
Wiener System identification using B-spline
functions with De Boor recursion

X. Hong ∗, R. J. Mitchell ∗, S. Chen ∗∗

∗ School of Systems Engineering,
University of Reading, UK

∗∗ School of Electronics and Computer Science,
University of Southampton, UK

Abstract—A simple and effective algorithm is introduced
for the system identification of Wiener system based on the
observational input/output data. The B-spline neural network is
used to approximate the nonlinear static function in the Wiener
system. We incorporate the Gauss-Newton algorithm with De
Boor algorithm (both curve and the first order derivatives) for
the parameter estimation of the Wiener model, together with
the use of a parameter initialization scheme. The efficacy of the
proposed approach is demonstrated using an illustrative example.

I. INTRODUCTION

The Wiener system has been applied as a model for some
industrial/biological systems [1], [2], [3], [4], [5], [6]. It
comprises a linear dynamical model followed a nonlinear
static functional transformation. Fundamental to the iden-
tification and control of the Wiener system is the char-
acterization/representation of the unknown nonlinear static
function. Various approaches have been researched including
the nonparametric method [7], subspace model identification
methods [8], [6], fuzzy modelling [9] and the parametric
method [10], [3], [4], [2]. For the parametric method, the
unknown nonlinear function is restricted by some parametric
representation with a finite number of parameters, and the
system identification includes the estimation of the unknown
parameters using nonlinear optimization algorithms based on
input/output observational data

Based on the approximation theory, the polynomial func-
tions are appropriate in approximating the unknown nonlinear
static functions. The spline curves consist of many polynomial
pieces offering versatility. The use of piecewise linearity [11],
[12] and various spline functions [13], [2] in the modeling
of the Wiener system have been researched. With its best
conditioning property, the B-spline curve has been widely
used in computer graphics and computer aided geometric
design (CAGD) [14]. The early work on the construction of
B-spline curve is mathematically involved and numerically
unstable [15]. The De Boor algorithm uses recurrence relations
and is numerically stable [15]. The B-spline basis functions for
nonlinear systems modelling have been widely applied [16],
[17], [18]. In this paper we model the nonlinear static function
in the Wiener system using a B-spline neural network. We
point out that there are clear differences between the proposed
approach to other splines functions based methods [13], [2].

It is shown that by minimizing the mean square error (MSE)
between the model output and the system output, the Gauss-
Newton algorithm is readily applicable for the parameter
estimation in the proposed model. The Gauss-Newton al-
gorithm is combined with De Boor algorithm (both curve
and the first order derivative) for the parameter estimation
of the Wiener model, following a parameter initialization
scheme. The proposed model based on B-spline functions
with De Boor recursion has several advantages over many
existent Wiener system modeling paradigms. Firstly, unlike B-
spline functions, the spline functions used in Wiener system
modeling [13], [2] do not have the property of partition of
unity (convexity), which is a desirable property in achieving
numerical stability. Secondly the proposed algorithm based
on De Boor recursion enables stable and efficient evaluations
of functional and derivative values, as required in nonlinear
optimization algorithm, e.g. the Gauss-Newton algorithm used
in this paper. Finally, rather than just using the most commonly
used cubic splines, the modeler has the freedom/flexibility in
terms of coping with with different model setting such as
number of knots and polynomial order.

II. THE WIENER SYSTEM AND B-SPLINE NEURAL
NETWORK

A. The Wiener system

The Wiener system consists of a cascade of two subsystems,
a linear filter as the first subsystem, followed by a nonlinear
memoryless function Ψ(•) : R → R as the second subsystem.
The system can be represented by

v(t) =
z−dB(z)
A(z)

u(t)

= u(t− d) + b1u(t− d− 1)...+ bnbu(t− d− nb)
−a1v(t− 1)− a2v(t− 2)...− anav(t− na) (1)

y(t) = Ψ (v(t)) + ξ(t) (2)

with z transfer functions A(z) and B(z) which are defined by

A(z) =
na∑

j=0

ajz−j , a0 = 1 (3)

