:�u�vW � ���+_?=N� and wx� 6f�y�� h���� zh��
� � �����0h��
� 	 �! with

h���� {��|h � ���f.0�}{~� . Then the regression
model (10) for the data point

����"u�
can be expressed asW � � &W � i�j � 6f�@� w  � 65� t ikj � 6f� (13)

where
j � 6f���\j � � � � . Furthermore, the regression model (10)

over the training data set
�

can be written together in the
matrix form � �X� t ik� (14)

with the following additional notations
��� � h�{U� ���'"K$�	��f	

,
with

9 g�� .>6 g =
,
��� � j � 9
�uj � ;:�Z�����?j � =N�~�! , and

� �� W:/W � ������W 	 �! . For convenience, we will denote the regression
matrix

��� � w  w � ����� w 	 � with w � � � h��� ��h � � �'�����>h 	 � ���! .w � should not be confused with wx� 65� (the former is the6
th column of

�
, and the latter the

6
th row of

�
). Let an

orthogonal decomposition of the regression matrix
�

be�������
(15)

where ����������
9�� �� � ����� � �� 	3 9 . . .

...
...

. . .
. . .

� 	 R �� 	3 ����� 3 9
������� (16)

and � � � �  � � ����� � 	 � (17)
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with columns satisfying
�  { � a � 3 , if

� ����
. The regression

model (14) can alternatively be expressed as� �|����ik�
(18)

where the weight vector
� � � �  �:� ����� � 	 �  associated with

the orthogonal space
�

satisfies the triangular system
� t ��

. The space spanned by the original model bases w { , 9 g��g =
, is identical to the space spanned by the orthogonal

model bases
� {

,
9 g��@g =

, and the model
&W �

is equivalently
expressed by &W:� � �  � 6f��� (19)

where
� � 6f�'� � � ���  � ��� � ����� � ��� 	 �  is the

6
th row of

�
.

In general, the “regression” matrix
�

in (14) may be ill-
conditioned or even non-invertible, particularly for a large data
set. This can cause numerical problems for some density con-
struction algorithms, but not the proposed SDC algorithm. This
is because the OFR automatically avoids any ill-conditioning
problems and selects a subset matrix of

�
that is well-

conditioned.

III. THE SPARSE DENSITY CONSTRUCTION

In the OFR algorithm based on the LOO test score and
local regularization [16], the weight parameter vector

�
is the

regularized least squares solution obtained by minimizing the
following regularized error criterion

	�
 � ��.�'�@�|�  �Fi 	( { ���� { � �{ (20)

where
��� � �  � � ����� � 	 �! is the regularization parameter

vector, which is optimized based on the evidence procedure
[23] with the iterative updating formulas [15],[16]

�������{ � ����� �{= L � ��� � �- ��� �{ .v9 g4�@g =%.
(21)

where

� {�� �  { � {
� {�i �  { � { and � � 	( { �� � {�� (22)

Usually a few iterations (typically less than 10) are sufficient
to find a local optimal

�
. The criterion (20) has its root in

the Bayesian learning framework. For the completeness, this
Bayesian interpretation of

	�
 � ��.��@� together with the deriva-
tion of the updating formulas (21) and (22) are summarized
in Appendix A.

An OFR procedure is used to construct a sparse density
estimate by incrementally minimizing the LOO test score.
Assume that an � -term model is selected from the full model
(18). Then the LOO test error [17]–[20], denoted as

j! +� R � � 6f� ,
for the selected � -term model can be shown to be [20],[16]j  +� R � � 6f�@� j  � 6f�"  � 6f� (23)

where
j� � 6f� is the � -term modeling error and "  � 65� is the

associated LOO error weighting given by

"  � 65�'��9 L  ( { �� � ���� {�  { � { i � { (24)

The mean square LOO error for the model with a size � is
defined by

	� s�$#&% j � +� R � � 6f�('o� 9= 	(���� j � � 6f�" � � 6f� (25)

This LOO test score can be computed efficiently due to the
fact that the � -term model error

j) � 65� and the associated LOO
error weighting can be calculated recursively according toj  � 6f�@�XW � L  ( { �� � ��� { � { �Xj  R  � 6f� L � ���  �  (26)

and

"  � 6f� � 9 L  ( { �� � ���� {�  { � {�i � {� "  R  � 6f� L � ����  �   �  i �  (27)

respectively. For the benefits of those readers who are unfamil-
iar with the LOO statistics, the idea of delete-1 cross validation
and the computation of the LOO test error are explained in
Appendix B.