B(z) =
nb∑

j=0

bjz−j, b0 = 1 (4)

u(t) ∈ R is the system input and y(t) ∈ R is the system input.
ξ(t) is assumed to be a white noise sequence independent of
u(t), with zero mean and variance σ2. v(t) ∈ R is the output
of the linear filter subsystem and the input to the nonlinear
subsystem. aj , bj are the coefficients of the linear filter. d ≥ 1
is assumed known positive integer representing the delay of the
system. na and nb are assumed known positive integers. De-
note a = [a1, ..., ana]T ∈ Rna and b = [b1, ..., bnb]T ∈ Rnb .
The objective of system identification for the above Wiener
model is that, given an observational input/output data set
DN = {y(t), u(t)}Nt=1, to identify Ψ(•) and to estimate the
parameters aj , bj in the linear subsystems. Note that this
model is a special case of the general Wiener systems [1].

Without significantly loss of generality the following as-
sumptions are initially made about the problem.

Assumption 1: A(z) has all zeros inside the unit circle.
Assumption 2: v(t) is bounded by Vmin ≤ v(t) ≤ Vmax,

where Vmin and Vmax are finite real values.
Note that although the signals between the two subsystems

are unavailable, Assumption 2 is possible due to the constraint
b0 = 1. Vmin and Vmax need not to be known precisely and
they can be set based on an auxiliary signal {v̂(t)} as defined
in (18) in the modeling process. Note that if the nonlinear
subsystem is modeled using other local basis functions, e.g.
piecewise linear models or radial basis functions (RBF), there
is a need to impose constraints on the range of v(t), and
determine the required parameters for the associated models
(knots or centers).

In this work the B-spline basis functions are adopted in
order to model Ψ(•). Specifically, the De Boor algorithm [15]
is used in the construction of the B-spline basis functions, as
described below.

B. Modelling of Ψ(•) using B-spline function approximation
with De Boor’s algorithm

De Boor’s algorithm is a fast and numerically stable al-
gorithm for evaluating B-spline spline curves. Univariate B-
spline basis functions are parameterized by the order of a
piecewise polynomial of order (k − 1) and also by a knot
vector which is a set of values defined on the real line that
break it up into a number of intervals. Supposing that there are
M basis functions, the knot vector is specified by (M + k)
knot values, {V1, V2, · · · , VM+k}. At each end there are k
knots satisfying the condition of being external to the input
region, and as a result the number of internal knots is (M−k).
Specifically

V1 < V2 < Vk < Vmin < Vk+1 < Vk+2 < · · ·
< VM < Vmax < VM+1 < · · · < VM+k. (5)

Given these predetermined knots, a set of M B-spline basis
functions can be formed by using De Boor recursion [15],

B

6[V V]

[V V]1 2

32[V V]

[V V]3 4

54[V V]

[V V]5 6

(0)

6B

B 5

(0)

B 3

(1)

(1)

2B

B

B

B

B

B

B

B

(1)

5

B B

B

B

B

B

(0)

4

 3

(0)

4

(1)

4

(2)

(3)

3

(2)

3

 2

(2)

2

(3)

(3)

1

(2)

 1

(1)

 1
(0)

2

 1

(0)

7

Fig. 1. Visualizing De Boor algorithm.

given by

B(0)
j (v) =

{
1 if Vj ≤ v ≤ Vj+1
0 otherwise (6)

j = 1, · · · , (M + k)

B(i)
j (v) = v−Vj

Vi+j−Vj
B(i−1)
j (v)

+ Vi+j+1−v
Vi+j+1−Vj+1

B(i−1)
j+1 (v),

j = 1, · · · , (M + k − i)





(7)

i = 1, · · · , k

Notably the first order derivatives of the B-spline function has
a similar recursion

d
dvB

(k)
j (v) = k

Vk+j−Vj
B(k−1)
j (v)

k
Vi+j+1−Vj+1

B(k−1)
j+1 (v),

j = 1, · · · ,M (8)

De Boor recursion can be graphically illustrated with reference
to Figure 1. Note that the early work on the construction
of B-spline curve is mathematically involved. Hence another
advantage of using De Boor’s recursion is the flexibility in
terms of the evaluations of functional and derivative values,
since it can cope with different setting such as number of
knots, and polynomial order.