The subset model selection procedure can be carried as
follows: at the � th stage of the selection procedure, a model
term is selected among the remaining � to

=
candidates if

the resulting � -term model produces the smallest LOO test
score

	� 
. It has been shown in [20] that the LOO statistic	� 

is convex with respect to the model size � . That is, there
exists an “optimal” model size ��* such that for � g �+* 	� 
decreases as � increases while for � 1 � * i 9,	  increases
as � increases. This property is extremely useful, as it enables
the selection procedure to be automatically terminated with an� * -term model when

	  .-�/� e 	  .-
, without the need for the

user to specify a separate termination criterion. The iterative
SDC procedure based on this OFR with LOO test score and
local regularization can now be summarized:

Initialization. Set � { , 9 g���g = , to the same small
positive value (e.g. 0.001). Set iteration index 0 �79 .
Step 1. Given the current

�
and with the following

initial conditionsj1 � 65�'�|WB� and " 1 � 6f�'�79:.�9 g 6 g =	 1 � 	 �  � � 	32 	 �)�� W �� (28)

use the procedure described in Appendix C to select
a subset model with �+4 terms.
Step 2. Update

�
using (21) and (22) with

= � �54 . If�
remains sufficiently unchanged in two successive

iterations or a pre-set maximum iteration number
(e.g. 10) is reached, stop; otherwise set 0 i ��9 and
go to Step 1.

The computational complexity of the above algorithm is
dominated by the 1st iteration. After the 1st iteration, the
model set contains only �  �76 = �

terms, and the complexity
of the subsequent iteration decreases dramatically. As a prob-
ability density, the constraint (2) must be met. In [10], the
non-negative condition (2) is guaranteed by using backward
elimination. Let

�  
be the subset matrix of

�
, corresponding
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Fig. 1. (a) true density (solid) and a Parzen window estimate (dashed), and (b) true density (solid) and a sparse density construction estimate (dashed), for
the one-dimensional example.

to the � -term model, and
�� 

and t  the associated orthogonal
and original weight vectors, respectively, linked by

�  t  ��  
. If adding the � th term causes some of the elements in t  

to become negative, the associated previously selected model
terms are removed. This strategy requires to carry out re-
orthogonalization and in particular re-calculation of the LOO
test score, which are computationally expensive. We adopt a
much simple method to guarantee the non-negative condition
(2). In the � th stage, a candidate that causes t  to have
negative elements, if included, will not be considered at all.
The unit length condition (3) can easily be met by normalizing
the final �+* -term model weights with

�* {�� * {2
 .-
� �� * � . 9 gk�'g �+* (29)

IV. NUMERICAL EXAMPLES

Four examples were used in simulation to test the pro-
posed SDC algorithm and to compare its performance with
the Parzen window estimate. Comparison with SVM kernel
density estimation was also given by quoting the results of [7].
In order to remove the influence of different

C
values to the

quality of the resulting density estimate, the optimal value forC
, found empirically by cross validation, was used. That is, the

value of
C

used was determined by testing performance. For
the first three examples, in each case, a data set of

=
randomly

drawn samples was used to construct kernel density estimates,
and a separate test data set of

=���� * � � 9�35.?3:3�3
samples was

TABLE I

PERFORMANCE OF THE PARZEN WINDOW (PW) ESTIMATE AND THE

PROPOSED SPARSE DENSITY CONSTRUCTION (SDC) ALGORITHM FOR THE

ONE-DIMENSIONAL EXAMPLE. STD: STANDARD DEVIATION.

method �	� test error (mean 
 STD) kernel number (mean 
 STD)
PW ���� ������
���� ����������������� ������
��
SDC ������! � "
����  #�� ��$�%��� ��� & �  '
(��� )

used to calculate the *  test error for the resulting estimate
according to

* F� 9= ��� * � 	"+-, - +(���� . ��� ���:� L &��� ���:� . (30)

The experiment was repeated by 100 different random runs
for each example. The fourth example was a two-class two-
dimensional classification problem taken from [24].
Example 1. This was a one-dimensional example, and the
density to be estimated was given by