We model Ψ(•) in (2) as

Ψ̂(v) =
M∑

j=1

B(k)
j (v)ωj (9)

where ̂ denotes estimate, ωj’s are weights to be determined.
We denote ω = [ω1, · · · , ωM]T ∈ <M . Note that model
(9) satisfies the property of partition of unity (convexity),
i.e. (B(k)

j (v) ≥ 0,
∑M

j=1 B
(k)
j (v) = 1), which is a desirable

property in achieving numerical stability [19].
Note that due to the piecewise nature of B-spline functions,

there are only k basis functions with nonzero values, and
nonzero first order derivatives, for any point v. Hence the
computational cost for the evaluation of Ψ(v) based on the
De Boor algorithm is to do with k, rather than the number of
knots, and this is in the order of O(k2). The evaluation of the
first order derivatives can be regarded as a byproduct, with the
additional computational cost in the order of O(k).

III. THE PROPOSED SYSTEM IDENTIFICATION ALGORITHM

Let the prediction error [20] between the Wiener system out-
put y(t) and ŷ(t), the model predicted output for y(t), be de-
noted by e(t) = y(t)− ŷ(t), and e = [e(1), e(2), · · · , e(N)]T .
With the B-spline approximation, the model predicted output
ŷ(t) can be written as

ŷ(t) = Ψ(v(t, a,b),ω)+ e(t) =
M∑

j=1

B(k)
j (v(t, a,b))ωj + e(t)

(10)
The specific system identification task is to jointly estimate a,
b and ω. This could be achieved by minimizing

V =
N∑

t=1

[e(t)]2 (11)

via the Gauss Newton algorithm. The solution obtained via
(11) is optimal in the sense that it is the maximum likelihood
estimates (MLE) in the case that ξ(t) is Gaussian. As the
objective function of (11) is highly nonlinear, the solution of
Gauss Newton algorithm is dependent on the initial condition.
It is important that a, b and ω are properly initialized so that
they converge to optimal solution. An initialization scheme is
proposed below.

A. Initialization of parameter vectors a and b

Denote the inverse function of Ψ(•), or Ψ−1(•), as ϕ(•).
Consider using also a B-spline neural network for the model-
ing of ϕ(•), as shown in Figure 2. For convenience, we still
denote the polynomial degree as k in the modeling of ϕ(•).
The number of basis functions is denoted as dy . A set of
(dy+k) knots is predetermined (see (5)) based on the domain
of the system output y(t), so that there are k external knots
outside each side of the boundary of the system output y(t).
The model used for modeling ϕ(•) is

ϕ̂ (y(t)) =
dy∑

j=1

B(k)
j (y(t))αj (12)

where αj ∈ R, (j = 1, · · · , dy) are the associated weights.
Denote the error between v(t) and ϕ (y(t)) as ε(t) and let
n = dy × (na + 1) + nb. Applying (1), yields

u(t− d) = −
nb∑

i=1

biu(t− d− i)

+
na∑

i=0

ai[(
dy∑

j=1

B(k)
j (y(t− i))αj] + ε(t)

= [p(x(t))]Tϑ+ ε(t) (13)

where x(t) = [−u(t − d − 1), · · · ,−u(t − d − nb), y(t)]T ,
ϑ = [ϑ1, · · · , ϑn]T =[−b1, · · · , −bnb , α1, · · · ,αdy , α1a1,
· · · ,αjai, · · · ,αdyana]T ∈ <n. p(x(t)) = [p1(x(t)), · · · ,
pn(x(t))]T =[−u(t − d − 1), · · · ,−u(t− d − nb),B

(k)
1 (y(t)),

· · · , B(k)
dy

(y(t)), B(k)
1 (y(t− 1)) · · · , B(k)

j (y(t− i)), · · · ,

B(k)
dy

(y(t− na))]T ∈ Rn. Define α = [α1, ..., αdy]T .

C(z)

. ()ψ

ϕ (.)