��� � �l� 3�� / 9p ;BA G�H<I J�L � � L ;:� �; Oix3�� / 3 �10; G�H+I � L 3 �10 . � ik; . � (31)

The number of data points for density estimation was
= �9�3�3

. The optimal kernel widths were found to be
C ��3 ��/2/

and
C�� 9.� 3

empirically with cross validation for the Parzen
window estimate and the SDC estimate, respectively. Table I
compares the performance of the two kernel density construc-
tion methods, in terms of the *  test error and the number
of kernels required. Fig. 1 (a) depicts the Parzen window
estimated obtained in a run while Fig. 1 (b) shows the density
obtained by the SDC algorithm in a run, in comparison with
the true distribution. For this one-dimensional example, it can
be seen that the accuracy of the proposed SDC algorithm was
comparable to that of the Parzen window estimate, and the
algorithm realized very sparse estimates with an average kernel
number less than 5% of the data samples.

This example was considered in [7], where a SVM Gaussian
kernel density estimate of 5 terms was identified from a single
set of 100 training data with an *  test error of

; � 9�34/65 9�3 R �
over a test set of 10,000 samples. It can be seen that the result
obtained by the SDC method compares favourably with that
of SVM method.
Example 2. The density to be estimated for this two-
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Fig. 2. True density (a) and contour plot (b) for the two-dimensional example.

dimensional example was defined by��� � .��f� � 3 ��/ 9;BA G�H+I%J�L � � L ;:� �; O G)H<IKJDL � � L ;:� �; Oi 3 ��/ 3�� � /
� G�H<I � L 3 �10 . � ik; . �

5 G)H<I � L 3�� / . � i�; . � (32)

Fig. 2 shows this density distribution and its contour plot.
The estimation data set contained

= � /B3�3
samples, and

the empirically found optimal kernel widths were
C � 3 � �

for the Parzen window estimate and
CX� 9.� 9

for the SDC
estimate, respectively. Table II lists the *  test errors and the
numbers of kernels required for the two density estimation
methods. A typical Parzen window estimate and a typical SDC
estimate are depicted in Figs. 3 and 4, respectively. Again,
for this example, the two density construction methods had
comparable accuracies, but the SDC algorithm achieved very
sparse estimates with an average number of required kernels
less than 3% of the data samples.

This example was also taken from [7], where a SVM
Gaussian kernel density estimate of 7 terms was identified
from a single set of only 60 training data with an *  test
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Fig. 3. A Parzen window estimate (a) and contour plot (b) for the two-
dimensional example.

TABLE II

PERFORMANCE OF THE PARZEN WINDOW (PW) ESTIMATE AND THE

PROPOSED SPARSE DENSITY CONSTRUCTION (SDC) ALGORITHM FOR THE

TWO-DIMENSIONAL EXAMPLE. STD: STANDARD DEVIATION. THE

NUMBER OF TRAINING POINTS WAS 500.

method � � test error (mean 
 STD) kernel number (mean 
 STD)
PW � & � ��) & 
����  � ���������� ��� � ���	
 �
SDC �-��� ����)"
���� )������������ ��� ����� �	
���� �

error of
/ � 3
	:3 5\9�3 R�� over a test set of 10,000 samples.

For a comparison, we also performed the experiments over
100 random runs, each with 60 training data points, and the
results are listed in Table III. Again, the accuracy of the SDC
algorithm is comparable to that of the Parzen window estimate.
Obviously, with such a short training data length, the standard
deviation of estimate was large. Inspecting the results of the
SDC algorithm, it was found that 25% of runs yielded kernel
density estimates of less than 7 terms with *  test errors
smaller than

/ � 3:3�3�5#9�3 R��
. This again demonstrates that the

SDC method compares favourably with SVM method.
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Fig. 4. A sparse density construction estimate (a) and contour plot (b) for
the two-dimensional example.

Example 3. In this six-dimensional example, the underlying
density to be estimated was given by��� ���'� 9

� � ;-A���� E>� 5c 9� G�� . �  . G)H<I%JDL 9; � � L��  �  �� R  � � L	�  � O i9� G�� . �'� . G)H<IKJDL 9; � � L	� � �  
� R � � � L�� � � O i9� G�� . � � . G)H<I J L 9;@� � L	� � �  � R � � � L�� � � O � (33)

with �  � � 9.� 3 9.� 3 9.� 3 9.� 3 9.� 3 9.� 3-�! � o�
diag

��9�� 35.>; � 35.�9.� 3f.�; � 3f.�9.� 3f.>; � 3f� (34)� � � � L 9.� 3 L 9�� 3 L 9.� 3 L 9.� 3 L 9�� 3 L 9.� 3-�  ��� �
diag

�
; � 3f.�9.� 3f.�; � 3f.�9�� 35.>; � 35.�9.� 3+� (35)� � � � 3 � 3s3 � 3s3 � 3s3 � 3s3 � 3s3 � 3-�! �
� � diag

�
; � 35.�9�� 35.>; � 3f.�9.� 3f.�; � 3f.�9�� 3f� (36)

TABLE III

PERFORMANCE OF THE PARZEN WINDOW (PW) ESTIMATE AND THE

PROPOSED SPARSE DENSITY CONSTRUCTION (SDC) ALGORITHM FOR THE

TWO-DIMENSIONAL EXAMPLE. STD: STANDARD DEVIATION. THE

NUMBER OF TRAINING POINTS WAS 60.

method � � test error (mean 
 STD) kernel number (mean 
 STD)
PW �  � ) & �"
 ��� �� � ������� ��� ���"
��
SDC �  � & � �"
���� &�& �!������� ��� ��� & 
 ��� �

TABLE IV

PERFORMANCE OF THE PARZEN WINDOW (PW) ESTIMATE AND THE

PROPOSED SPARSE DENSITY CONSTRUCTION (SDC) ALGORITHM FOR THE

SIX-DIMENSIONAL EXAMPLE. STD: STANDARD DEVIATION.

method � � test error (mean 
 STD) kernel number (mean 
 STD)
PW �-��� �����"
������! #������������ �����	
 �
SDC � & � &  #)"
 ��� ��� ������������ � & � �	
������

The estimation data set contained
= � 3:3�3

samples. The
optimal kernel width was found to be

C � 3 � 3
for the

Parzen window estimate and
C � 9�� 9

for the SDC estimate,
respectively, via cross validation using the test data set. The
results obtained by the two density construction algorithms
are summarized in Table IV. It can be seen that the SDC
algorithm achieved a similar accuracy to that of the Parzen
window estimate with a much sparser representation. The
average number of required kernels for the SDC method was
less than 3% of the data samples.
Example 4. The data was obtained from
http://www.stats.ox.ac.uk/PRNN/. This was
the synthetic data set taken from [24], which was a two-class
classification problem in a two-dimensional feature space.
The training set contained 250 samples with 125 points for
each class, and the test set had 1000 points with 500 samples
for each class. Tipping [8] reported that the optimal Bayes
error rate for this example is around 8%, who also constructed
a SVM Gaussian kernel classifier of 38 kernel functions with
a test error rate of 10.6% and a relevance vector machine
Gaussian kernel classifier of 4 kernel functions with a test
error rate of 9.3%. We first estimated the two conditional
density functions

&��� � .C0
�

and
&��� � .C1

�
from the training

data, and then applied the Bayes decision rule

if
&��� � .C0

� 1 &��� � .C1
�). �

belongs to class 0

else
. �

belongs to class 1 � (37)

to the test data set and calculated the corresponding error rate.
Table V lists the results obtained by the two kernel density

construction methods, the Parzen window estimate and the
SDC algorithm, where the value of

C
was determined by

minimizing the test error rate. It can be seen that the SDC
method yielded very sparse conditional density estimates and
the resulting test error was very close to the optimal Bayes
classification performance. This clearly demonstrated the accu-
racy of the density estimates. This result compares favourably
with the results of the state-of-art kernel classifiers reported
in [8]. Fig. 5 (a) and (b) depict the decision boundaries of
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TABLE V

PERFORMANCE OF THE PARZEN WINDOW (PW) ESTIMATE AND THE PROPOSED SPARSE DENSITY CONSTRUCTION (SDC) ALGORITHM FOR THE

TWO-CLASS CLASSIFICATION PROBLEM.

method �� �����C0 � kernel width �� �����C1 � kernel width test error rate
PW 125 kernels 0.24 125 kernels 0.24 8.1%
SDC 5 kernels 0.20 4 kernels 0.20 8.3%
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Fig. 5. (a) decision boundary of the Parzen window estimate, and (b) decision boundary of the sparse density construction estimate, where circles represent
the class-1 training data and crosses the class-0 training data.

the classifier (37) for the Parzen window and SDC methods,
respectively.