A(z)

z B(z)
 −d

ε (t)

v(t) y(t)

ξ (t)

+

+

_

u(t)

Fig. 2. The initialization for the linear filter parameter vector a and b’s

Over the training data set, (13) can be written in matrix
form as

u = Pϑ+ ε (14)

where u = [u(1− d), · · · , u(N − d)]T . ε = [ε(1), ..., ε(N)]T ,
and P is the regression matrix P = [p(x(1)), · · · ,p(x(N))]T .
The parameter vector ϑ can be found as the least squares
solution of

ϑLS =
(
PTP

)−1
PTu (15)

Denote the iteration step variable m of the Gauss-Newton
algorithm by a superscript (m). This procedure produces our
initial estimate of the vector b(0), which is simply taken as
the subvector of the resultant ϑLS , consisting of its first nb

elements.
In order to produce our initial estimate of the vector a(0),

the singular value decomposition (SVD) method based on the
above ϑLS [10] is used. Rearrange the last (na + 1) × dy
elements of ϑLS to form the matrix given by

Θ = α[1 aT]T

=




α̂1 α̂1a1
. . . ̂α1ana

α̂2 α̂2a1
. . . ̂α2ana

...
. . .

...

α̂dy α̂dya1
. . . ̂αdyana




∈ <dy×(na+1) (16)

The idea in [10] is to determine α and a from an overparam-
eterized vector Θ by minimizing

‖Θ−α[1 aT]T ‖2F .

Construct the singular value decomposition (SVD) of Θ =∑min(dy,na+1)
i=1 σiµiνi

T , where µi (i = 1, ...dy) and νi

(i = 1, ...(na + 1)) are orthonormal vectors. Let ν1 =
[ν1,1, ν2,1, ..., νna+1,1]T . Using the fact that Θ has rank one,
we obtain

a(0) = [ν2,1, ..., νna+1,1]T /ν1,1. (17)

We can also obtain α = σ1ν1,1µ1, but it is no longer used
in the remainder of our algorithm. Note that we used the
constraint a0 = 1 to get the unique solution that is different
from [10] due to the different constraints.

B. The initialization of parameter vector ω

Consider initially generating an auxiliary signal {v̂(t)}Nt=1
over training data set {u(t), y(t)}Nt=1, based on the initialized
parameter estimates b̂(0) and â(0), as

v̂(t) = u(t− d) + b̂(0)1 u(t− d− 1) + ...

+b̂(0)nb
u(t− d− nb)− a(0)1 v̂(t− 1)

−a(0)2 v̂(t− 2)...− a(0)na
v̂(t− na) (18)

Then a block of training data set {v̂(t), y(t)}Nt=1 is used for
the initialization of parameter vector ω. Using model form
(2), in which v(t) is replaced by its estimates v̂(t), and ξ(t)
replaced by e(t), we have

y(t) =
M∑

j=1

B(k)
j (v̂(t))ωj + e(t)

= [q(v̂(t))]Tω + e(t) (19)

where q(v̂(t)) = [q1(v̂(t)), · · · , qM (v̂(t))]T =[B(k)
1 (v̂(t)), · · · ,

B(k)
M (v̂(t))]T ∈ <M . Over the training data set, (19) can be

written in matrix form

y = Qω + e (20)

where Q = [q(v̂(1)), · · · ,q(v̂(N))]T and y =
[y(1), · · · , y(N)]T . The initial estimate of ω is obtained as
the least square solution given by

ω(0) = (QTQ)−1QTy (21)

C. Gauss Newton algorithm combined with De Boor recursion

Note that the initial parameter estimates obtained so far
are only near to, but not optimal in minimizing (11). This is
because the regressors in (12) are subject to the output noise,
which will in general propagate to the parameter estimates,
yielding biased parameters [1]. In order to find the optimal
value to minimize (11), Gauss Newton algorithm can be
applied. Denote θ = [ωT aT bT]T . With an initial θ(0), the
Gauss Newton algorithm is given by

θ(m) = θ(m−1) − α{[J(m)]TJ(m)}−1[J(m)]Te(θ(m−1))
(22)

where J = [Jω Ja Jb] is the Jacobian of e(θ), and

Jω = −




B(k)
1 (v(1)) · · · B(k)

M (v(1))
B(k)
1 (v(2)) · · · B(k)

M (v(2))
...

. . .
...

B(k)
1 (v(N)) · · · B(k)

M (v(N))




(23)

Ja =




v(0)f(1) · · · v(1− na)f(1)
v(1)f(2) · · · v(2− na)f(2)

...
. . .

...
v(N − 1)f(N) · · · v(N − na)f(N)


 (24)

Jb = −




u(−d)f(1) · · · u(1− d− nb)f(1)
u(1− d)f(2) · · · u(2− d− nb)f(2)

...
. . .