V. CONCLUSIONS

An efficient construction algorithm has been presented for
obtaining kernel density estimates based on an orthogonal
forward regression procedure that incrementally minimizes the
leave-one-out test score, coupled with local regularization to
further enforce the sparseness of density estimate represen-
tations. The proposed method is simple to implement and
computationally efficient, and except for the kernel width the
algorithm contains no other free parameters that require tuning.
The ability of the proposed algorithm to construct a very sparse
kernel density estimate with a comparable accuracy to that of
the full sample Parzen window estimate has been demonstrated
using several examples. The results obtained have shown that
the proposed method provides a viable alternative to the state-
of-art support vector machine method for sparse kernel density
estimation in practical applications.

APPENDIX A

According to the Bayesian learning theory (e.g. [23],[8]),
the optimal

�
is obtained by maximizing the posterior proba-

bility of
�

, which is given by��� � . � .��z. " �'� ��� � . ��.	�'. " � ��� � . �z. " ���� � . �z. " � (38)

where ��� � . �z. " � is the prior with
� � � 
  
 � ����� 
 	 �! denot-

ing the vector of hyperparameters and " a noise parameter (the
inverse of the variance of

j � 6f� ), ��� � . ��.	�'. " � is the likelihood,
and ��� � . �z. " � is the evidence that does not depend on

�
explicitly. Under the assumption that

j � 6f� is white and has
a Gaussian distribution, the likelihood is expressed as��� � . ��.��z. " �'��� ";-A� 	 E>� G)H<I � L " ; �  �  (39)

If the Gaussian prior is chosen, namely��� � . �z. " �@� 	`{ �� p 
 {p ;-A G)H<I J L 
 { � �{; O (40)

maximizing ������� ��� � . � .	�'. " �?� with respect to
�

is equivalent
to minimizing the following Bayesian cost function	�� � ��.��z. " �'� " �  �oi �  �� �

(41)

where
� �

diag
� 
  . 
 � .�������. 
 	 � . It is easily seen that the

criterion (20) is equivalent to the criterion (41) with the
relationship

� {�� 
 {
" .v9 g4�'g =

(42)

The hyperparameters specify the prior distributions of
�

.
Since initially one does not know the optimal value of

�
,

� { should be initialized to the same small value, and this
corresponds to choose a same flat distribution for each prior
of

� {
in (40). The beauty of Bayesian learning is “let data
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speak” — it learns not only the model parameters
�

but also
the related hyperparameters

�
. This can be done for example

by iteratively optimizing
�

and
�

using an evidence procedure
[23],[8]. Following MacKay [23], it can be shown that the log
model evidence for

�
and " is approximated as

������� ��� � . �z. " �?��� 	( { �� 9; � � ��� 
 { � L = ; ������� A��i = ; � � ��� " � L 	( { �� 9; 
 { � �{L 9; " �  � L 9; � � ��� � G�� � �8�0� (43)

where
�

is set to the maximum a posterior probability solution,
and the “Hessian” matrix

�
is diagonal and is given by� � � i " �  � �

diag
� 
 /i " �   � B.
�� i " �  � �s� .�������. 
 	 i " �  	 � 	 � (44)

Setting
� � ��� � Y ���
	 � � ���� � ��3

yields the re-calculation formula for"
" �  ����= L 	( { �� " �  { � {
 {�i " �  { � { (45)

Setting
� � ��� � Y ���
	 � � �������� ��3

yields the re-calculation formula for
 {

 {�� " �  { � {� �{ � 
 {�i " �  { � {[� (46)

Note � { � 
 {�� " and define

� � 	( { �� � { (47)

with

� {�� " �  { � {
 { i " �  { � { � �  { � {
� { i �  { � { (48)

Then the re-calculation formula for � { is

� { � � {= L � �: ��� �{ .v9 gk�zg =
(49)

APPENDIX B

Consider the model selection problem where a set of � *
models have been identified using the training data set

� 	 ��
W � .?� � ��	���� . Denote these models, identified using all the
=

data points of
� 	 , as

&W a � 65� and the corresponding modeling
errors as j a � 6f�'�XWB� L &W a � 6f� (50)

with index
�7� 9:.�;<.������). �+* . A commonly used cross val-

idation for model selection is the delete-1 cross validation.
The idea is as follows. For every model, each data point in
the training set

� 	 is sequentially set aside in turn, a model
is estimated using the remaining

= L 9 data points, and the
prediction error is derived using only the data point that was
removed from training. Specifically, let

� 	 � R � be the resulting
data set by removing the � th data point from

� 	 , and denote

the
�
th model estimated using

� 	 � R � as
&W a � R � � 6f� and the

related predicted model residual at � asj a � R � ��� �@� W � L &W a � R � ��� � (51)

The mean square LOO test error [17],[18] for the
�
th model&W a � 65� is obtained by averaging all these prediction errors:

# % j �a � R � � 6f� ' � 9= 	(���� j �a � R � � 6f� (52)

The mean square LOO test error is a measure of the model
generalization capability. To select the best model from the� * candidate models

&W a � 65� , 9 g � g � * , the same modeling
procedure is applied to each of the ��* predictors, and the
model with the minimum LOO test error is selected.

For linear-in-the-weights models, the LOO test errors can be
generated, without actually sequentially splitting the training
data set and repeatedly estimating the associated models, by
using the Sherman-Morrison-Woodbury theorem [17]. More-
over within the OFR model selection procedure, the LOO test
errors for the � -term model can be computed very efficiently.
It can readily be shown [20],[16] that the computation of
the LOO error

j  <� R � � 65� for the � -term model is based on
the previously selected � � L 9�� -term model and the currently
selected � th model term via the efficient recursion formulas
(26) and (27).

APPENDIX C

The modified Gram-Schmidt orthogonalization procedure
[21] calculates the

�
matrix row by row and orthogonalizes

�
as follows: at the � th stage make the columns w a , � i#9 g � g=

, orthogonal to the � th column and repeat the operation for9 g � g = L 9 . Specifically, denoting w � 1�a � w a , 9 g � g = ,
then for � �79:.>;f.�������.?= L 9 ,� � � w � � R ��� � � a � �  � w � � R �a ��� �  � � ��� . � i|9 g � g =w � � a � w � � R �a L � � � a � � . � i|9 g � g =

� ��� 
���! (53)

The last stage of the procedure is simply
� 	 � w � 	 R �	 . The

elements of
�

are computed by transforming
� � 1" � �

in a
similar way:� � � �  � � � � R � � � �  � � � i � � �� � �  � � � � R � L � � � � � 9 g � g = (54)

This orthogonalization scheme can be used to derive a
simple and efficient algorithm for selecting subset models in
a forward-regression manner [21]. First define� � � R � �$# �  ����� � � R  w � � R �� ����� w � � R �	 % (55)

If some of the columns w � � R �� .������). w � � R �	 in
� � � R �

have
been interchanged, this will still be referred to as

� � � R �
for

notational convenience. Let
�  

denote the subset matrix of�
, corresponding to the � -term model, and

�  
and t  the

associated orthogonal and original weight vectors, respectively,
satisfying

�  t  � �  
. Let a very small positive number
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be given, which specifies the zero threshold and is used

to automatically avoiding any ill-conditioning or singular
problem. With the initial conditions as specified in (28), the� th stage of the selection procedure is given as follows.

Step 1. For � g � g = :
Test 1–Conditioning number check. If� w � � R �a   w � � R �a � ���

, the
�
th candidate is

not considered.
Test 2–Non-negativeness check. Compute

� � a � � � w � � R �a   � � � R � � J � w � � R �a   w � � R �a i � a O
Set

� � � � � a � and solve
� � t � � � � for t � . If t �

contains negative elements, the
�
th candidate is not

considered.
Compute, for

9 g 6 g =
,j � a � � 65�'�XW � � R �� L�� � � R �a � 6f� � � a �

" � a � � 6f�@� " � R  � 6f� L ���
	�������� � �  ���� w 	�������� ��� w 	�������� /�� �
� �� 
��!