...
u(N − d)f(N) · · · u(N − d− nb)f(N)




(25)
where f(t) =

∑M
j=1

d
dv [B

(k)
j (v(t)))]ωj , t = 1, ..., N , α > 0 is

a small positive step size. Note that in calculating (23)-(25),
De Boor algorithm (6)-(8) is applied in evaluating all entries.
In particular we point out the term d

dv [B
(k)
j (v(t)))] using (8)

gives exact values at minimum extra computational cost (this is
an advantage specific to our B-spline functions with De Boor
recursion, but not [13], [2]). Effectively this enables stable
and efficient evaluations of B-spline functional and derivative
values to be possible, which could be problematic for many
other nonlinear representation including some spline functions
based nonlinear models. The above iteration can be terminated
when θ(m) converges, or by predetermining a sufficiently large
number of iterations.

We point out that the optimization of model output with
respect to the number/location of knots is an intractable mixed
integer problem, for which an iterative trial and error approach
can be used to yield a good model (not optimal). For a prior
unknown system, the initial knots location should be set as
evenly spread out in the input region. With the number of
knots and their location determined, conventional nonlinear
optimization algorithms are applicable, e.g. the proposed al-
gorithm. In practice the number of knots are predetermined to
produce a model as small as possible (to avoid overfitting) that
can still provide good modeling capability. A simple iteration
of the proposed approach can be used. The number of knots
are increased, and the model performance is monitored until
the improvement becomes insignificant. For many problems,
the model performance is not sensitive to the location of knots
to a large extent if these are evenly spread out. However if
there is severe local nonlinearity, the location of knots can be
empirically set by the user by inserting more knots at higher
density in regions with high curvatures. These regions can
be identified by trial and error (though identifying the data
points with high modeling errors) during the iterative modeling
process.

IV. NUMERICAL EXAMPLES

A Wiener system is simulated, in which the linear subsystem
is set as A(z) = 1− 1.2z−1 + 0.5z−2, B(z) = 1 + 0.3z−1 +
0.8z−2+0.07z−3 and d = 2. The nonlinear subsystem is given
by

Ψ(v) = 0.5sign(v − 1)
√
|v − 1|+ 1 (26)

1000 training data samples y(t) were generated by using (1)
and (2), where u(t) was uniformly distributed random variable
u(t) ∈ [−1.5, 1.5]. The variances of the additive noise to the
system output are set as 0.012 (low noise) and 0.12 (high
noise) respectively. The polynomial degree of B-spline basis
functions was set as two (k = 3, piecewise quadratic). The
proposed system identification algorithm is carried out with

−8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

v

B
j(3

) (v
)

−8 −6 −4 −2 0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

v

model predictions
Noisy observations
true function

−8 −6 −4 −2 0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

v

model predictions
Noisy observations
true function

(a) (b) (c)

Fig. 3. The modelling results of the nonlinear function Ψ(u); (a) the B-spline functions and (b) low noise and (c) high noise.

the following empirically predetermined knot sequences. The
knot sequence

[−1.5,−1,−0.75,−0.25, 0, 0.5, 0.75, 1, 1.25,

1.5, 2, 2.25, 2.75, 3, 3.5]

is initially set for y(t) in order to generate basis functions used
in (12). The knot sequence

[−11,−10,−8,−3,−2,−1, 0, 0.6, 0.8, 1, 2, 3, 8, 10, 11]

is used for v(t) in order to generate basis functions used in
(9). The modelling results are shown in Table I. It is shown
that the proposed system identification method is particularly
effective at high output noise level. Figure 3 show the excellent
approximation results for the nonlinear static functions using
the B-spline models.

TABLE I
RESULTS OF LINEAR SUBSYSTEM PARAMETER ESTIMATION; (A) LOW

NOISE; AND (B) HIGH NOISE

(a)
True parameters Initial estimates Final estimates

a1 −1.2 −1.0240 −1.1864
a2 0.5 0.3710 0.4919
b1 0.3 0.3099 0.2782
b2 0.8 0.8048 0.8081
b3 0.07 0.0769 0.0873

(b)
True parameters Initial estimates Final estimates

a1 −1.2 −0.5802 −1.1759
a2 0.5 0.1364 0.4853
b1 0.3 0.4788 0.2808
b2 0.8 0.7315 0.7931
b3 0.07 0.3527 0.1038

V. CONCLUSIONS

This paper investigates a new system identification algo-
rithm for the Wiener system based on B-spline neural network.
The parameter estimation is based on the Gauss-Newton
algorithm incorporating the De Boor algorithm for both curve
and the first order derivatives, following the use of a parameter
initialization scheme. The efficacy of the proposed approach
has been demonstrated using an illustrative example.

REFERENCES

[1] A. Hagenblad, L. Ljung, and A. Wills, “Maximum likelihood identifi-
cation of Wiener models,” Automatica, vol. 44, pp. 2697–2705, 2008.

[2] Y. Zhu, “Distillution column identification for control using Wiener
model,” in Proc. the American Control Conference, San Diego, CA,
USA, 1999, pp. 3462–3466.

[3] A. D. Kalafatis, N. Arifinand L. Wang, and W. R. Cluett, “A new
approach to the identification of pH processes on the Wiener model,”
Chemical Engineering Science, vol. 50, no. 23, pp. 3693–3701, 1995.

[4] A. D. Kalafatis, L. Wang, and W. R. Cluett, “Identification of Wiener-
type nonlinear systems in a noisy environment,” International Journal
of Control, vol. 66, pp. 923–941, 1997.

[5] I. W. Hunter and M. J. Korenberg, “The identification of nonlinear bio-
logical systems: Wiener and Hammerstein cascade models,” Biological
Cybernetics, vol. 55, pp. 135–144, 1986.

[6] J. C. Gomez abn A. Jutan and E. Baeyens, “Wiener model identification
and predictive control of a pH neutralisation process,” IEE Proc. -
Control Theory and Applications, vol. 151, no. 3, pp. 329–338, 2004.

[7] W. Greblicki, “Nonparametric identification of Wiener systems,” IEEE
Transactions on Information Theory, vol. 38, no. 5, pp. 1487–1493,
1992.

[8] D. Westwick, “Identifying MIMO Wiener systems using subspace model
identification model identification methods,” Signal Processing, vol. 52,
pp. 235–258, 1996.

[9] I. Skrjanc, S. Blazic, and O. E. Agamennoni, “Interval fuzzy modeling
applied to Wiener models with uncertainties,” IEEE Trans. on Systems,
Man and Cybernetics - Part B: Cybernetics, vol. 35, no. 5, pp. 1092–
1095, 2005.

[10] E. W. Bai, “An optimal two-stage identification algorithm for
Hammerstein-wiener nonlinear systems,” Automatica, vol. 34, pp. 333–
338, 1998.

[11] T. Wigren, “Recursive prediction error identification using the nonlinear
Wiener model,” Automatica, vol. 29, no. 4, pp. 1011–1025, 1993.

[12] T. Wigren, “Convergence analysis of recursive identification algorithms
based on the nonlinear Wiener model,” IEEE Transactions on Automatic
Control, vol. 39, no. 11, pp. 2191–2206, 1994.

[13] M. C. Hughes and D. T. Westwick, “Identification of IIR Wiener system
with spline nonliearitis that have variable knots,” IEEE Transactions on
Automatic Control, vol. 50, no. 10, pp. 1617–1622, 2005.

[14] G. Farin, Curves and Surfaces for Comnputer-aided Geometric Design:
a Practical Guide, Academic Press, Boston, 1994.

[15] De Boor, A Practical Guide to Splines, New York: Spring Verlag, 1978.
[16] T. Kavli, “ASMOD - an algorithm for adaptive spline modelling of

observation data,” International Journal of Control, vol. 58, no. 4, pp.
947–967, 1993.

[17] M. Brown and C. J. Harris, Neurofuzzy Adaptive Modelling and Control,
Prentice Hall, Hemel Hempstead, 1994.

[18] C. J. Harris, X. Hong, and Q. Gan, Adaptive Modelling, Estimation and
Fusion from Data: A Neurofuzzy Approach, Springer-Verlag, 2002.

[19] R. T. Farouki and T. N. T. Goodman, “On the optimal stability of the
Bernstein basis,” Mathematics of Computation, vol. 65, no. 216, pp.
1553–1566, 1996.

[20] T. Soderström and P. Stoica, System Identification, Prentice Hall, 1989.