and
	 � a � � 9= 	(���� � j � a � � 6f�" � a � � 6f���

�
where

W � � R �� and � � � R �a � 6f� are the
6

th elements of� � � R � and w � � R �a , respectively. Let the index set � �
be� � �\� � g � g =

and
�

passes both Tests 1 and 2
�

Step 2. Find	 � � 	 � a � � � �"!�#��.	 � a � .$� " � � �
Then the

� � th column of
� � � R �

is interchanged with
the � th column of

� � � R �
, the

� � th column of
�

is
interchanged with the � th column of

�
up to the ��� L9��

th row, and the
� � th element of

�
is interchanged

with the � th element of
�

. This effectively selects
the

� � th candidate as the � th regressor in the subset
model.
Step 3. The selection procedure is terminated with a��� L 9�� -term model, if

	 � e 	 � R  . Otherwise, perform
the orthogonalization as indicated in (53) to derive
the � -th row of

�
and to transform

� � � R �
into

� � � 
;

calculate
� � and update

� � � R � into
� � � 

in the way
shown in (54); update the LOO error weightings

" � � 65�@� " � R  � 6f� L � ���� ��  � � � i � �
. 6s��9�.>;f.������).?=

and go to Step 1.

REFERENCES

[1] C.M. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.:
Oxford University Press, 1995.

[2] B.W. Silverman, Density Estimation. London: Chapman Hall, 1996.
[3] H. Wang, “Robust control of the output probability density functions for

multivariable stochastic systems with guaranteed stability,” IEEE Trans.
Automatic Control, Vol.44, No.11, pp.2103–2107, 1999.

[4] S. Chen, A.K. Samingan, B. Mulgrew and L. Hanzo, “Adaptive
minimum-BER linear multiuser detection for DS-CDMA signals in
multipath channels,” IEEE Trans. Signal Processing, Vol.49, No.6,
pp.1240–1247, 2001.

[5] E. Parzen, “On estimation of a probability density function and mode,”
The Annals of Mathematical Statistics, Vol.33, pp.1066–1076, 1962.

[6] J. Weston, A. Gammerman. M.O. Stitson, V. Vapnik, V. Vovk and
C. Watkins, “Support vector density estimation,” in: B. Schölkopf, C.
Burges and A.J. Smola, eds., Advances in Kernel Methods — Support
Vector Learning, MIT Press, Cambridge MA, 1999, pp.293-306.

[7] S. Mukherjee and V. Vapnik, “Support vector method for multivariate
density estimation,” Technical Report, A.I. Memo No. 1653, MIT AI
Lab, 1999.

[8] M.E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” J. Machine Learning Research, Vol.1, pp.211–244, 2001.

[9] S.S. Chen, D.L. Donoho, and M.A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Review, Vol.43, No.1, pp.129–159, 2001.

[10] A. Choudhury, Fast Machine Learning Algorithms for Large Data.
PhD Thesis, Computational Engineering and Design Center, School of
Engineering Sciences, University of Southampton, 2002.

[11] P.B. Nair, A. Choudhury and A.J. Keane, “Some greedy learning
algorithms for sparse regression and classification with Mercer kernels,”
J. Machine Learning Research, Vol.3, pp.781–801, 2002.

[12] M.H. Hansen and B. Yu, “Model selection and the principle of minimum
description length,” J. American Statistical Association, Vol.96, No.454,
pp.746–774, 2001.

[13] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Automatic Control, Vol.AC-19, pp.716–723, 1974.

[14] S. Chen, “Locally regularised orthogonal least squares algorithm for the
construction of sparse kernel regression models,” in Proc. 6th Int. Conf.
Signal Processing (Beijing, China), Aug.26-30, 2002, pp.1229–1232.

[15] S. Chen, X. Hong and C.J. Harris, “Sparse kernel regression modeling
using combined locally regularized orthogonal least squares and D-
optimality experimental design,” IEEE Trans. Automatic Control, Vol.48,
No.6, pp.1029–1036, 2003.

[16] S. Chen, X. Hong, C.J. Harris and P.M. Sharkey, “Sparse modeling using
orthogonal forward regression with PRESS statistic and regularization,”
IEEE Trans. Systems, Man and Cybernetics, Part B, to appear, 2004.

[17] R.H. Myers, Classical and Modern Regression with Applications. 2nd
Edition, Boston: PWS-KENT, 1990.

[18] L.K. Hansen and J. Larsen, “Linear unlearning for cross-validation,”
Advances in Computational Mathematics, Vol.5, pp.269–280, 1996.

[19] G. Monari and G. Dreyfus, “Local overfitting control via leverages,”
Neural Computation, Vol.14, pp.1481–1506, 2002.

[20] X. Hong, P.M. Sharkey and K. Warwick, “Automatic nonlinear predictive
model construction algorithm using forward regression and the PRESS
statistic,” IEE Proc. Control Theory and Applications, Vol.150, No.3,
pp.245–254, 2003.

[21] S. Chen, S.A. Billings and W. Luo, “Orthogonal least squares methods
and their application to non-linear system identification,” Int. J. Control,
Vol.50, No.5, pp.1873–1896, 1989.

[22] S. Chen, C.F.N. Cowan and P.M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE Trans.
Neural Networks, Vol.2, No.2, pp.302–309, 1991.

[23] D.J.C. MacKay, “Bayesian interpolation,” Neural Computation, Vol.4,
No.3, pp.415–447, 1992.

[24] B.D. Ripley, Pattern Recognition and Neural Networks. Cambridge:
Cambridge University Press, 1996.



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS–PART B: CYBERNETICS, VOL. , NO. , 200X 10

PLACE
PHOTO
HERE

Sheng Chen (SM’97) received the B.Eng. degree in
control engineering from the East China Petroleum
Institute, Dongying, China, in 1982 and the Ph.D.
degree in control engineering from the City Univer-
sity, London, U.K., in 1986.

He joined the Department of Electronics and
Computer Science, University of Southampton,
Southampton, U.K., in September 1999. He pre-
viously held research and academic appointments
at the University of Sheffield, Sheffield, U.K., the
University of Edinburgh, Edinburgh, U.K., and Uni-

versity of Portsmouth, Portsmouth, U.K. His recent research works include
adaptive nonlinear signal processing, modeling and identification of nonlinear
systems, neural network research, finite-precision digital controller design,
evolutionary computation methods, and optimization. He has published over
200 research papers.

PLACE
PHOTO
HERE

Xia Hong (SM’02) received the B.Sc. and M.Sc.
degrees from National University of Defense Tech-
nology, Changsha, China in 1984 and 1987, respec-
tively, and the Ph.D. degree from the University of
Sheffield, Sheffield, U.K., in 1998, all in automatic
control.

She worked as a research assistant in the Beijing
Institute of Systems Engineering, Beijing, China,
from 1987-1993. She worked as a research fellow
in the Department of Electronics and Computer
Science, University of Southampton, Southampton,

U.K., from 1997-2001. She is currently a lecturer at the Department of
Cybernetics, University of Reading, Reading, U.K. She is actively engaged in
research into neurofuzzy systems, data modeling and learning theory and their
applications. Her research interests include system identification, estimation,
neural networks, intelligent data modeling, and control. She has published
over 30 research papers, and co-authored a research book.

Dr. Hong received a Donald Julius Groen Prize from IMechE, U.K., in
1999.

PLACE
PHOTO
HERE

Chris Harris receiving the B.Sc. degree from the
University of Leicester, Leicester, U.K., the M.A.
degree from the University of Oxford, Oxford,
U.K., and the Ph.D. degree from the University of
Southampton, Southampton, U.K.

He previously held appointments at the University
of Hull, Hull, U.K., the UMIST, Manchester, U.K.,
the University of Oxford, Oxford, U.K., and the
University of Cranfield, Cranfield, U.K., as well as
being employed by the U.K. Ministry of Defense.
He returned to the University of Southampton as the

Lucas Professor of Aerospace Systems Engineering in 1987 to establish the
Advanced Systems Research Group and, more recently, ISIS. His research
interests lie in the general area of intelligent and adaptive systems theory and
its application to intelligent autonomous systems such as autonomous vehicles,
management infrastructures such as command & control, intelligent control,
and estimation of dynamic processes, multi-sensor data fusion, and systems
integration. He has authored and co-authored 12 research books and over
300 research papers, and he is the associate editor of numerous international
journals including.

Dr. Harris was elected to the Royal Academy of Engineering in 1996,
was awarded the IEE Senior Achievement medal in 1998 for his work in
autonomous systems, and the highest international award in IEE, the IEE
Faraday medal, in 2001 for his work in intelligent control and neurofuzzy
systems.


